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Abstract. In this work, we introduce a new scheme to extract hierarchical isocontours from regular and irregular
2D sampled data and to encode it at single rate or progressively. A dynamic tessellation is used to represent
and adapt the 2D data to the isocontour. This adaptation induces a controlled multi–resolution representation of
the isocontour. We can then encode this representation and control the geometry and topology of the decoded
isocontour. The resulting algorithms form an efficient and flexible isocontour extraction and compression scheme.
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Figure 1:Progressive compression of the cortex of a Com-
putational Tomography image, topology controlled.

1 Introduction

Curves are one of the basic building blocks of geometry
processing. They are used to represent shape in 2D im-
ages, terrain elevation on maps, and equations in mathemat-
ical visualization. In most of those applications, the curves
can be interpreted as an isocontour of a 2D dataset, possi-
bly mapped on a more complex space. Those isocontours
are flexible objects that can be refined or reduced, that can
deform with differential simulations or mathematical mor-
phology, and that can be described for shape classification
or automatic diagnostic in medicine or geosciences.

Problem statement. Given the samplinĝf of scalar func-
tion f defined over a domainD embedded inR2 (such
as a 2D image or a discrete surface), theisocontourof an
isovalueα is the curvef−1(α). Such an isocontour corre-
sponds to only a small part ofD, but usually covers a large
area of the domain. For example, the cortex corresponds to
only specific x–ray scintillation inside the scan of the whole
head (see Figure1), the elevation curve is only a small part
inside a topographic map (see Figure2). Therefore, specific

compression techniques for isocontours should provide bet-
ter compression rate than the encoding of the entire 2D data.

Contributions. In this paper we introduce a new method
for extracting and compressing isocontours based on a dy-
namic tessellation of the 2D data. This structure shows
very nice adaptation properties, allowing extraction of the
isocontour with different level of details. The main idea
is to encode the tubular neighbourhood of the isocontour
extracted from different levels of detail of the tessellation.
Moreover, the adaptation the tessellation can depend on the
isocontour, providing to our compression scheme a full con-
trol on the geometry and topology of the decoded isocon-
tour. The resulting algorithms are flexible, can handle ir-
regular 2D data, single–rate and progressive transmission
together with uniform and adapted refinements.

2 Related work

In this work, we will use dynamic adaptive triangulations to
represent and encode two–dimensional isocontours. This
section describes some relevant works related to dynamic
adaptive tessellations, and hierarchical isocontour extrac-
tion and isocontour compression.

Adaptive Tessellations. Hierarchical data structures are
traditionally used for progressive compression and visual-
ization of images. The usual representation for images re-
lies on a rectangular grid that is subdivided uniformly or
adaptively with a quad–tree. However, these structures are
restricted to rectangular data sets. The size of those rect-
angles reduces twice as fast as the sizes of triangles in tri-
angular tessellations, resulting in less adaptability. We will
therefore focus on triangulations. [15] introduced multi–
triangulations as a general concept for adapted variable res-
olution simplicial structures. [14] developed a binary multi–
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Figure 2: Progressive compression of an elevation curve of the Sugar Loaf. The tessellation is adapted to the curve to
minimize the distortion and to preserve the topology. (a) The shape of the tubular neighborhood of the curve is sent first,
with the nodes sign. (b,c,d) Then the refinements of the tessellation are encoded with the signs of the new nodes. (e) Finally,
the values of the nodes in the tubular neighborhood are refined.

resolution structure based on stellar operators, which is a
multi–triangulation with optimal properties. [18] proposed
a very simple scheme for dynamically adapting triangula-
tions while maintaining regularity conditions.

Hierarchical Isocontour Extraction. A hierarchical rep-
resentation of an isocontour can be obtained by reduction of
the polygonal curve of a single isocontour: [5] introduced
the first algorithm for reduction of the polygonal approxi-
mation of a curve in the plane. Since then, this algorithm
has been extended and improved in many aspects (see [19]
for guarantees on the consistency of the reduced curve).

Nevertheless, this hierarchy can be obtained by ex-
tracting isocontours at each level of detail of a multi–resolution
representation of the 2D data [16, 12]. The approximation
of complex implicit curves usually requires robust compu-
tation, whose result can be seen as an isocontour. Hierar-
chical structures such as quad–trees usually provide simple
and efficient solutions [11]. Similarly, the hierarchical rep-
resentation of the image data can be adapted to the specified
isocontour. For example [9] provides a hierarchy of rect-
angles to represent the isocontour, using genetic algorithm
to optimize the dimensions of the rectangles. Those hier-
archical representations are numerous when dedicated to a
specific application, in particular for shape analysis [13, 3].

Isocontour compression. Isocontour compression is usu-
ally done as a compression of a non–self–intersecting curve,
for example as two separate signals for each coordinate, or
as a vector displacement [4, 17]. It can also be compressed
by the popular chain code when the curve points are limited
to pixel quantization [6]. In that case, it can be compressed
as a 2D signal [8, 2]. [7] introduced another concept by
encoding a hierarchical representation of the isocontour in-
duced by a multi–resolution of the 2D data. The progres-
sion tries to maintain the chessboard distance from the orig-
inal curve to the encoded one. The coarser resolution is en-

coded as two separate signals, and the position of the points
introduced by the refinements are encoded as a difference
with the near-by points.

3 Overview

In this work, we intend to encode a hierarchy of isocon-
tours by their tubular neighbourhood. The tubular neigh-
bourhoods are extracted from an adapted triangulation of
the original 2D data. The data structure we will use to rep-
resent the 2D data is the one of [14, 18]. We adapt it to
the neighbourhood of the isocontour, and reduce it accord-
ing to the isocontour topology, geometry and position in-
side the triangulation. This structure allows to a very sim-
ple multi–resolution isocontour extraction, and enables us
to compress the curve at single rate or progressively. More-
over, it is well suited for uniform and adapted progression
on both regular and irregular 2D data. It can prevent topo-
logical changes or high geometric distortion during the pro-
gression. Finally, it works with sub–pixel interpolation for
the curve, which enables smooth curve reconstruction at
any level of detail.

Paper outline. We will introduce the adaptive triangu-
lation we used in Section4. This structure can represent
regularly sampled data with the same amount of sample
points as the classical quad-tree representation, but it can
also adapt to irregular data. It also provides simple and
effective controls on the topology and geometry of the iso-
contour as explained in Section5. Our compression scheme
is introduced in Section6, and the results are showed in
Section7.

Definitions. The2D datais given as a collection of sam-
plesvi, each of which is associated with itsisovaluef̂(vi).
Those samples are triangulated. In particular, when the
samples are regularly spaced on a 2D grid (a grey–scale



Figure 3:A regular BMT adapted to an isocontour and the
corresponding tubular neighbourhood.

image for example), this triangulation can be automatically
generated by the subdivision of a two–triangles square.

Assuming that we want to obtain the isocontour cor-
responding to the isovalueα, a sample of the 2D data is
classified aspositiveor negativedepending whether its iso-
value is greater thanα or not. An edge of the triangulation
is crossingwhen its end–points have opposite signs. A tri-
angle is crossing when it contains a crossing edge. The
tubular neighbourhoodof the isocontour is the set of all the
crossing triangles (see Figure3).

From now on, the isocontour will be approximated by
a polygonal line linking theisocontour pointsinterpolated
at each crossing edge of the tessellation. In the case of a
grey–scale image, this corresponds to a linear sub–pixel in-
terpolation (as the purple points of Figure3). The samples
of the 2D data will be referred as theverticesof the trian-
gulation, as opposed to thepointsof the isocontour.

4 Adaptive Tessellation

The multi–resolution structure we will use here is the Reg-
ular Binary Multi–Triangulation (RBMT) [14, 18]. This
structure is constructed using Stellar operators on edges and
can decompose adaptively the 2D data. These decompo-
sitions can be regarded as hierarchies of conforming tri-
angulations. In this section, we will give a brief descrip-
tion of the Stellar operators on edges and the binary multi–
triangulations.

4.1 Stellar Operators

Stellar theory [1] studies the equivalencies between simpli-
cial complexes (i.e., a generalization of a triangulation) and
defines topological operators that change structures while
maintaining their integrity and coherence with the mod-
elized object.

Thestellar subdivisionoperation inserts a vertex into
anr–simplex of ann–dimensional simplicial complex. The
inverse of this operation is calledstellar simplification. Stel-
lar theory states that stellar operatorson edgesare sufficient
to map any two equivalent manifolds [1]. Edge–subdivision
and Vertex–simplification will be the basic operators to con-
struct Binary Multi–Triangulations (see Figure4).

σ

w

subdivide

simplify

Figure 4:Subdividing an edgeσ ¿ simplifying a vertexw.

(a) curvature (b) distortion

Figure 5:The isocontour of Figure3 adapted according to
(a) the curvature and (b) the distortion.

4.2 Binary Multi–Triangulation

The Binary Multi–Triangulation (BMT) is a multi–resolution
structure based on stellar subdivision on edges. When sub-
dividing an edge, its incident triangles are subdivided in
two. Therefore, a sequence of subdivisions on edges can
be represented as a binary tree structure, where each node
represents a triangle and the two sons of a nodet are the two
triangles obtained by subdividingt. This binary tree (actu-
ally a forest) adapts more nicely than the classical quad-tree
for image decomposition. Thelevelof a triangle is its depth
in the binary tree.

The BMT is reducedor refined by walking up and
down the binary tree, creating a hierarchy of triangulations
at differentresolutions. We perform those operations effi-
ciently by maintaining for each trianglet, the vertexw that
has been inserted during the subdivision that createdt. The
vertexw is called thesimplification vertexof t, and the edge
opposite tow is called thesubdivision edgeof t. For exam-
ple Figure6 shows the subdivision edges of the BMT as
darker edges.

4.3 Adaptation Properties and Regularity

The adaptability of the BMT comes from the possibility to
refine and reduce the triangulation, while maintaining the
dependencies between its triangles. In particular, we will
maintain gradual transitions by preventing two adjacent tri-
angles from differing by more than one level. To do so, it
is necessary to propagate a subdivision or simplification to
adjacent triangles. The propagation of a subdivision on an



Figure 6:RBMT adapted to the bold line: at each level, every triangle crossing the bold line is refined, but subdivisions in
the upper–right part of the square propagate to the lower–left part.

edgee is performed by checking that each trianglet adja-
cent toe hase as a subdivision edge. If it is not the case, a
subdivision is performed on the subdivision edge oft. This
subdivision can require other triangles to be subdivided if
they do share their subdivision edges. The propagation of a
simplification on a vertex is done in a similar way. With this
restriction, the resulting structure is called aregular binary
multi–triangulation(RBMT). In that structure, subdividing
a triangle means subdividing its subdivision edge, while
simplifying it means simplifying its simplification vertex.

For example, Figure6 illustrates a sequence of refine-
ments adapting the triangulation to the bold line. In order
to preserve gradual transition between resolution levels, lo-
cal refinements around the bold line propagates inside the
triangulation (in this example, far away from the bold line),
as what happens to the bottom left part.

5 Isocontour Extraction

The isocontour is computed as a polygonal curve. Each
crossing trianglet of the RBMT contains a segment[p1, p2]
of the isocontour. The extremitiesp1 and p2 of the seg-
ment are linearly interpolated on the two crossing edges
v0v1 andv0v2 of t: pi = λ ·pos(v0)+(1−λ) ·pos(vi) with
λ = isovalue(vi)

isovalue(vi)−isovalue(v0)
. If the isocontour is extracted

from an image, the subpixel interpolation can generate an
ambiguity. This ambiguity is solved (somehow arbitrarily)
by the tessellation, since only triangular elements are inter-
polated. The resulting isocontour is controlled redundantly
by the isovalue of the vertices (grey level of the represent-
ing pixels) and by the size and position of the edge. This
double control provides more flexibility on the isocontour
progressive compression.

Multi–resolution Representation. The representation of
the isocontour corresponds to the polygonal interpolation
on the edges for different resolutions of the RBMT. These
levels are obtained by successive reductions of the finest
level. The reductions can be uniform, simplifying all trian-
gles whose level is greater than a given threshold (see Fig-
ure6). It can also be adapted to the topology of the curve.
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Figure 7:The simplification ofw induces a distortion that
can be measured asmax{d(q, p′1); d(q, p′2)}.

For example, it is possible to simplify all the triangles that
are not crossing, preserving the isocontour and its tubular
neighbourhood (see Figure6. The refinement can also be
done in order to preserve small triangles where the curve
has a high curvature, and to reduce the triangulation where
it is more flat (see Figure5(a)). In a similar way, during
compressing, we will be able to minimize the distortion of
the curve and to preserve its topology (see Figure5(b)).

Distortion control. The distortion induced by a simplifi-
cation of a vertexw can be estimated by the encoder. To
perform such a simplification, the star ofw needs first to be
composed of only four triangles (see Figure7). The points
of the reduced curve will be the interpolation of the isocon-
tour on the remaining edges, with the isovalues of the ver-
tices quantized according to the compression tuning. For
example, in the case of Figure7, the distortion can be esti-
mated as the maximal distance betweenq andp′i.

Topology control. Similarly, the topology of the isocon-
tour can be easily controlled during the simplification of a
vertexw. Actually, there are a few prohibited simplifica-
tions. The destruction of a connected component occurs
when all the four edges incident tow are crossing. The
separation of a connected component in two or the merge
of two connected components happen when the subdivision
edgev0v1 is not crossing, whilewv0 andwv1 were crossing
edges.



(a) Location: level4,
1, L R L R. +−−.

(b) Vertex signs:− −
+ + + + ++.

(c) 2 known vertices,
then:−+−.

(d)−−−−+ +−+
−End.

Figure 8: Uniform encoding of the coarser resolution of a small sinusoid. The light curve is a second–order fitting of the
decoder’s points (in the middle of the crossing edges), and serves as geometrical predictor.

6 Isocontour Compression

The techniques we are now to introduce perform both direct
and progressive encoding of the tubular neighbourhood of
an isocontour. Moreover, the encoding of this neighbour-
hood can be done uniformly (i.e., the triangles of the tubu-
lar neighbourhood of the isocontour have constant size, see
Figure8) or adaptively (i.e. the size of the triangles varies
according to the contour see Figure10).

This section is organized as follows. We will intro-
duce our method for encoding the tubular neighbourhood
of the isocontour first uniformly and then adaptively. These
methods can be used to encode the coarser resolution of
the progression, or to encode the entire isocontour at sin-
gle rate. Then, we will detail our techniques to encode the
refinements, used for the progressive compression. Again,
this process can be done uniformly or adaptively. Finally,
we will explain the geometry encoding, and describe how
to reuse the compressed data of one isocontour to encode
other near–by ones on the same scalar data.

6.1 Coarser Resolution

Our main idea is to encode the tubular neighbourhood go-
ing along with the isocontour, from one crossing triangle
to an adjacent one in the tubular neighbourhood. The algo-
rithm encodes first the localization of an unvisited crossing
trianglet0, and the signs of its vertices. From this initial tri-
angle, it follows the isocontour, encoding the sign of each
unvisited vertex encountered. When the traversal is done, it
continues on the next connected component. Notice that the
vertices of the only tubular neighbourhood have their iso-
value encoded, leaving our algorithm almost independent
of the initial size of the 2D data size.

Localization. The location of a trianglet0 can be encoded
using the binary tree inherent to the RBMT. The root of
the tree contains only a few triangles: 2 for a regular grid.
The triangle containingt0 is encoded by its index. Then,
knowing the levell of the triangle to encode, it can be lo-

t0 t1

e0

v1

v
−1

v0

v
−2

v2 v3

v5

v7
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Figure 9: Coarser resolution compression: the traversal
goes fromt0 to t1 through the gatee0, and encodes the
vertexv1.

calized using a sequence ofl symbolsLeft andRight (see
Figures8(a), 10(a)and10(d)). The signs of its vertices are
then encoded and all of them are marked as visited; the ini-
tial trianglet0 is also marked as visited.

Uniform encoding. Once the signs of the vertices of the
initial trianglet0 have been encoded, its crossing edges are
known to the decoder. The first one is chosen to be the
first gatee0 (see Figure9). The trianglet1 (6= t0) incident
to the gatee0 is also crossing. The sign of the vertexv1

opposite toe0 is encoded, and botht1 andv1 are marked as
visited. The algorithm then continues the same way starting
ast1. The traversal ends when both triangles incident to the
gate are marked, or when the gate is a boundary edge of the
RBMT.

Actually, the sign of the vertexv1 is encoded only
when it has not been marked. This guarantees to encode
exactly one sign bit per vertex, with an overhead of a few
bits per connected component, used for the localization pro-
cedure (see Figure8).

Adaptive encoding. The above algorithm can be easily
modified to encode the tubular neighbourhood of the iso-
contour when it is composed of triangles of different lev-
els. In that case, the algorithm also encodes the level of the
current triangle (t1) during the traversal. The decoder will
read the required level fort1 and subdivide or simplifyt1



(a) Location: level5,
0, L R L L L. −++.

(b) Vertex levels and
signs: > − = − <
+ < − < +.

(c) = + > − > + >
− = − < +.

(d) level5, trig 0, L L
L L L. −++. > − =
− < + < − <.

(e) = + > − > + >
− = − < +End.

Figure 10:Adaptive encoding of the coarser resolution of a small hyperbola.

if necessary. The RBMT we use maintain a difference of at
most one level between adjacent triangles (see Section4).
Therefore, the decoder will have to subdivide or simplify an
unvisited triangle at most once, and the encoder will man-
age only 3 symbols:′ =′ when the levels match,′ >′ or
′ <′ when the levels differ. The encoding of the signs is
done similarly to the uniform one.

This guarantees to encode exactly one bit per vertex of
the tubular neighbourhood, plus one symbol of{=, <, >}
per triangle of the tubular neighbourhood, with an overhead
of a few bits per connected components, used for the local-
ization procedure (see Figure10).

6.2 Progressive refinement

The refinement methods allow a progressive adaptation of
the tubular neighbourhood to the isocontour, using each
time smaller triangles. The algorithm can simply encode
the signs of the new vertices created by the subdivisions
of all triangles on the tubular neighbourhood, or it can first
specify which triangles to subdivide and then send the sign
of the new vertices inserted.

Uniform refinement. The uniform refinement simply sub-
divides first all the triangles of the tubular neighbourhood,
and then en/decodes the signs of the vertices created by the
subdivision inside the former tubular neighbourhood. The
order of the new vertices is induced by the traversal used
for the coarser resolution en/decoding.

When subdividing a triangle crossing the isocontour,
the configuration of its sub–triangles is determined by the
sign of the new vertex introduced on the subdivision edge.
This sign is encoded during the compression. This subdi-
vision can locally extend the tubular neighbourhood (see
Figure11). This case occurs when a non–crossing subdivi-
sion edgee = v1v2 gives rise to two crossing sub–edges. In
that case, the vertexv opposite toe will be included in the
tubular neighbourhood, but its sign need not to be encoded
as it can be deduced by the decoder as the sign ofv1 (see
Figure11).

v

v0

v1e

Figure 11:A subdivision can extend the tubular neighbour-
hood of the isocontour. The sign ofv is the one ofv1 and
v2.

Adaptive refinement. Our method also allows an adap-
tive progression, creating smaller triangles where the iso-
contour is more complex, and leaving bigger triangles where
it is simple. For each subdivision edge in the tubular neigh-
bourhood, we encode theRefine andKeep code. When
a Keep symbol is encoded, the subdivision edge will not
be considered in future refinements, keeping it as a leaf on
the hierarchy. The subdivision edges of the tubular neigh-
bourhood are collected in the order of the coarser resolution
traversal. The sign of the newly inserted vertices is encoded
in the same way as for uniform refinement.

Actually two successive resolution of the RBMT can
differ locally by more than one level in the binary tree.
Therefore, the above sequence will be repeated as long as a
Cont/Stop bit is read by the decoder after the vertex signs
are received.

6.3 Final geometry encoding

Once the tubular neighbourhood of a resolution level is en-
coded, only one bit for each vertex of the RMBT is known
to the decoder. Therefore, the position of each pointp of
the isocontour isa priori the middle point of a crossing
edgee. This can be improved by sending the isovalue of
the endpoints ofe. Moreover, this scalar value will be used
to encode other isocontour generated with a different iso-
value.

The input 2D data regularity can actually influence



(a) Location: level6,
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Figure 12:Adaptive encoding of the coarser resolution of a cubic: irregular tessellation can reduce the distortion.

the quality of the compression (see Figure12). For spe-
cific applications such as human face contour compression,
the input data can be sampled according to the mean and
variances of the original isocontour, resulting in an elliptic–
radial initial distribution of the 2D data.

6.4 Close–by isocontour encoding

Once an isocontourC corresponding to an isovalueαC has
been decoded, the decoder knows its entire tubular neigh-
bourhood. It can be used to encode also isocontoursC ′

corresponding to isovaluesαC′ close toαC , especially for
medical applications where the contrast of the 2D data is
not well defined.C ′ can be easily encoded as a new coarser
resolution by sending first the isovalueαC′ and then the
quantized isovalues of the vertices not precise enough or
unknown to the decoder.

7 Results

The methods we introduced here are flexible and can be
used in many ways. For isocontours of images, we chose
to reduce the complete triangulation of the pixels. We then
encoded the isocontour at each step of this reduction, which
can be uniform or adapted to the isocontour. For implicit
curves, we sent in–between two levels of detail a part of
the geometry (2 bits). We implemented our compression
scheme with a context arithmetic coder of order 0 for the
coarser level transmission, 2 for the refinements and 1 for
the final geometry encoding. We used a simple predictor
based on a second–order curve fitting [10] (see Figures8
and10).

Our method resulted in efficient rate/distortion curves
(see Figure13). The different controls on the adaptation of
the multi–resolution can have a significant cost. For exam-
ple, on regular models such as the elevation curve of the
Sugar Loaf of Figure2, the distortion and topology con-
trols provide nicer results to the eyes at the beginning of the
compression than uniform refinements, while finally result-
ing in similar performances. Topology control means an

(a) progressive: 97 bytes (b) direct: 173 bytes,
progressive: 283 bytes

Figure 14:Progressive compression of a car number plate
(with enhanced contrast), topology controlled.

extra cost depending on the complexity of the model (com-
pare the car number plate of Figure14with the brain model
of Figure 1 on Figure13), but the rate/distortion perfor-
mance has a similar evolution for all methods and models
(see Figures13(a)). Geometry encoding seems a good al-
ternative to refinements for regular models such as the el-
lipse of Figures13(a). Single rate encoding is, as usual, a
little more efficient than progressive encoding, but can be
complemented by the final geometry compression of Sec-
tion 6.3.

8 Next steps

We introduced a complete isocontour multi–resolution ex-
traction and compression scheme. The dynamic triangu-
lation we used provides a very simple way of creating a
multi–resolution structure of the 2D data adapted to the iso-
contour. This structure allowed us to achieve both direct
and progressive compression, and to encode the isocontour
uniformly or adaptively. Moreover, it provides a full con-
trol on the progression, granting topological and geometri-
cal control on the decoded isocontour.

We used binary multi–triangulations for the scalar data
representation, implemented using dimension–independent
generic programming [14]. This offers a very simple ex-
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Figure 13:Compression results: on complex models, topology control is mode expensive with progressive encoding.

tension of our algorithm to compress level sets in any di-
mension with a similar efficiency. This will require first to
optimize the arithmetic coding and prediction parameters
we use for the compression, and to quantify the advantages
of geometry encoding upon refinement operations.
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