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Abstract. We implemented two direct methods for on-line signature verification. First, data produced by a
graphics tablet describing a signature to be tested are treated with wavelet transforms to generate features to be
nonlinearly confronted with a reference signature chosen among 10 previously stored tryings from the same
writer. In order to recover the time dependence lost in the wavelet treatment, we included the level of departure
from the diagonal line in the warping function as a complementary measure of distance. In a second approach,
the functions x(t) and y(t) describing position in time of each pixel of the same test signature were directly
(though nonlinearly) compared to their counterparts from the reference. We concluded that both approaches
showed good fidelity to all details in the signatures, with acceptable false rejection rates (we obtained around
30% FRR) to this kind of biometry. On the other hand, the inclusion of the wavelet transform turned out to be
an essential step for the achievement of low false acceptation rates. It was only with the inclusion of the
wavelet transform, at the right level of resolution, that we managed to completely prevent trained forgeries to
be accepted (0% FAR) in the cases studied.

1. Introduction

This work deals with practical issues related to the safety
of digital signatures. Under normal conditions, a digital
signature is just an alphanumerical password which
confirms authenticity of a document in electronic form
based upon solely on the information that this document
contains. All the security associated with this scheme
relies on the assumption that only the person who signed
the document knows the right password (Schneier [10]).
However, since the copy of an electronic password cannot
be easily distinguished from the original, it is highly
recommended the inclusion of additional mechanisms to
connect a digital signature and its author, such as the use
of tokens (smart cards, for example) or the verification of
some physical or behavioral trace (biometrics) collected at
the moment of signing. Among all methodologies related
to biometrics, we decided to choose signature verification.
This choice can be justified because it is very well
accepted outside electronic media. People are used to sign
papers to confirm authenticity and the signature
verification process is not different or intrusive, as the
most part of other biometrics (Newham [1]). On the other
hand, Ruggles [13] states that a person's signature is prone
to variability and this would imply that systems for
signature recognition must allow for a wide range of
possibilities, being not very reliable.

Signature verification can be performed on-line or
off-line. These two approaches and several other practical
aspects related to the more general theme of handwriting

recognition are discussed at length in the survey from
Plamondon [12]. On-line verification signature
verification methods can be further divided into two
groups (see Plamondon [12]): direct methods (using the
raw functions of time) and indirect methods (using
parameters). In the first case, the signature is stored as a
discrete function to be compared to a standard from the
same writer, previously computed during an enrolment
stage. Such methods simplify data acquisition but
comparison can become a hard task. On the other hand,
indirect methods require a lot of effort preparing data to
be processed, but the comparison is quite simple and
efficient. Examples of the implementation of indirect
methods can be found in the papers from Lee et al. [15]
and Griess[16].

Sato and Kogure [3] present one of the first direct
methods to be successful. They propose a system that
relies on three pseudo-distance measures (shape, motion
and writing pressure) derived from coordinate and writing
pressure functions through the application of a technique
known as Dynamic Time Warping (DTW). They report
reasonable error taxes (over 90% success) applying their
system to japanese signatures, using forgeries trained for
10 minutes. Some authors tried to improve this idea. Wirtz
[4] presents a very similar system but with verification
based on strokes (rather than points) as the structural units
of the signature. There is also Munich and Perona [8],
who propose a continuous DTW as an improvement of
precision in the comparison process and Huang and Yan
[11], who segment the signature based on the writing



velocity before applying the DTW. None of the
modifications seems to represent any significant
improvement over the original idea of Sato and Kogure.

Lam and Kamins [5] propose the Fast Fourier
Transform as an alternative to time warping. Basically,
they suggest that working in the frequency domain would
eliminate the need to worry about temporal misalignments
between the functions to be compared. They achieve good
results and conclude that the FFT can be useful as a
method for the selection of features for signature
verification. On the other hand, Sundaresan and Keerthi
[6], while studying possible ways of representing
characters of an indian language called Tamil, discovered
that, because differences among Tamil characters can be
very subtle, the best way to represent them is with the aid
of wavelet transforms. They noted that Fourier
coefficients would not be a good alternative because they
are not very sensitive to small variations in style or shape.

The idea of employing wavelet transforms as a
means of generating features from signatures appears also
in the work from Deng et al. [9]. They propose an off-line
verification system that uses wavelet transforms for the
decomposition and analysis of the coordinate functions
and the tangential angle of points obtained from a
signature image. Deng et al. acquire their data from
scanned samples of signatures, so they must use image
processing techniques to identify closed contours which
conveniently represent each signature. Coordinates of the
points that compose each contour are stored as polar
functions of angles measured counterclockwise with
respect to some reference internal to the contour. The
functions obtained are submitted to a wavelet transform
and the authors take zero-crossings of the detail function
in a certain level as features. They complement this set of
features with integrals between consecutive zero-crossings
and corresponding amplitudes to the same abscissa in the
approximation function one resolution up. Experimenting
with occidental signatures, these authors were able to
achieve error taxes as low as 5,6 % false rejection rate
(FRR) and 10,98% false acceptation rate (FAR), thus
showing the applicability of the wavelet transform to this
kind of problem.

Wavelet transforms can also be found in works
related to other biometrics. Boles [7], for example,
presents a security system that uses the wavelet transform
for iris recognition. In order to extract features that are
unique to the gray level profiles of the iris image, the
author uses (similarly to Deng et al. [9]) the zero-
crossings of the detail function and the integrals between
consecutive zero-crossings in a certain level of the
wavelet transform.

The present work describes an extension of the work
from Deng et al. [9] to the case of on-line signature
verification. Though a powerful technique, their method
for off-line verification cannot be directly applied to the
on-line case, mainly because it was developed to deal with
situations in which the only available information is the
complete signature image. Data obtained on-line do not
demand image processing techniques to be used but,
besides shape, they provide important additional
information which should be considered, such as the order
in which points were created in the original signature and
the writing velocity. Specifically, we compare the
functions x(t) and y(t) describing a test signature with
their counterparts in a reference signature, previously
chosen in an enrolment stage. Our aim is to determine if
this test signature can be taken for original. This
comparison is based on dissimilarity measures between
features that are obtained from the wavelet transform of
the functions x(t) and y(t) through the calculation of
certain parameters related to the zero-crossings of the
detail function in the right level of resolution to this
problem (level 4). These parameters (described below)
contain, theoretically, the same amount of information
associated to the complete set of coordinates (x(t),y(t)). If
these dissimilarity measures between the test signature
and the reference lie into an acceptable range, established
in a previous enrolment stage with 10 original signatures,
the test signature is accepted as true.

Before the calculation of the dissimilarity measures,
the functions x(t) and y(t) from the test signature must be
aligned in time with the corresponding functions in the
reference signature. This is accomplished with the
Dynamic Time Warping from Sato and Kogure [3]. The
information related to the writing motion, lost in a
preparation process to the wavelet transform, is recovered
with the inclusion of an additional dissimilarity measure,
directly extracted from the graphic of the warping
function between zero-crossings, given by the area
between this function and the diagonal in the dynamic
programming diagram. It is similar to the second pseudo-
distance of Sato and Kogure, but including the wavelet
transform and represents a good measure because
forgeries tend to produce warping functions stronger
deviated from the diagonal than original samples of the
same signature.

Finally, in order to confirm the need of such a
sophisticated tool as a wavelet transform in the
verification process, we implemented a second method, in
which the features are simply the coordinates x(t) and y(t),
normalized but not transformed. Similarly to the wavelet
approach, the main tool in this case is the warping
function that results after the use of the DTW to



dynamically align features. Besides the distance that
naturally comes out of the alignment process, we also
included the area between the warping function and the
corresponding diagonal as a dissimilarity measure. This
should take into account, in an indirect way, the
information associated with the writing motion in this
analysis.

2. Data acquisition

Data acquisition is accomplished with a graphics tablet
Graphire from Wacom [14], with 12.76×9.28 cm2 active
area and maximum data transmission rate of 100 points
per second. Budget restrictions prevented us from testing
with a LCD pad, which would allow the same kind of
feedback provided by usual media (paper and pen).
However, the effectiveness of the proposed system does
not depend on this factor and the only influence that could
be expected from a better quality data acquisition device
would be the acquirement of better error taxes in the
experimental phase of this work.

The data consisted of original signatures from 4
people (2 right-handed and two left-handed). We took 30
samples from each person and we generated also 30
trained forgeries to each signature. These forgeries were
created with free access to all available information, such
as shape and sequence of writing of each original
signature and with no limitation in time for training. False
acceptation rates were computed only with trained
forgeries. We used random forgeries in preliminary tests,
just to be sure that our system was correctly implemented,
but we did not include these results in the FARs reported.
Random forgeries are not representative of real situations
and their inclusion would tend to dissimulate the error
taxes computed. Furthermore, a system that presents a
good performance in preventing trained forgeries to be
accepted must be effective with random forgeries too.

3. Overview of the system

The signature to be tested is collected from an electronic
pad as two functions in time (x(t),y(t)) and is numerically
processed to generate numbers that represent the distance
between it and a reference signature (standard), computed
in a previous enrolment stage. If this distance lies inside a
statistically acceptable range, the test signature is
recognized as being original. The numerical treatment
includes resampling to a uniform mesh, correction of
elementary distortions between curves (such as spurious
displacements and rotations), applying wavelet transforms
to produce features and finally nonlinear comparison in
time (Dynamic Time Warping).

3.1 Preprocessing

Initially, raw coordinate functions x∗(t∗) and y∗(t∗) are
obtained as sequences over a non-uniform  mesh in time,
presenting an average of 200 points each. These functions
are immediately resampled to a uniform mesh with twice
the number of nodes in time. Then these resampled data
are submitted to the same normalization to location and
rotation used by Sato and Kogure [3], producing an effect
like the one showed in Figure 1.
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Figure 1 Effect of preprocessing over spurious
displacement and rotation.

Specifically, time is changed to the unit interval [0;1]
and x(t) and y(t) are changed to [-1;1]. In the next step, an
auxiliary complex valued function z(t)=x(t)+i.y(t) is
defined, whose origin is then situated over the centroid
with ( ) ( ) Cztztz −= , where zC is defined as:

( )∫=
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0

dttzzC (1)

The signature is then aligned with one of its principal
axes, with:

( ) ( ) α−= arctan.ie.tztẑ (2)



where 21 β++β−=α  is the inclination angle of the

principal axis, for a value of β given by:
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3.2 Wavelet-based feature extraction

Considering the good results presented by Deng et al. [9],
we decided to use the wavelet transform as the main tool
for feature extraction. The wavelet transform is also a
good choice because of its capability to allow hierarchical
decomposition of functions in different levels of
resolution, separating in each level a an approximated
shape from the details that complement it. It is a
reasonable assumption to suppose that an authentic
signature must be consistent with a standard pattern in the
details, at a suitable level of resolution. We considered
also to use Fourier Transform in place of wavelets, but
this option was discarded in view of the remarks from
Sundaresan and Keerthi [6]. Fourier coefficients would
tend to increase the (false) acceptation of forgeries, since
they would not be able to indicate changes of style during
the signing process, while these changes can be identified
in a natural way in the detail functions of a wavelet
transform.

The decomposition of the functions x(t) and y(t) with
wavelet transform generates approximations and details
like those showed in Figure 2 to an original example of
x(t). To each zero-crossing of the detail curve at the 4th

level of resolution (this level was chosen empirically, by
trial and error), three parameters are extracted: its
abscissa, the integral between consecutive zero-crossings
(WD4 is the wavelet detail function at the 4th level):

∫
−
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k

1k

ZC

ZC

k dt)t(4WDvi (4)

and the corresponding amplitude to the same abscissa in
the approximation function one resolution up (WA3 is the
wavelet approximation function at the 3rd level):

( )kk zc3WAva = (5)

As it has been demonstrated that this information
suffices to a complete reconstruction of the non-

transformed curve  (see Deng et al. [9]), these parameters
can be used as highly significant features.
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Figure 2 Example of a function x(t) after the wavelet
transform.

3.3 Calculation of the dissimilarity measures

The main goal of the feature extraction is to allow for the
dissimilarity between two signatures to be quantified.
However, even for original samples, it is almost
impossible to have two original signatures with exactly
the same shape and velocity profiles, so that the right pairs
of zero-crossings to be associated will never occur at the
same time and sometimes they will not be even close to
each other. So, before measuring distances, it is necessary
to identify a suitable correspondence between zero-
crossings, which is accomplished with the Dynamic Time
Warping (DTW) algorithm from Sato and Kogure [3]. It
consists of a linear programming technique, in which the
time axis of the reference curve is fixed, while the time
axis of the test curve is nonlinearly adjusted, so as to
minimize the norm of the global distance between the
curves. This optimization tool, described by Rabiner [2],
is also used in speech recognition to identify different
utterances from the same phoneme.

Typically, this DTW is executed between two
discrete functions, having or not the same number of
points, to find the best correspondence between these
points. In our context, the best correspondence is the one
in which the sum of the euclidean distance between
selected points is minimum. This is accomplished through



the assignment of costs (distance between points) to each
association between points in different curves. These costs
are organized as a matrix [A], whose element aij contains
the value of the euclidean distance between point i in
some curve f(x) and point j in some g(x). This matrix can
be viewed as a diagram with Tf ×Tg points and an
algorithm of linear programming indicates which pairs of
points compose the path that leads to the best global
correspondence. Typically, the optimization solution
deviates from the main diagonal of the diagram, meaning
that some "warping" had to be imposed.

A recursive algorithm that finds the best path in a
diagram with Tf X Tg points, starting at (1,1) and finishing
at (Tf,Tg), can be described by the three steps below (dij

means local cost between points i and j and D means
global cost from (1,1) until (i,j), following an optimal
path), extracted from Rabiner [2]:

1. Initialization:  D(1,1) = d(1,1).m(1), where m
contains weights that empirically impose some
preference among possible paths (see Figure 3).

2. Recursive step: search on a tree of possible paths.
Starting by the last point (Tf,Tg), for each
intermediary combination (if,ig), search among
allowed candidates (i'f,i'g), the one which, after the
addition of the local cost between (if,ig) and (i'f,i'g),
leads to a global distance from (1,1) to (if,ig) that is
minimum. Since the alternative paths tend to grow
exponentially, only the 3 paths that conform to the
restriction rule showed in Figure 3 are considered.
Mathematically, this can be stated as: for 1<if <Tf,
1<ig<Tg , compute, over all (i'f,i'g) allowed by the
restriction,

( ) ( ) ( ) ( )( )[ ]gfgfgfi,igf i,i,i,idi,iDmini,iD
gf

′′+′′=
′′

(6)

The computation of D(i'f,i'g) depends on the
verification of the optimal path that reaches (i'f,i'g)
itself, so that this step must be recursively repeated
until point (1,1) is reached.

3. At the end, the distance between functions
receives the value of the accumulated minimum cost,
normalized in order to take weights into account:

( ) ( )
gf

gf
gf TT

T,TD
T,Tdist

+
= (7)

Figure 4 shows a typical result of an application of
DTW. In a practical sense, the nonlinear alignment

suggested by the DTW algorithm allows for abstracting
from the analysis small behavioral variations during
writing. The effect of the alignment produced by the DTW
between the zero-crossings of two functions x(t) derived
from authentic samples of signatures from the same writer
is showed in Figure 5.

Figure 3 Local restriction used in the DTW algorithm.

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

without
alignment

with alignment

Figure 4 Typical optimal path suggested by DTW to
align features originated from wavelet transforms.

The output of the DTW algorithm includes the
optimal correspondence between points in the two curves
and the value of the minimal distance. The optimal path is
the two-column matrix [CAM(i,j)], where each line contain
one pair of points associated by DTW.

Once the optimal correspondence is established,
distances can be conveniently measured. The comparison
process is based on four distances, defined as:

1. The minimum produced by the DTW algorithm,
d(Tf,Tg), given by equation (7).

2. The norm of the differences of integrals between
consecutive zero-crossings, dix for x(t) and diy for
y(t), calculated from:
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where [CAMi,j] is the matrix containing the optimal
path and [vik] is given by equation (4).

3. The norm of the differences between amplitudes in
the approximation function at the 3rd level, dax, for
x(t) and day, for y(t), calculated from:

2,x
CAM

1,x
CAM

x
2,k1,k

vavada −= (10)

2,y
CAM

1,y
CAM

y
2,k1,k

vavada −= (11)

where [vak] is given by equation (5).

4. The area of the difference between the warping
function and the corresponding diagonal (see Figure
3). We assume that this last parameter recovers the
information related to the velocity that is lost during
the resampling process to an uniform mesh. This
assumption is based on the simple idea that bigger
differences in speed during signing between two
signatures demand bigger deviations from the
diagonal in the warping function.
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Figure 5 Effect of DTW over zero-crossings extracted
from original samples of signatures from the same writer.

3.4 Function-based feature extraction

Basically, the method that includes the wavelet transform
consists of the computation of distances between sets of
features aligned with DTW. In this second approach, we
extract the features directly from the normalized curves
x(t) and y(t) that describe the signature, without any
transformation. In this case, there are only two distances
that can be defined: the minimum that returns from the
DTW between the non-transformed curves and the area of
the difference between the warping function and the
corresponding diagonal. This drastically simplifies feature
extraction, but the DTW has now to be applied over a
much bigger number of points than when the only points
to be considered were the zero-crossings from function
WD4. To deal with this great amount of points in an
efficient manner, we developed a non-recursive version of
the DTW algorithm. Accordingly, in this case the warping
function presents shapes like the one showed in Figure 6
(in comparison to Figure 4). We are again assuming that
two signatures produced with too different writing
velocity profiles tend to present a much more pronounced
warping effect.

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

without
alignment

with alignment

Figure 6 Typical optimal path obtained with DTW
directly applied to the coordinate functions x(t) and y(t).

3.5 Reference signatures

During an enrolment stage, 10 sample signatures from
each writer to be enrolled are collected and pairwise
distances between them are computed. Based on these
distances, a reference signature is selected as the one that
presents minimal overall distance to the others. Actually,
to each of the 10 signatures, we create a 9×8 matrix
containing the 8 distances defined (4 for x(t) and 4 for
y(t)) to each of the other signatures. The reference is the
signature whose distance matrix presents the minimal
norm.



The distances calculated in this step are also used to
produce the 8 thresholds to be tested during the
verification stage. Each threshold is computed from the
averages ( d ) and standard deviations (s) of all possible
pairwise distances associated with the 10 sample
signatures, according to:

s96.1dL ×+=              (12)

where the value 1.96 is chosen to assure that, assuming
normal distribution for the distances originated from the
same writer, 97.5% of the distances between original
signatures and references lie under this threshold.

3.6 Verification

A test signature, after passing through preprocessing and
feature extraction, is compared with the reference
signature to that writer. The verification consists of
checking if all defined 8 distances thus obtained lie under
the thresholds given by equation (12).

4. Experimental results

The proposed methodology was tested with the original
signatures and the forgeries previously acquired. The tests
consisted in determining false acceptation rates (FAR) and
false rejection rates (FRR) to each of the 4 writers
enrolled during data acquisition. Tests were executed with
the mother wavelets Daubechies 1 (Haar), Daubechies 6
(db6), Daubechies 10 (db10) and Biorthogonal 5.5 (Bior.
5.5), at different levels of resolution (3, 4 and 5). We
included also a test in which the 4th dissimilarity measure
(area between warping function and diagonal) was not
considered.

According to preliminary tests, we chose a standard
configuration as: db 6 and level of resolution 4. Results
for this configuration are presented in Table 1. Although
the FRR may be significant, there was no acceptation of
forgeries at all. It should be noted that, according to
practical considerations, it would be possible to decrease
FRR by relaxing the thresholds, but in this case the FAR
would increase. The standard configuration was chosen in
order to provide maximum security aginst forgeries,
without taking into account any troubles to the writer by
having original signatures rejected.

Table 1. db 6, level 4, including distance 4.
Writer 1 Writer 2 Writer 3 Writer 4

FAR 0% 0% 0% 0%
FRR 37% 23% 30% 40%

The tests showed in Table 2 justify the adoption of
level 4 as the reference. Although presenting a light
decreasing in FRR on the average, the data in Table 2
show unacceptable values to the FAR, meaning that at
levels other than the 4th , this verification system would be
unsafe for the cases studied.

Table 2. Mother wavelet db6, levels 3 and 5, including
distance 4.

Resolution
level

Error
taxes

Writer
1

Writer
2

Writer
3

Writer
4

FAR 0% 23% 3% 23%3rd

FRR 23% 13% 40% 37%
FAR 0% 53% 0% 7%5th

FRR 30% 33% 33% 27%

We also performed an investigation to check if a
substitution of the mother wavelet Daubechies by others
would produce better results. To this end, the same tests
from the standard case were re-executed, just replacing
db6 successively by db1, db10 and bior 5.5. Our results,
showed in Table 3, indicate that, even though it is possible
to find some improvement in FRR, there are again some
important security failures due to high FAR, meaning that
db6 was effectively the most indicated in this case.

Table 3. Mother wavelets db1, db10 and bior 5.5, level 4,
including distance 4.
Mother
wavelet

Error
taxes

Writer
1

Writer
2

Writer
3

Writer
4

FAR 0% 50% 0% 13%Db1
(Haar) FRR 20% 7% 30% 20%

FAR 0% 27% 0% 23%Db10
FRR 7% 23% 30% 37%
FAR 0% 20% 0% 0%Bior 5.5
FRR 40% 27% 30% 20%

To check if the information associated with writing
motion is really relevant in the methodology with
wavelets, a test was devised, in which the 4th dissimilarity
measure (area between warping and diagonal) was
ignored. The results to this case, shown in Table 4, reveal
that the 4th measure of distance is an essential parameter to
prevent forgeries to be accepted.

Table 4. Mother wavelet db6, level 4, without distance 4.
Writer 1 Writer 2 Writer 3 Writer 4

FAR 0% 3% 0% 3%
FRR 37% 17% 23% 27%



Finally, the wavelet transform was removed and the
distances were obtained directly from the coordinate
functions x(t) and y(t). In this case, the difference in the
number of points between a test signature and the
reference can become very large, so we had to include a
"filter", based on two global parameters: total duration
time of the signature and its total length. Even with the
inclusion of this filter the FAR obtained in this case were
not satisfactory at all and showed that, for the cases
studied, the wavelet step is essential to ensure security.

Table 5. Function-based, with filter.
Writer 1 Writer 2 Writer 3 Writer 4

FAR 3% 70% 0% 3%
FRR 13% 13% 23% 17%

5. Conclusions

We concluded that the error taxes obtained were at
acceptable levels for this kind of biometry. This shows
that the chosen methodology, consisting basically in the
application of the Dynamic Time Warping algorithm on
features extracted with the application of wavelet
transforms, is suitable to on-line signature verification.
The need of a wavelet transform step was tested by
comparison with a simplified system based solely on the
coordinate functions x(t) and y(t). We concluded that it is
worth to include the wavelet transform in the analysis.
The main tool to comparison of signatures is undoubtedly
the DTW, but the inclusion of the wavelet transform was
an essential step for the achievement of low false
acceptation rates. It was only with the inclusion of the
wavelet transform, in the right level of resolution, that we
managed to completely prevent trained forgeries to be
accepted (0% FAR) in the cases studied. This result was
expected, since, through wavelet transforms, it is possible
to analyze the problem in a resolution level suitable to the
problem of comparison of signatures.
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