ADAPTIVE IMAGE DENOISING IN SCALE-SPACE USING THE WAVELET TRANSFORM
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Abstract. This paper proposes a new method for image denoising with edge preservation, based on image multi-
resolution decomposition by a redundant wavelet transform. In our approach, edges are implicitly located and
preserved in the wavelet domain, while noise is filtered out. At each resolution, the coefficients associated to
noise and coefficients associated to edges are modeled by Gaussians, and a shrinkage function is assembled. The
shrinkage functions are combined in consecutive resolution, and geometric constraints are applied to preserve
edges that are not isolated. Finally, the inverse wavelet transform is applied to the modified coefficients. This
method is adaptive, and performs well for images contaminated by natural and artificial noise.
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1 Introduction

An important and difficult problem in image processing is
to remove noise from images without blurring the edges.
Typically, noise is characterized by high spatial frequen-
cies, and Fourier-based techniques tend to suppress high
frequencies, which also smears the edges. On the other
hand, the wavelet transform provides good localization in
both spatial and spectral domains, allowing noise removal
and edge preservation. Nowadays, there are several ap-
proaches based on the wavelet transform, with promising
results.

The method proposed by Mallat and Hwang [1] esti-
mates local regularity of the image by calculating the Lip-
schitz exponents. Coefficients with low Lipschitz exponent
values are removed, and the image is reconstructed using
the remaining coefficients (in fact, only the local maxima
are used, and the image is estimated from these maxima).
The reconstruction process is based on an iterative projec-
tion procedure, which may be computationally demanding
(although Carmona developed a noninterative algorithm [2]
that was shown to be equivalent to the iterative procedure,
but much faster). This approach does not produce good re-
sults for images with low signal-to-noise ratios (SNR), and
requires user interaction.

Xu et al. [3] used the correlation of wavelet co-
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efficients between consecutive scales to distinguish noise
from meaningful data. Their method is based on the fact
that wavelet coefficients related to noise are less correlated
across scales than coefficients associated to edges. If the
correlation is smaller than a threshold, a given coefficient is
set to zero. To determine a proper threshold, a noise power
estimate is needed by their technique, which may be diffi-
cult to obtain for some images.

Malfait and Roose [4] developed a technique that takes
into account two measures for image filtering. The first is
a measure of local regularity of the image based on the
Holder exponent, and the second takes into account geo-
metric constraints. These two measures are combined in a
Bayesian probabilistic formulation, and implemented by a
Markov random field model. The SNR gain achieved by
this method is significant, but the stochastic sampling pro-
cedure needed for the probabilities calculation is computa-
tionally demanding.

Simoncelli and Adelson [5] proposed a probabilistic
approach for image denoising using wavelets. The authors
used a two-parameter Generalized Laplacian distribution to
model the wavelet coefficients of the image. These pa-
rameters are estimated from noisy observations. The result
is a nonlinear estimator that performs wavelet coefficient
shrinkage.

Chang et al. [6, 7] proposed a probabilistic approach



for image denoising using soft thresholds. In [6], the coef-
ficients associated to noise are modeled as Gaussian func-
tions, while coefficients associated to edges are modeled as
Generalized Gaussian functions. These probability func-
tions are used to determine a soft threshold. In a modi-
fication of their technique [7], context modeling was also
utilized. Each coefficient is modeled as a random variable
of a Generalized Gaussian distribution, based on spatial in-
formation (context modeling within a neighborhood), and a
threshold is estimated for each coefficient.

Mihcak et al. [8] proposed a spatially adaptive statis-
tical model for image denoising. The wavelet coefficients
are modeled as Gaussian random variables with high local
correlation, and a maximum q posteriori probability rule is
applied to restore the original coefficients from the noisy
observations.

Also, Strela et al. [9] described the joint densities of
clusters of wavelet coefficients as a Gaussian scale mixture,
and developed a maximum likelihood solution for estimat-
ing relevant wavelet coefficients from the noisy observa-
tions.

The main problem of the probabilistic approaches in
[5, 6, 7, 8, 9] is that a noise estimate is needed, which may
be difficult to obtain in practical applications, specially in
images with inherent noise (such as aerial images, MRI im-
ages, etc.).

Pizurica et al. [10] proposed a computationally effi-
cient method for image filtering, that utilizes local noise
measurements and geometrical constraints in the wavelet
domain. A shrinkage function based on these two measures
is used to selectively modify the wavelet coefficients, and
the image is reconstructed based on the updated wavelet co-
efficients. Although this method is fast, it does not take into
account the evolution of wavelet coefficients along scales,
which usually carries important information. Images with
low signal-to-noise ratio (SNR) are not efficiently denoised
by this technique.

This paper proposes a new method for image denois-
ing using the wavelet transform, which combines wavelet
shrinkage and consistency in scale-space. The wavelet
transform with two detail images (horizontal and verti-
cal) is computed, the distributions of these coefficients are
modeled by a composition of Gaussian probability density
functions, and a shrinkage function is assembled at each
scale. The shrinkage functions for consecutive levels are
then combined to preserve edges that are persistent in scale-
space (i.e., appear in several consecutive scales), and geo-
metric constraints are applied to remove residual noise.

The next section gives a brief description of the
wavelet framework, and the section that follows describes
the new method. Section 4 presents some experimental re-
sults obtained with our approach, and a comparison with
other denoising techniques. Conclusions are presented in
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the final section.

2 The Wavele§ Transform

In this paper, we use the wavelet decomposition with only
two detail images (horizontal and vertical) [11], instead of
the classical approach where three detail images are used
(horizontal, vertical and diagonal details) [12]. Also, we
use a non-subsampled filter bank with the mother wavelet
proposed in [11]. This approach requires one smoothing
function ¢(z,y) and two wavelets 1! (z,y), ¥?(z,y). The
dilation of these functions are denoted by:
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and the dyadic wavelet transform f(z,y), atascale s = 27,

has two detail components given by:

1 )
Bu(,9) = 50(5.0) and wi(e,y) =

Wi f(@y) = (fxu3)(@ ), i=12, (@
and one low-pass component, given by:
Sij(‘T1y) = (f*¢2])(-7f,y) (3)

The coefficients Wy; f(z,y) and W f(z,y) represent the
details in the & and y directions, respectively. Thus, the
image gradient at the resolution 27 can be approximated by:

Wiif(z,y) )

Since we are dealing with digital images f[n,m], we
use the discrete version of the wavelet transform [11], and
denote the discrete wavelet coefficients by Wi, f[n, m], for
i=1,2.

The edge magnitudes at the resolution 27 can be com-
puted from:

My f[n,m] = \/ (W3 fln,m])? + (W, fln,m])?, (5)

and the edge orientation is given by the gradient direction,
which is expressed by:

The main idea of our technique is to modify the detail co-
efficients W), f[n, m] and W2, f[n, m], so that coefficients
associated to edges are kept, and coefficients associated to
noise are removed. The inverse wavelet transform is ap-
plied to the modified wavelet coefficients, resulting in the
denoised image.

Next we describe a technique that assigns to each co-
efficient a probability of being an edge, and propagates this
information along the scale-space, using consistency along
scales and geometric continuity.

Wa f(,y) = ( @

WQZJ f[na "7']

055 f[n,m] = arctan (

3 Our Image Denoising Approach



3.1 Wavelet Shrinkage

Wavelet shrinkage is a known approach for noise reduction,
where the wavelet coefficients are subject to a non-linearity
that reduces (or suppresses) low-amplitude values and re-
tains high-amplitude values {13, 5].

For each level 27, we want to find non-negative non-
decreasing shrinkage functions gj- (), with 0 < gj- (z) <1,
such that the wavelet coefficients W;,- f are updated accord-
ing the following rule:

NWQlJ f[nvm] = WQI) f[nam]g;.'(WziJ' f[lnﬂm])y z

where gi(W3; f[n,m]) is a shrinkage factor. Let us denote
gi[n, m] = gi(W}; f[n,m]). Since the same shrinkage pro-
cedure (Equation (7)) will be applied to all scales and sub-
bands of the wavelet decomposition, the indexes j and ¢ will
be used only when necessary to remove ambiguity.

To estimate the shrinkage factor g[n, m], we analyze
the distribution of coefficients W f[n,m]. Some of these
coefficients are related to noise, and others to edges. If the
image is contaminated by additive white noise, the corre-
sponding coefficients W f[n, m] may be considered Gaus-
sian distributed [14], with standard deviation opee. Then,
the Gaussian distribution function that models these coeffi-
cients is given by:
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In practice, we observe that noise-free images typically
consist of homogeneous regions and not many edges. In
general, homogeneous regions contribute to a sharp peak
near zero for the histograms of W f[n, m], and the edges
contribute to the tail of the distribution. This distribution
presents a sharper peak than a Gaussian [5], and therefore
the Gaussian model is not appropriate for the distribution
of the noise-free coefficients. However, we assume that the
distribution of the wavelet coefficients W f[n, m] related
exclusively to edges (and not related to homogeneous re-
gions) can be approximated by a Gaussian (i.e., when the
sharp peak in W f[n,m] associated to homogeneous re-
gions is not considered, we assume that the remaining data
is approximated by a Gaussian function). Therefore, the
distribution of edge-related coefficients W f[n, m] is ap-
proximated by the function:

®)

p(z|noise) =
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p(zledge) = €)
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OedgeV 2T
Including all coefficients, related to edges and to noise, the
overall distribution of the coefficients W f[n,m] is given
by:

P(T) = WnoiseP(z[n0ise) + (1 — wroise)p(z|edge), (10)
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where wyoise 15 the a priori probability for the noise-related
coefficient distribution (and, consequently, 1 — wy;se is the
a priori probability for edge-related coefficients).

The parameters onoise, Tedge aNd Wyeise are estimated by
maximizing the likelihood function:

> In(e(Wfn,m)),

(m,n) in image

InL = an

with the restriction 0 < Wyeise < 1, where p(W f[n, m]) is
the function defined in Equation (10) evaluated at the coef-
ficients W f[n,m].

Typically, the variance of noise-related coefficient is
smaller than the variance of edge-related coefficients. Also,
we do not allow the standard deviation of noise-related co-
efficients to increase as 27 increases, since noise is filtered
out as 27 increases. Therefore, the restrictions gpgise <
Oecdge and o). < ag‘;sle are included in the maximization
process.

Figure 1(a) shows the original Lenna image (512 x 512
pixels), and Figure 1(b) shows a noisy version of the Lenna
image (PSNR! = 20.17dB). In Figure 2, the histogram of
the coefficient W, f[n, m} {corresponding to the horizontal
detail at the level 22) is shown (continuous curve), along
with our model fitted to these data (dotted curve). It can be
noticed that our model is very close to the actual data.

Once the parameters Opgise, Tedge aNd Wroise are es-
timated, the conditional probability density functions for
the coefficients distributions p(z|noise) and p(z|edge) are
given, respectively, by Equations (8) and (9). Also, the
a priori probabilities for noise-related (wyeise) and edge-
related (1 — wyeise) coefficient distributions are determined
by the maximization procedure. The shrinkage function
g(z) at each scale and subband is given by the posterior
probability function p(edge|z), which is calculated using
Bayes theorem as follows:

(1 — whoise)p(z|edge)

9(x) = pledge|z) = (1 — wnoise)p(z|edge) + wnoisep(z|noise)
(12)

3.2 Consistency Along Scales

The analysis of the distribution of coefficients W f[n, m]
dos not allow to discriminate between coefficients related to
noise from those related to edges. Particularly, coefficients
at the level 21 are often highly contaminated by noise, and
it is difficult to distinguish the distributions associated to
noise and edge. For a better discrimination, we combine
the shrinkage factors g;[n, m] along consecutive scales.
Ateach scale 27, the value g;[n, m] may be interpreted
as a confidence measure that the coefficient Wo; f[n, m]

1The peak-to-peak signal-to-noise ratio (PSNR) is defined by
2010g,4(255/0error ). Where oecror is the standard deviation of the error
image Iorig - Inoisy-



(b)

Figure 1: (a) Original Lenna image. (b) Noisy Lenna image (PSNR = 20.17 dB).

is in fact associated to an edge. If the value g;[n,m] is

close to 1 for several consecutive levels 27, it is more likely -

that W f[n,m] is associated to an edge. On the other
hand, if g;[n, m] decreases as j increases, it is more likely
that Ws; f[n,m] is actually associated to noise. Thus, for
the scale 27, we combine the shrinkage factors g;[n,m] in
consecutive scales, obtaining the updated shrinkage factor
g;cale [,n, m]:

1/

ggcale[n m] — (91 [n7 m” +---+ 9i+K [77., m}'y
it K+1 '
(13)
where 7 is an adjustable parameter, and K + 1 is the number
of consecutive scales under consideration. Please, notice
that when v = 1, the above function is exactly the average
of the shrinkage functions. For v < 1, smaller coefficients
carry more weight, and tend to dominate the summation.
This updating rule is applied from coarser to finer res-
olution. The shrinkage factor g*¢[n, m], corresponding to
the coarsest resolution 27, is defined as gs[n,m]. How-
ever, for other resolutions 27, j = 1...J — 1, the shrinkage
factors g5¢[n, m] depend on scales 27,27F1, ... 2%, where
k = min{J, j + K}. The coefficients Wj; f are then modi-
fied according to Equation (7), using the updated shrinkage
factors g5*'°[n, m] instead of g;[n,m].

3.3 Geometric Consistency

At this point, we have obtained the updated shrinkage func-
tions 'gj-"“le[n, m], for each level 27. However, we may
achieve even better discrimination between noise and real
edges by imposing geometrical constraints.

Usually, edges appear in contour lines, and not iso-
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lated. In our approach, a coefficient W f[n, m] should have
a higher shrinkage factor if its neighbors along the local
contour direction also have large shrinkage factors. To en-
hance the shrinkage factors along contours, we first quan-
tize the gradient directions 6; f[n, m] into 0°,45°,90° and
135°. The contour lines are orthogonal to the gradient di-
rection at each edge element, so we can estimate the contour
direction from 6,; f[n,m]. We then add up the shrinkage
factors g;»“]e[n, m] along the contour direction, according
to the following updating rule:

( N

> alilgin +i,m]
i=—N
if Cyi[n,m] = 0°,

N

Z a[i]g;cale[n +i,m+ Z]
i=—N
if Cysn, m] = 45°,
N
Z afilgs™en, m + i
t=—N
if Cys [, m) = 90°,
N
Z afilgsen +i,m — i

i=—N
| if Cyiln, m] = 135°,

g [n,m) = ¢ (14)

where Cy;[n,m] is the local contour direction at the pixel
[n,m], 2N + 1 is the number of adjacent pixels that should
be aligned for geometric continuity, and a[¢] is a window
that allows neighboring pixels to be weighted differently,
according to their distance from the pixel [n, m| under con-
sideration (we used a Gaussian weighting function).
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Figure 2: Continuous curve: histogram of the coefficients W f[n, m]. Dotted curve: our model fitted to the data.

After updating the shrinkage factors, coefficients with
large gfeom[n,m] along the local contour direction will be
strengthened, while pixels with no geometric continuity

will have their shrinkage factors de-enhanced.

4 Experimental Results

We performed a series of denoising experiments to test the
performance of our method, using images contaminated
with controlled amounts of noise and images with inherent
noise. The denoised images were analyzed from the qual-
itative (visual) and quantitative (PSNR of the filtered im-
age) points of view. For all the examples, we used v = 0.3
(Equation (13)), N = 1 (Equation (14)), and three dyadic
scales in the wavelet decomposition.

Figure 3(a) shows the noisy Lenna image filtered using
the MATLAB function wiener2, which is an implementation
of a pixel-wise adaptive Wiener estimate using local statis-
tics. Figure 3(b) shows the same noisy image filtered by
our technique. It can be noticed that our method appears
to produce a less noisy image, while the edges were kept
sharp.

Quantitatively, we compared the performance of our
method with four other well established denoising tech-
niques. These methods are: SAWT using an over-complete
representation [7], 5 x 5 LAWMAP [8], the function
wiener2, and Donoho’s hard threshold [15]. Table 1
shows the performance of our technique and these four
denoising methods for the Lenna image with different
amounts of noise. Our method’s performance is similar to
5 x5 LAWMAP, slightly inferior to SAWT, and much better
than wiener2 and Donoho’s hard threshold.

The proposed method was also tested in images with
natural noise. Figure 4(a) shows an aerial image (chemplant
image, 256 x 256 pixels). Figure 4(b) shows the result of the
proposed method. Most of the background noise seems to
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| Noisy Lenna image | 24.60 | 22.13 | 20.17
Hard threshold 28.52 | 27.24 | 26.34
wiener2 31.12 | 29.97 | 28.71
5x 5 LAWMAP | 32.36 | 31.01 | 29.98
SAWT 32.99 | 31.69 | 30.61
Our method 31.97 | 30.93 | 30.02

Table 1: PSNR results (in dB) of several denoising methods
for the Lenna image contaminated by different amounts of
noise.

be removed, while small structures were preserved (build-
ings, roads, etc.). However, some fine textures (e.g. the
crop on the top right) were also smoothed, since it is diffi-
cult for our method to distinguish noise from fine textures,
as for most methods proposed in the literature.

We also applied our method to medical images. Figure
5(a) shows a magnetic resonance image (MRI) of a brain
(242 x 248 pixels), and Figure 5(b) shows the filtered im-
age using our technique. It can be noticed that background
noise was smoothed out, at the same time that fine small
structures were kept.

Our method was implemented in MATLAB, and typical
execution time for denoising a 512 x 512 image in a 350
MHz Pentium II personal computer is about 55 seconds.
We believe that implementing our method in a compiled
language would improve significantly the execution time.

These experiments show that the proposed technique
works well for images contaminated by different amounts
of noise. Quantitatively, the method produce PSNR outputs
comparable to other state-of-the-art techniques reported in
the literature, and qualitatively the denoised images pro-



(b)

Figure 3: Noisy Lenna image filtered by: (a) wiener2 (PSNR = 28.71'dB); (b) our technique (PSNR = 30.02 dB).

(b)

Figure 4: (a) Chemplant image. (b) Denoising by our technique.

duce good visual results (noise is reduced, while edges are
kept sharp), with the advantages of having comparatively
low computational complexity, and being adaptive to dif-
ferent degrees of noise corruption.

5 Concluding Remarks

A new method for image denoising based on the wavelet
transform was presented. The experimental results showed
that our method produced good quantitative and qualitative
results in comparison to other state-of-the-art techniques.
Also, the proposed method is adaptive to the amount of
noise in the image, performing well for images with inher-
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ent noise.and: images contaminated with artificial noise in
different amounts. In this work, the same parameters y and
N were used for all the images. However, these parameters
could be.fine-tuned to each individual image to produce op-
timal results. Future work will concentrate on improving
our model for the wavelet coefficients, and extending our
work to enhancement of noisy images.
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