
A Fast and Efficient Projection-Based Approach for Surface Reconstruction

M. GOPI1, SHANKAR KRISHNAN2

1Univ. of California, Irvine
gopi@ics.uci.edu

2AT&T Labs - Research
krishnas@research.att.com

Abstract.
We present a fast and memory efficient algorithm that generates a manifold triangular meshS passing through

a set of unorganized pointsP ‰ R3. Nothing is assumed about the geometry, topology or presence of boundaries
in the data set except thatP is sampled from a real manifold surface. The speed of our algorithm is derived from
a projection-based approach we use to determine the incident faces on a point. Our algorithm has successfully
reconstructed the surfaces of unorganized point clouds of sizes varying from 10,000 to 100,000 in about 3–30
seconds on a 250 MHz, R10000 SGI Onyx2. Our technique can be specialized for different kinds of input and
applications. For example, our algorithm can be specialized to handle data from height fields like terrain and range
scan, even in the presence of noise. We have successfully generated meshes for range scan data of size 900,000
points in less than 40 seconds.

1 Introduction

The surface reconstruction problem can be loosely stated as
follows: Given a set of pointsP which are sampled from a
surface inR3, construct a surfaceS so that the points ofP
lie onS. A variation of thisinterpolatorydefinition is when
S approximatesthe set of pointsP .

Surface reconstruction has wide ranging applications
including scanning complex 3D shapes like objects, rooms
and landscapes with tactile, optical or ultrasonic sensors
are a rich source of data for a number of analysis and ex-
ploratory problems. Surface representations are a natural
choice because of their applicability in rendering applica-
tions and surface-based visualizations (like information coded
textures on surfaces). The challenge for surface reconstruc-
tion algorithms is to find methods which cover a wide va-
riety of shapes. We briefly discuss some of the issues in-
volved in surface reconstruction.

We assume in this paper that the inputs to the surface
reconstruction algorithm are sampled from an actual sur-
face (or groups of surfaces). A proper reconstruction of
these surfaces is possible only if they are “sufficiently” sam-
pled. However, sufficiency conditions like sampling theo-
rems are fairly difficult to formulate and as a result, most
of the existing reconstruction algorithms ignore this aspect
of the problem. Exceptions include the work of [Att97,
ABK98].

If the surface is improperly sampled, the reconstruc-
tion algorithm can produce artifacts. A common artifact
is the presence of spurious surface boundaries in the model.
Manual intervention or additional information about the sam-

pled surface (for instance, that the surface is manifold with-
out boundaries) are possible ways to eliminate these arti-
facts. The other extreme in the sampling problem is that the
surface is sampled unnecessarily dense. This case occurs
when a uniformly sampled object with a few fine details
can cause too many data points in areas of low curvature
variation.

Sometimes the input data might contain additional in-
formation for easier reconstruction. For example, in data
from laser scanners that generate samples uniformly on a
sphere (or a cylinder, depending on its degrees of freedom),
adjacent data points have a very high probability of being
adjacent to each other in the final mesh. We refer to these
data sets asorganized point clouds. This information can be
exploited by some algorithms, including ours, to give quick
results.

Another issue in surface reconstruction is the presence
of noise and outliers in the original data. The mode of data
acquisition has a direct impact on this. For example, range
scan data can be very noisy when the surface is not oriented
transverse to the scanning beam. Noisy data introduce high
frequency artifacts in the reconstructed surface (like micro-
facets) and this is a cause of concern for many algorithms.

Finally, the recent thrust in research to build augmented
reality and telepresence applications has introduced an in-
teresting variation of the surface reconstruction problem.
Consider an application where multiple cameras or camera-
projector pairs are used to extract the geometry of dynamic
scenes at interactive rates[RWC+98]. In this scenario, the
surface reconstruction algorithm should be able to handle



extremely large data sets (order of many millions of points)
and provide a suitable surface representation without sig-
nificant latency. One of the main motivations for this work
is to develop an approach that handles bothorganizedand
unorganizedpoint clouds very efficiently in time and mem-
ory requirements.

1.1 Main Contributions

In this paper, we present a fast and efficient projection-
based algorithm for surface reconstruction from unorganized
point clouds. Our algorithm incrementally develops an in-
terpolatory surface using the local estimated surface orien-
tation of the given data points. The main contributions of
this paper include:

† Asymptotic Performance: Each iteration of our al-
gorithm advances the reconstructed surface boundary
by choosing one point on it and completes all the faces
incident on it in constant time. Even though the worst
case theoretical run-time complexity isO(n logn), in
practice it exhibits linear time performance with a very
small constant of proportionality.

† Speed:We have tested our algorithm on a number of
data sets ranging from 10,000 to 100,000 unorganized
points. It takes about 3–30 seconds to reconstruct the
mesh. We have also tested our algorithm on an orga-
nized point cloud of size 6.5 million. After simplifying
this data to around 900,000 points, it took us about 40
seconds to generate the mesh on a 250 MHz, R10000
SGI Onyx2 with 16 GB of main memory.

† Memory efficiency: Our algorithm has minimal mem-
ory overhead because it goes through a single pass of
all data points to generate the mesh. We do not main-
tain the computed triangles in our data structure be-
cause our method does not revisit them. Only the input
data has to be stored.

† Robustness:In the special case of terrain data or data
from common center-of-projection scanning devices,
our algorithm can tolerate high noise levels. The error
introduced by noise has to be bounded, however.

2 Previous Work

The problem of surface reconstruction has received signif-
icant attention from researchers in computational geometry
and computer graphics. In this section, we give a brief sur-
vey of existing reconstruction algorithms. We use the clas-
sification scheme of Mencl et. al. [MM98] to categorize
the various methods. The main classes of reconstruction
algorithms are based onspatial subdivision, distance func-
tions,andincremental surface growing.

The common theme in spatial subdivision techniques
is that a bounding volume around the input data set is sub-
divided into disjoint cells. The goal of these algorithms is
to find cells related to the shape of the point set. The cell
selection scheme can be surface-based or volume-based.

The surface-based scheme proceeds by decomposing
the space into cells, finding the cells that are traversed by
the surface and finding the surface from the selected cells.
The approaches of [HDD+92, EM94, BBX97, Att97] fall
under this category. The differences in their methods lie in
the cell selection strategy.

The volume-based scheme decomposes the space into
cells, removes those cells that are not in the volume bounded
by the sampled surface and creates the surface from the
selected cells. Most algorithms in this category [Boi84,
Vel95, ABK98] are based on Delaunay triangulation of the
input points.

The distance function of a surface gives the shortest
distance from any point to the surface. The surface passes
through the zeroes of this distance function. This approach
leads to approximating instead of interpolatory surfaces [HDD+92,
CL96].

The basic idea behind incremental surface construc-
tion is to build-up the surface using surface-oriented prop-
erties of the input data points. The approach of Mencl
and Muller [MM98] use graph-based techniques to com-
plete the surface. Boissonnat’s surface contouring algo-
rithm [Boi84] starts with an edge and iteratively attaches
further triangles at boundary edges of the emerging sur-
face using a projection-based approach to generate mani-
folds without boundaries. The Spiraling-Edge triangulation
technique proposed by Crossno and Angel [CA97] is simi-
lar to our algorithm. Differences include the fact that they
make several limiting assumptions about the data, includ-
ing normal and neighborhood information for each point.
Bernardini et. al. [BMR+99] describe a ball-pivoting al-
gorithm to grow the surface locally. Gopi et al. [GKS00]
use localized Delaunay triangulation to compute the final
neighborhood in the triangulation.

3 Algorithm Overview

The input to our algorithm is a set of unorganized points
with no additional information (like normals). The output
is a triangulated mesh which interpolates the input point set.
Our algorithm starts at a data point, and finds all its incident
triangles. Then each of its adjacent vertices in the boundary
of the triangulation is processed in a breadth-first fashion
to find their other incident triangles. Thus the boundary of
the completed triangulation propagates on the surface of the
point cloud till it processes all the data points. In the rest
of the paper, we refer to the point being processed as the
reference point, R.



There are three assumptions we make about the data
set. The sampling of the data islocally uniform, which
means that the distance ratio of the farthest and closest neigh-
bor of a sample in the given sampling of the object is less
than a constant value. The second assumption is to distin-
guish points from two close layers of the object. The closest
distance between a pointP in one layer and another layer is
at least„m, where„ is a constant andm is the shortest dis-
tance betweenP and another point in its layer. The third as-
sumption is about the smoothness of the underlying object.
The normal deviation between the any two triangles inci-
dent on a vertex should be less than 90–. This assumption
is used in justifying our choice of tangent plane in section
4.1.

Our algorithm can be broadly divided into three stages:
bucketing, point pruning, and finally thetriangulation step.
Bucketing: In this stage, the data structure is initialized
with the input data. Our data structure is a depth pixel ar-
ray similar to thedexelstructure [Hoo86]. We maintain a
2D pixel array into which all data points are orthographi-
cally projected. The points mapped on to the same pixel
are sorted by their depth (z) values.

Point Pruning: This step is similar to clustering algorithms
used by other triangulation schemes [HDD+92]. We first
apply a distance criterionto prune down our search for
candidate adjacent points in the spatial proximity ofR. It
is executed in two stages. In the first stage, the simpler
L1 metric is used to define the proximity aroundR. Our
algorithm takes an axis-aligned box of appropriate dimen-
sions centered atR and returns all the data points inside
it. The major difference in our approach compared to other
approaches is the use ofdexel like data structure for this
stage. By using our data structure, this search is limited to
the pixels around the pixel whereR is projected. Another
advantage of this data structure is explained in Section 5
where the information about the characteristics of the scan-
ning device, used for collecting the data points, is used to
improve the robustness of the algorithm. The second stage
of pruning uses the Euclidean metric, which further rejects
the points that lie outside asphere of influencecentered at
R. The choice of the box dimensions and the radius of the
sphere are described in the next section. The points chosen
after the pruning using the Euclidean metric are called the
candidate pointsof R, CR.

Visibility Criterion: Next, we estimate the tangent plane
at R, and projectR, CR, and the mesh boundary in their
vicinity on this tangent plane. The projected points ofCR

are thenordered by anglearoundR. Points inCR that are
occluded fromR by the mesh boundary in the projection
plane are removed.

Angle Criterion: This is an optional step, which tries
to remove “skinny” triangles atR, to improve the quality of

triangulation.

Triangulation : Finally, the remaining points inCR are then
connected in order aroundR to complete the triangulation.

4 Surface Reconstruction

In this section, we describe our approach to surface recon-
struction in detail. The output of our algorithm is an inter-
polatory, non-self-intersecting triangular mesh of the given
point cloud.

The implicit function theorem of smooth surfaces forms
the basis of our approach. Without loss of generality, it
states:“Given an implicit surfaceS · f(x; y; z) = 0, and
a pointP on it, such that the tangent plane toS at P is par-
allel to the(x; y) plane, thenS in the neighborhood ofP
can be considered as a height functionf(x; y; h(x; y)) = 0,
a local parameterization on its tangent plane”. By a suit-
able rigid transformation of the coordinate frame, any other
point onS can be made to satisfy the above theorem.

Our algorithm is a greedy method and works with two
parameters:„, which quantifies our definition oflocally
uniform sampling, andfi, which gives a lower bound on the
angle between consecutive neighbors of a point on a bound-
ary of the surface. Typically,fi is a large obtuse angle. In
our implementation, we have setfi to be 120–. All other pa-
rameters, which are required for the implementation of the
algorithm are derived from„. In order to improve the qual-
ity of triangulation, we can optionally specify a minimum
angle parameter,fl. It is not necessary for the completion
of our algorithm, though.
Terminology: We categorize the data points at any given
stage of our algorithm asfree, fringe, boundaryandcom-
pletedpoints. Thefreepoints are those which have no inci-
dent triangles. Thecompletedpoints have all their incident
triangles determined. Points that lie along the current sur-
face boundary are eitherfringeor boundarypoints.Bound-
ary points are those points which have been chosen as a
reference point but have some missing triangles due to the
maximum allowable angle parameterfi. Fringepoints have
not yet been chosen as a reference point.

We maintain two invariants during our algorithm’s ex-
ecution:
Invariant 1: No free, fringe or boundarypoint can be in
the interior of a triangle (because of our distance criterion).
Invariant 2: At the end of each iteration, the point chosen
as the reference point becomes acompletedor aboundary
point. This is used later to prove claims about occluded
points (for visibility criterion).

Our algorithm starts with the bucketing step by ortho-
graphically projecting the data points onto thedexeldata
structure. The following steps are used to choose the right
set of points to be connected to the reference pointR.



R R

(b)(a)

V

SR

Figure 1: (a) Visibility test around R. The black points are
behindR’s boundary edges, the white points are occluded
by other edges, and the pointV is eliminated as R is behind
its boundary edges. (b) Completed mesh at R

4.1 Point Pruning

Pruning by Distance Criterion: Points far away from the
reference pointR are not likely to be adjacent to it. We
eliminate them by applying the distance criterion in two
stages. Initially, we employ the cheaperL1 metric to nar-
row down our search. It is performed by constructing an
axis-aligned box of suitable dimension aroundR and choos-
ing all thefree, fringe andboundarypoints inside the box.
By using ourdexelarray, this is a logarithmic time opera-
tion with small constant.

The dimension of the box is derived from„ as follows.
In a general case,R (a fringe point) already has a few in-
cident triangles. Letm be the minimum distance fromR
to its existing adjacent vertices. From our definition oflo-
cally uniform sampling, the farthest neighbor ofR can be
at most„m away. This gives an estimate on the dimension
of the box. WhenR has no incident triangles (for example,
at the very beginning), we find the closest point toR using
the dexelarray representation and findm. The minimum
distance between the points in the above box andR, refines
the previous estimate ofm. Using this newm, the next step
further prunes the chosen set of points in the proximity of
R.

We call a sphere of radius„m centered atR as the
sphere of influence(SR) aroundR. The second stage of
pruning uses a stricterL2 metric and returns all points in-
side SR. These points are thecandidate points(CR) of
R. We would like to make an observation about the candi-
date point set. The radius ofSR is dependent onm, which
changes from one vertex to another. Therefore, it is possi-
ble that a vertexp might be in thesphere of influenceof R,
but not vice-versa. But this asymmetry does not affect the
topology of the reconstructed mesh.
Choice of Projection Plane: The triangulation aroundR
implicitly defines an ordering of its adjacent vertices around

R on a projection plane. We find this ordering directly
by projectingCR on a plane. The choice of the projec-
tion plane is an important issue, and dictates the robust-
ness of our algorithm. According to the implicit function
theorem, the best projection plane would be the tangent
plane atR. One can adopt more robust algorithms like the
one described in Hoppe et.al [HDD+92] or Amenta et.al.
[ABK98]. An alternate cheaper approach to compute the
projection plane normal is by averaging normals of exist-
ing triangles incident onR. Since we are interested only in
the relative ordering of points aroundR, we use this latter
approach in our implementation. The ordering of thecan-
didatepoints (CR) aroundR in this plane will be incorrect
only if there is a triangle incident onR with its normal de-
viating by more than 90– from the projection plane normal.
Our choice of projection plane is justified by our assump-
tion about the smoothness of the underlying object. We
assume that the object from which the input is sampled is
smooth enough so that the variation in the tangent planes
for proximate points is very small.

Angle Ordering: A main step in our algorithm is to or-
der points inCR projected onPR by angle aroundR. We
now describe a fast and inexpensive method to perform this
ordering.

We define a new local coordinate system where the
reference pointR is the origin andPR is thexy-plane. Ini-
tially, each candidate point ofR is projected onPR in this
coordinate system. Let this set of projected candidate points
be Cp

R. The ordering aroundR is based on the angle (µ)
between thex-axis of the local coordinate system and the
vector from origin to the projected candidate point.

The setCp
R is partitioned by the quadrants in which

they lie. In each of these quadrants we order the points
based onsin2(µ). We usesin2(µ) because it is almost lin-
ear within a quadrant and is inexpensive to compute. The
actual angleµ in the projection plane is computed using a
look-up table and a simple linear interpolation. We now or-
der the points within each quadrant and finally merge these
four ordered sets. We use the actual angle to identify holes,
boundaries, and skinny triangles in the model.

Pruning by Visibility: We use the angle ordering ofCp
R to

efficiently perform the next stage of pruning based on visi-
bility in the planePR. It eliminates the points which poten-
tially form a self-intersecting mesh. We define thebound-
ary edgesof a point as the set of edges incident on that point
that lie on the current surface boundary. Any edge with no
triangle formed on one of its side, is aboundary edge. All
boundary edgesconnectfringeand/orboundary points. On
the other hand,internal edgesare the edges which connect
completedpoints with any other point. We projectR, CR,
and theirboundary edgeson the planePR. If the line of



Q

SR

g

f

V

W

Q

SR

U

R

r

(a)

V
e

b

a

(b)

U

Y

d

R

r

c

X

Figure 2: (a) Determining occluding edges (b) AngleXQY
is obtuse, soa < c. Further,f < d+a < d+c < d+c+e.
Therefore,jQU j < jUV j.

sight fromR to a projected candidate vertex is obstructed
by any edge, then that point is an occluded point. The ex-
istence of visibility between these points in the plane is a
sufficient but not a necessary condition for the visibility be-
tween them in the object space. In the limit, when the local
surface approaches the tangent plane in a densely sampled
point cloud, it becomes a necessary condition as well. We
take a conservative approach and prune all the points inCR

which are occluded fromR onPR.
Points occluded fromR are determined as follows.

1. All the points between consecutiveboundary edgesof
R (shown by the dotted-line wedge atR in Figure 1(a))
are removed as they cannot be visible fromR. They
are said to be in theinvisible region ofR. The black
points in the figure are examples.

2. Similarly, points are removed which haveR in their
invisible region (for example, pointV in the same fig-
ure). We denote the set of points fromCR remaining
after this step asCv

R.

3. Finally, we eliminate points that are occluded fromR
because of an existing edge in the mesh (for example,
the white point in Figure 1(a)).

A straightforward approach of checking all possible
occluding edges is very expensive. We state the following
theorem which limits our search to very few edges. This
theorem is true under the assumption about the smoothness
of the underlying object.

Theorem 4.1 Only theboundary edgesof the points in the
setCR can be possible occluding edges betweenR andCv

R.

Proof: From Invariant 1, it is easy to show that if an inter-
nal edge is occluding, there must be at least one boundary

edge which is also occluding. This eliminates all the in-
ternal edges from our consideration. Figure 2(a) shows an
example where boundary edges (likeUV or/andV W ) oc-
clude the pointQ from R, but its endpoints are not inCR.
Given that at least one ofUV or V W is aboundaryedge,
it must be part of some existing triangle (likeUV W in the
figure). This implies that one ofU , V or W (let us assume
U ) must have already been chosen as a reference point. We
have to prove that if any one of these points was an earlier
reference point, then it should have chosen eitherQ or R
(or both) as its neighbor(s). If it had chosenQ (resp.R) as
its neighbor, thenR (resp. Q) will lie on Q’s (resp. R’s)
invisible region, andQ would be eliminated fromCv

R.
In the Figure 2(b), let us choose one of the edges, say

UV, to complete our proof. LetX andY be the intersection
points of this edge with the projection ofSR. 6 XQY is
obtuse, because angle subtended by the diameter on the cir-
cumference is a right angle, and6 XQY is clearly greater
than that. Hence the distancec = jXY j is the longest edge
of the4XQY , which means thata < c andb < c. Hence
(d+a) < (d+ c) < (d+ c)+ e, and by triangle inequality,
jUQj = f < (d + a) < (d + c) + e = jUV j. Similarly
we can prove thatjV Qj < jV U j. This argument extends to
any edge that is placed similar toUV .

From our distance criterion, we claim that vertexQ
must be adjacent toU . With Q as its neighbor,U com-
pletes its triangulation by adding edgesQV andQW . This
implies thatR lies in the invisible region ofQ, and hence
cannot belong toCv

R as it will be eliminated by condition 2
above. Therefore,UV cannot be an occluding edge. 2

The rest of the points which are ordered by angle around
R can be triangulated as shown in Figure 1(b).
Pruning by Angle Criterion: The triangulation we get
from the previous step is a valid one. However, to im-
prove the quality of triangulation, this pruning step removes
points that could potentially form triangles with very small
angles (“skinny” triangles). This is not a necessary compo-
nent for the working of our algorithm. Since our algorithm
does not introduce additional (Steiner) points, it cannot al-
ways achieve the desired quality. It is a greedy approach,
which would eliminate sliver triangles whenever possible.

We explain the working of this step using an example.
In Figure 3, consider the pointsN1 andN2. Let us assume
that the angle atR of 4RN1N2 is less thanfl (the mini-
mum angle parameter). One of these points can be removed
to improve the triangulation. The choice of the removable
vertex is not arbitrary. For example, ifN2 is rejected, it gets
trapped inside the triangle (in the projection plane) formed
by R, N1, and any one ofN3, N4, or N5. This violates
Invariant 1.

The following algorithm describes a way to avoid such
scenarios and to form a good triangulation whenever pos-
sible. Assume that we have to complete the triangulation



R

N

P

R

N

P

(a) (b)

NN

N

N N

N
N N

12

3

4

5 5

4

3

2 1

Figure 3: Pruning by Angle Criterion: (a) Ordering around
R and P; angles betweenN1N2, N3N4, andN4N5 are less
thanfl. (b) N3 trapped in4RP N4, andN4 trapped inside
4RN3N5

fromP toN5 aroundR in Figure 3, whereRP andRN5 are
consecutiveboundary edgesof R. We start our processing
by ordering the points aroundP . In our example, this order-
ing would bePs = (N1; N2; N5; N4; N3), and the ordering
aroundR is Rs = (N1; N2; N3; N4; N5). Let Ps[i] (Rs[i],
respectively) be theith element inPs (Rs, respectively).
Without loss of generality, we assumeRs[i] = Ni. The
following pseudo-code finds all possible adjacent points to
P aroundR, without trapping any other point inside the
triangle.

for 1 • i • jPsj
Let Nj be the vertex inPs[i]
Mark Nj asconsidered
T (Nj) = fNk j k < j, Nk is not markedconsideredg
if (T (Nj) = ;)

thenNj can be an adjacent pointto P aroundR
elseNj cannot be an adjacent pointto P aroundR

In our example, we first selectPs[1] = N1. Since there
is noNk such thatk < 1 andNk is not markedconsidered,
N1 is a possible adjacent point toP aroundR. This is also
true forPs[2] = N2. Now considerPs[3] = N5. Here, we
have two pointsN3 andN4 which are not markedconsid-
ered and hence belong to the setT (N5). We can see that
N3 andN4 are inside the4RP N5. ThereforeN5 cannot
be an adjacent point toP aroundR. In the general case,
the setT (Nj) consists of precisely those vertices that will
be trapped ifNj were chosen as the adjacent point toP
aroundR. If we complete the above algorithmN3 will also
be chosen as a possible adjacent point.

From the set of possible adjacent pointsfN1; N2; N3g,
we can choose any vertex. For the sake of argument, let us
chooseN3 as the adjacent point toP and form the triangle
RP N3. Now the same algorithm is applied atN3, and the
points N4 and N5 are ordered around it. It can be seen
that the pointN4 cannot be removed, as it will get trapped
inside the triangleRN3N5. Hence, we cannot eliminate the

No. of No. of Init. Time Rec. Time
Model points Tris (in secs) (in secs)
Club 16864 33660 0.2758 3.9644

Bunny 34834 69497 0.5961 9.1809
Foot 20021 39919 0.3802 5.2725

Skidoo 37974 75461 0.6680 8.536
Mannequin 12772 25349 0.2405 3.9289

Phone 83034 165730 1.5634 26.597

Table 1: Performance of our algorithm: See Color Plate 1

skinny triangleRN3N4. It is important to note that even if
we had chosenN1 or N2 from the original possible adjacent
point set, we would have ended up in the same situation.

4.2 Triangulation

The remaining points fromCR after the various pruning
steps are the final adjacent points and are connected in or-
der aroundR to complete the triangulation in the object
space. If consecutive adjacent points subtend more thanfi
(maximum allowable angle parameter) atR in the object
space, then they are not connected to form a triangle. This
maximum angle describes the characteristics of the holes in
the model, andR is considered as aboundarypoint. All
thefreepoints in the adjacent point list are labeled asfringe
points and are appended in order at the end of the queue.
The algorithm chooses the next point from the queue as the
new reference pointR, and continues with the triangulation
aroundR.

5 Triangulating Terrain Data

Simple solutions are available to triangulate smooth terrain
data. In this section, we show that these algorithms can be
made as a special case to our 3D triangulation algorithm by
fixing the projection plane.

Typically, devices used for data acquisition generate
sample data in some order. In our algorithm, we can make
use of this order and the characteristics of the device to han-
dle noise. We have applied our method on a massive data set
of a room (Color Plate 2 - top row) acquired by a laser range
scanner. This is a common Center-Of-Projection (COP) de-
vice which returns a very dense sampling as a spherical
depth map ((µ, `) map) of the environment around itself.
With adjacent samples of this high density sampling being
less than an inch apart, the noise in the samples is nearly
two inches. If we apply our original algorithm to this noisy
data set, the selected projection plane would be completely
altered by innumerable micro-facets formed in the vicinity
of a point.

We make use of the fact that the data set is in the spher-
ical coordinate system to solve this problem. In such a co-



ordinate system, this surface can be considered as a mono-
tonic surface with respect to a unique projection plane, namely,
the (µ, `) plane, similar to height field or terrain data. Since
the perturbations in the data set due to noise are usually
orthogonal to the projection plane, our algorithm is not af-
fected by it.

Traditional 3D reconstruction algorithms are not well-
suited to handle terrain or range data. As a result, special-
ized algorithms [GH95] have been developed to exploit the
simplicity of the input. However, in our algorithm, terrain
models are a special case where we fix the projection plane
to remain constant. Further, since estimating the projection
plane at each point is avoided, our algorithm runs signifi-
cantly faster as well.

5.1 Specializing our Algorithm

The underlying two dimensionaldexel arrayis considered
as the(µ; `) projection plane with only one data point at
eachdexel. The neighbors of a point in the final triangu-
lation can only be from its adjacentdexels. Hence the first
step of pruning (byL1 metric), can be made to choose only
the points from the adjacentdexelsof R. The radius ofSR

is set to a slightly higher value than the noise in the system.
As all the points inCR are visible fromR, visibility and an-
gle checks can also be skipped. By setting the parameters
and removing these tests, it takes less than seven seconds
to reconstruct a data set of size around 900,000 points. Es-
sentially, we can think of our approach as a parameterized
algorithm where fixing certain parameters results in highly
specialized and efficient algorithms for different classes of
inputs.

In practice, we fix the dimensions of thedexelarray.
We retain one representative point if multiple points get
mapped onto the samedexel. This thins the high sampling
density, and forms a level of simplification. The dimensions
of thedexelarray controls the amount of simplification and
the run time of the algorithm. Since all the processing time
in our algorithm is dependent on the number ofcandidate
points, bounding this number is a major source of speed-up
in handling terrain data.

The image in Color Plate 2 (top row) shows the tex-
tured reconstructed room model. The texture is created
from the intensity values returned by the laser device. The
image on the right shows the micro-facets in the floor of the
room, in spite of point simplification.

6 Performance and Results

The complexity of our algorithm is input sensitive,i.e. time
spent is proportional to the model complexity. This can be
seen from the results shown in Table 1. The bunny model,
which has fewer points than the skidoo model, takes more
time for reconstruction, due to its complexity. Similarly, the
mannequin model takes almost the same time as that of the

No.of No. of Init. Time⁄ Rec. Time Rec. Time
points Triangles (in secs) 1 (in secs) 2 (in secs)
143858 267131 82.508 5.998 1.020
883577 1707468 88.554 38.782 6.913

Table 2: Performance of the system for the Room range
data set: See Color Plate 2. Reconstruction Time 2: without
visibility and angle criteria check. (⁄: Includes the reading
time of the original data set – 6479713 points)

club model, because of high curvature variations and non-
uniform sampling in the regions near the nose, eyes and
ears. For the same reason, we are able to handle massive
data sets of size in the order of millions of points in a few
seconds, as we are making use of height field data proper-
ties.

Our algorithm is a single pass algorithm, and does not
need to revisit the triangles once they are formed. We do
not produce any higher dimensional simplices (like tetrahe-
dra [Boi84]) that require their removal to make the model
a valid manifold. We also do not change the triangulation
once they are completed.

Reduced memory requirement is another feature of our
algorithm. Our algorithm does not store the triangles formed
during reconstruction in the main memory. Only those tri-
angles which are incident onfringe and boundarypoints
are retained, as they are used for visibility pruning. Hence
we are able to handle massive models with millions of data
points.

Table 1 shows the time taken by our algorithm on var-
ious point clouds. The initialization time in the table in-
cludes the time taken to read in the model and initializing
the data structure. All the timing measurements in this pa-
per were made on a 250 MHz, R10000 SGI Onyx2 with 16
GB of main memory. Table 2 shows the timing of our al-
gorithm on the laser data. The initialization time includes
the time to read in the original model of around 6.5 mil-
lion points, filling up the data structure and eliminating the
points. The two entries in the table show the timings for
two different sizes of thedexel array: 400£ 600 and 1000
£ 1500.

6.1 Robustness of our algorithm
We avoid most of the robustness problems faced by purely
geometric methods (like noise and degenerate situations) by
our partially combinatorial approach. In our algorithm, we
face robustness problems in the projection plane evaluation.
For example, sharp curvature variations in the object might
lead to incorrect estimates of the projection plane.

To test the robustness of our approach to perturba-
tions in the estimated tangent plane atR, we used one of
just three projection planes –(X; Y ), (Y; Z), and(Z; X),



whichever was close to the actual estimate. We were able
to triangulate many models including the bunny model sat-
isfactorily. The execution time with this approach is much
less than the times listed in the Table 1 because we do not
need to explicitly transform the vicinity ofR to its tangent
plane. But the disadvantage of this approach is that it has
a few favorable orientations of the model in the coordinate
frame, and different orientations gave different results.

6.2 Limitations of Our Approach

Any projection-based approach gives different triangulation
for different starting points. Our approach also suffers from
the same limitation. But once the seed point is fixed, the
triangulation is same for any transformation of the model.
The second limitation is also common to most surface re-
construction algorithms – sharp curvature variations. If the
faces incident on a vertex do not satisfy our criterion of sur-
face smoothness, then our algorithm might produce incor-
rect triangulations. For under-sampled and extremely non-
uniformed models, our algorithm produces spurious model
boundaries, as shown in the Color Plate 2 (bottom row).

7 Conclusion
We have presented a new projection-based surface recon-
struction algorithm from unorganized point clouds. The key
features of our method are speed and memory efficiency.
Further, it is a single pass algorithm and can make use of
the characteristics of the data acquisition phase to handle
noisy data. We have demonstrated the application of our
algorithm on various data sets, including a massive, noisy
range scan model of a room. We have successfully gen-
erated valid, non-self-intersecting, orientable manifold sur-
face meshes for point clouds of size a few hundred thousand
in a matter of tens of seconds. By fixing certain parameters
in our algorithm, we obtain highly specialized and efficient
methods for various input classes. We believe that such a
versatility and performance without any manual interven-
tion is a big win for our algorithm.

References

[ABK98] N. Amenta, M. Bern, and M. Kamvysselis. A
new voronoi-based surface reconstruction al-
gorithm. In ACM Siggraph, pages 415–421,
1998.

[Att97] D. Attali. r-regular shape reconstruction from
unorganized points. InACM Computationl Ge-
ometry, pages 248–253, 1997.

[BBX97] C. Bajaj, F. Bernardini, and G. Xu. Re-
constructing surfaces and functions on sur-
faces from unorganized 3d data.Algorithmica,
19:243–261, 1997.

[BMR+99] F. Bernardini, J. Mittleman, H. Rushmeier,
C. Silva, and G. Taubin. The ball-pivoting
algorithm for surface reconstruction.IEEE
Transactions on Visualization and Computer
Graphics, 1999.

[Boi84] J. D. Boissonnat. Geometric structures
for three-dimensional shape representation.
ACM Transactions on Graphics, 3(4):266–
286, 1984.

[CA97] P. Crossno and E. Angel. Isosurface extraction
using particle systems.IEEE Visualization ’97,
pages 495–498, November 1997.

[CL96] B. Curless and M. Levoy. A volumetric
method for building complex models from
range images. InACM Siggraph, pages 303–
312, 1996.

[EM94] H. Edelsbrunner and E. Mucke. Three dimen-
sional alpha shapes.ACM Transactions on
Graphics, 13(1):43–72, 1994.

[GH95] Michael Garland and Paul S. Heckbert. Fast
polygonal approximation of terrains and height
fields. Technical report, CS Dept., Carnegie
Mellon U., Sept. 1995.

[GKS00] M. Gopi, S. Krishnan, and C. T. Silva. Surface
reconstruction based on lower dimensional
localized delaunay triangulation.Computer
Graphics Forum, Eurographics, 19(3):C467–
C478, 2000.

[HDD+92] H. Hoppe, T. Derose, T. Duchamp, J. McDon-
ald, and W. Stuetzle. Surface reconstruction
from unorganized point clouds. InACM Sig-
graph, pages 71–78, 1992.

[Hoo86] T. Van Hook. Real-time shaded NC milling
display. InACM Siggraph, pages 15–20, 1986.

[MM98] R. Mencl and H. Muller. Interpolation
and approximation of surfaces from three-
dimensional scattered data points.State of the
Art Reports, Eurographics ’98, pages 51–67,
1998.

[RWC+98] R. Raskar, G. Welch, M. Cutts, A. Lake,
L. Stesin, and H. Fuchs. The office of the fu-
ture: A unified approach to image-based mod-
eling and spatially immersive displays. In
ACM Siggraph, pages 179–188, 1998.

[Vel95] R. C. Veltkamp. Boundaries through scattered
points of unknown density.Graphical Models
and Image Processing, 57(6):441–452, 1995.






