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Abstract. This paper tackles the problem of estimating the parameters of relevant distributions that describe spec-
kled imagery. Speckle noise appears in data obtained with coherent illumination, as is the case of sonar, laser,
ultrasound-B and synthetic aperture radar images. This noise is non-Gaussian and non-additive and, therefore,
classical techniques of processing and analysis may fail. A universal parametric statistical model has been pro-
posed for such data, and numerical issues arise when estimating its parameters. In particular, the usual techniques
for optimization and for solving systems of non-linear equations often fail to converge and/or to produce accept-
able results, specially when dealing with small samples. An alternated method is proposed and assessed, and it is
shown to produce sensible results. As an application, real and simulated data are analyzed. We show that the dis-
crimination of minute features in synthetic aperture radar images can be performed using the proposed procedure.

1 Introduction

Remote sensing by coherent illumination can be used to
obtain information about unaccessible and/or unobservable
scenes. The surface of Venus, remote and unobservable due
to constant cloud cover, was mapped using a synthetic aper-
ture radar (SAR) sensor. The same kind of sensor is used
to monitor inaccesible earth regions, such as the Amazon,
the poles, etc. Ultrasound-B imagery is employed to diag-
nose without invading the body. Sonar images are used to
map the bottom of the sea, lakes and deep or dark rivers,
and laser illumination can be used to trace profiles of mi-
croscopic entities.

This kind of images are formed by active sensors (since
they carry their own source of illumination) that send and
retrieve signals whose phases are recorded. The imagery is
formed detecting the echo from the target, and in this pro-
cess a noise is introduced due to interference phenomena.

The noise that appears in these imagery is called spec-
kle, and departs from classical hypothesis: it is not Gaussian
in most cases, and it is not added to the true signal. Classical
techniques derived from the assumption additive noise with
Gaussian distribution may lead to suboptimal procedures,
or to the complete failure of the processing and analysis of
the data.

Several models have been proposed in the literature
to cope with this departure from classical hypothesis, being
the K and G0

A distributions the more succesful ones (see [1]
for an introduction to the subject of SAR image processing
and analysis.) These are parametric models, so inference is
a crucial step in every procedure. The family of G0

A laws is
regarded as an universal model for speckled imagery.

The literature reports severe numerical problems when
estimating the parameters of these distributions. The solu-

tion commonly proposed consists of using big samples, in
spite of being small samples desirable for minute feature
analysis.

This paper presents the performance analysis of sev-
eral classical techniques for maximum likelihood parameter
estimation in the G0

A model, showing that none of them is
reliable for practical applications. A proposal based on al-
ternated optimization of the reduced log-likelihood is then
made and assessed with real and simulated data. The com-
putational platform is Ox, well known for its numerical
soundness.

The rest of the paper is organized as follows: Section 2
presents the main properties of the G0

A model, our main ob-
ject of interest. Section 3 recalls the main algorithms in-
volved in maximum likelihood inference for the G0

A model,
with special emphasis on their availability in the Ox plat-
form. Once verified that these algorithms fail to produce
acceptable estimators, section 4 describes and assesses the
proposal that overcomes this problem, and applications are
discussed in section 5. Conclusions and future research di-
rections are commented in section 6.

2 The Universal Model

As proposed and assessed in [2], the family of G0 distribu-
tions can be succesfully used to describe data contaminated
by speckle noise. This family of distributions stems from
assuming the following hypothesis about the signal forma-
tion in every image coordinate:

1. The observed data (return) can be described by the ran-
dom variable Z = XY , where the independent ran-
dom variables X and Y describe the ground truth and
the speckle noise, respectively.



2. The random variable X : Ω −→ R+ follows a square
root of reciprocal of gamma law, characterized by the
density

fX(x) =
2α+1

γαΓ (−α)
x2α−1 exp(−

1

2
γx−2)IR+

(x),

where α < 0 and γ > 0 and IA denotes the indicator
function of the set A.

3. When linear detection is used, the random variable Y
obeys a square root of gamma distribution, whose den-
sity is

fY (y) =
LL

Γ (L)
y2L−1 exp

(
−Ly2

)
IR+

(y),

where L ≥ 1 is the (equivalent) number of looks, a pa-
rameter that can be controlled in the image generation
process.

Under these assumptions, the density of Z is given by

fZ(z) =
2LLΓ(L − α)

γαΓ(L)Γ(−α)

z2L−1

(γ + Lz2)L−α
IR+

(x), (1)

where −α, γ > 0 are the (unknown) parameters and L ≥ 1
is the number of looks. The main properties of this distri-
bution, denoted G0

A(α, γ, L), are presented in [2, 3, 4]. In
particular, moments of order r will be useful in this work.
They are given by

E(Zr) =
( γ

L

)r/2 Γ(−α − r/2)Γ(L + r/2)

Γ(−α)Γ(L)
(2)

if α < −r/2, and are not finite otherwise.
A crucial feature of the distribution characterized by

eq. (1) is that its parameters are interpretable: γ is a scale
parameter, while α is related to the roughness of the tar-
get. Small values of α (say α < −10) describe smooth
regions as, for instance, crops and burnt fields. When α
is close to zero (say α > −5) the observed target is ex-
tremely rough, as is the case of urban spots. Intermediate
situations (−10 < α < −5) are usually related to rough ar-
eas as, for intance, forests. The equivalent number of looks
L is known beforehand or is estimated for the whole im-
age using extended targets, i.e., very large samples. Note
that estimating (α, γ) amounts to making inference about
the unobservable ground truth X .

Figure 1 shows the densities of two distributions with
the same mean and variance: the G0

A(−2.5, 7.0686/π, 1)
and the Gaussian distribution N (1, 4(1.1781− π/4)/π) in
semilogarithmic scale, along with their mean value. The
different decays of their tails in the logarithmic plot are ev-
ident: the former behaves logarithmically, while the latter
decays quadratically. This behavior ensures the ability of

the G0
A distribution to model data with extreme variability

but, at the same time, the slow decay is prone to producing
problems when performing parameter estimation.

Since systems that employ coherent illumination are
used to survey inaccessible and/or unobservable regions (the
surface of Venus, the interior of the human body, the bottom
of the sea, areas under cloud cover, etc.), it is of paramount
importance to be able to make reliable inference about the
kind of target under analysis.

This inference can be performed through the estima-
tion of the parameter (α, γ) ∈ Θ = (R− × R+) from
samples z = (z1, . . . , zn) taken from homogenous areas
in order to grant that the observations come from identi-
cally distributed random variables. The bigger the sample,
in principle, the more accurate the estimation but, also, the
bigger the chance of including spurious observations. Also,
if the goal is to perform some kind of image processing or
enhancement [5, 6], as is the case of filtering based on dis-
tributional properties, large samples are obtained using big
windows that usually cause heavy blurring. Inference with
small samples is gaining attention in the specialized litera-
ture (see [7] for instance), and reliable inference using small
samples is the core contribution of this work.

Usual inference techniques include methods based on
the analogy principle [8] (moment and order statistics esti-
mators being the most popular members of this class) and
maximum likelihood [9]. Moment estimators are favored in
applications, since they are easy to derive and are, usually,
computational attractive. An estimator based on the me-
dian and on the first moment was sucessfully used in [5] as
the starting point for computing maximum likelihood (ML
therein) estimates.

Given the sample z, and assuming that these obser-
vations are outcomes of independent and identically dis-
tributed random variables with common distribution D(θ),
with θ ∈ Θ ⊂ R

p, p ≥ 1, a ML estimator of θ is given by

θ̂ = arg max
θ∈Θ

L(θ; z), (3)

where L is the likelihood of the sample z under the pa-
rameter θ. Under very mild conditions it is equivalent (and
many times easier) to work with the reduced log-likelihood
`(θ; z) ∝ ln L(θ; z), where all the terms that do not depend
on θ have been discarded.

Figure 2 shows a typical situation. A sample from the
G0

A(−8, γ∗, 3) of size n = 9 was generated, and the log-
likelihood function of this sample is shown. The parame-
ter γ∗ is chosen such that the expected value is one. It is
noticeable that finding the maximum of this function (pro-
vided it exists) is not an easy task due to the almost flat area
it presents around the candidates. The ML estimates for this
sample were (α̂, γ̂) = (−1.84, 1.44).

Though direct maximization of equation (3) is possi-
ble (either analytically or using numerical tools), and many



times desirable, quite often one finds ML estimates by solv-
ing the system of (usually non-linear) p equations given by

∇`(θ̂) = 0. (4)

This system is referred to as likelihood equations. The
choice between solving either equation (3) or equation (4)
heavily relies on computational issues: availability of re-
liable algorithms, computational effort required to imple-
ment and/or to obtain the solution, etc.

In our case the likelihood function is L((α, γ); z) =∏n
i=1 fZ(zi), with fZ given in eq. (1). Therefore, the re-

duced log-likelihood can be written as

`((α, γ); z) = ln
L − α

γαΓ(−α)
−

L− α

n

n∑

i=1

ln(γ+Lz2
i ). (5)

The MLE, in general, has no explicit solution.
The system given by eq. (4) is, in our case,





n[Ψ(−α̂) − Ψ(L− α̂)] +
∑n

i=1 ln
(

γ̂+Lz2
i

γ̂

)
= 0,

−nα
γ̂ − (L − α)

∑n
i=1 ln

(
1

γ̂+Lz2
i

)
= 0,

(6)
where Ψ(τ) = d ln Γ(τ)/dτ is the digamma function. No
explicit solution for this system is available in general and,
therefore, numerical routines have to be used.

3 Algorithms for Inference

The routines here reported were used as provided by the
Ox platform [10], a robust, fast, free and reliable matrix-
oriented language with excellent numerical capabilities.

Two categories of routines were tested: those devoted
to direct maximization (or minimization), referred to as op-
timization procedures, and those that look for the solution
of systems of equations. In the first category the Simplex
Downhill, the Newton-Raphson and the BFGS algorithms
were used to maximize eq. (5). In the second category the
Broyden algorithm was used to find the roots of eq. (6).

These routines impose different requirements for their
use. Some require or accept the derivatives of the function
to be maximized, while others try to perform their tasks
with mere evaluations of the target function.

Since the main goal of this work is to find suitable
solutions, all routines were tested following the guidelines
provided with the Ox platform: a variety of tuning param-
eters, starting points, steps and convergence criteria were
tested. The results confirmed what is commented in the lit-
erature, namely, that inference for the G0

A law requires huge
samples.

An extensive analysis was performed in a variety of
situations, namely sample sizes n ∈ {9, 25, 49, 81, 121},
roughness parameters α ∈ {−1,−3,−5,−15} and number

of looks L ∈ {1, 2, 3, 8}. The scale parameter γ was chosen
to yield unitary mean, so it was set to

γ∗ = L

(
Γ(L)Γ(−α)

Γ(L + 1/2)Γ(−α− 1/2)

)2

.

These sample sizes reflect the fact that most image
processing techniques employ estimation in squared win-
dows of even side and, therefore, samples are of size n =
s2, where s is the side of the window.

The roughness parameter describes regions with a wide
range of smoothness, as discussed in section 2. The number
of looks also reflects situations of practical interest, ranging
from raw images (L = 1) to smoothed out data L = 8. It is
convenient to note here that the bigger the number of looks
the smoother the image, at the expense of loss of spatial
resolution.

One thousand replications were performed for each of
these eighty situations, generating samples with the spec-
ified parameters and, then, applying the four algorithms.
Success (convergence to a point and numerical evidence of
convergence to either a maximum or a root) or failure to
converge was recorded, and specific situations of both out-
comes were traced out.

Table 1 shows the percentage of times (in 1, 000 inde-
pendent trials) that the BFGS algorithm failed to converge
in each of the eighty aforementioned situations. The bigger
the sample size the better the performance, and the smoo-
ther the target the worse the convergence rate. In the worst
case almost sixty percent of the samples were left unana-
lyzed, i.e., no sensible estimate was obtained. Similar be-
haviour is observed in the other algorithms, and it is note-
worthy that all of them were fine-tuned for the problem at
hand.

The overall behaviour of these algorithms falls into
one of three situations, namely

1. All of them converge to the same (sensible) estimate.

2. All of them converge, but not to the same value.

3. At least one algorithm fails to converge.

The Broyden algorithm seemed to have the best per-
formance, since it reported convergence in many situations.
But when at least two of the other algorithms converged,
most of the time they did it to the same point whereas Broy-
den stopped very far from it. When checking the values of
the likelihood in the solutions, the one computed by Broy-
den was orders of times smaller than the one found by max-
imization techniques. For this reason, though Broyden al-
legedly outperformed optimization procedures in terms of
convergence, it was considered unreliable for this applica-
tion.



This behaviour motivated the proposal of an algorithm
able to converge to sensible estimates. This is done in the
next section.

Table 1: Percentage of situations for which BFGS fails to
converge in 1,000 replications.

L α n
9 25 49 81 121

−15 59.9 48.2 36.2 27.8 25.2
1 −5 52.6 30.1 14.5 8.6 3.9

−3 42.3 19.1 6.1 1.5 0.4
−1 17.6 1.0 0.1 0.0 0.0
−15 51.9 35.4 25.8 16.2 11.4

2 −5 37.7 13.5 5.4 1.7 0.2
−3 25.0 5.4 0.4 0.0 0.0
−1 4.6 0.0 0.0 0.0 0.0
−15 46.5 28.7 16.6 9.9 7.1

3 −5 28.1 7.9 1.4 0.1 0.0
−3 17.4 2.3 0.0 0.0 0.0
−1 2.1 0.0 0.0 0.0 0.0
−15 31.2 9.1 2.3 0.8 0.2

8 −5 8.2 0.3 0.0 0.0 0.0
−3 2.9 0.0 0.0 0.0 0.0
−1 0.1 0.0 0.0 0.0 0.0

4 Proposal: alternated optimization

Since simultaneous optimization is not reliable enough, an
analysis of the marginal functions to be maximized was
conducted for a variety of situations. In all these situations
it was checked that, whereas the reduced log-likelihood sho-
wed flat regions, where simultaneous optimization may get
lost or stuck, these surfaces could be sliced in order to yield
better-behaved functions. This motivated the proposal of an
alternated algorithm that consists of writing two equations
out of eq. (5): one depending on α, given γ fixed, and the
other depending on γ, given a fixed α. Provided a starting
point for γ, say γ̂(0), one maximizes the first equation on
α to find α̂(0). One can now use this crude estimate of α,
solve again the first equation on γ and continue until evi-
dence of convergence is achieved. Formally, the equations
to be maximized are

`1(α; γ(j), z) = ln
Γ(L − α)

(γ(j))αΓ(−α)
+

+
α

n

n∑

i=1

ln(γ(j) + Lz2
i ), (7)

`2(γ; α(j), z) = −α(j) ·

·
(
ln γ +

1

n

n∑

i=1

ln(γ + Lz2
i )

)
. (8)

Algorithm 4.1 Alternated optimization for parameter esti-
mation.

1. Fix the smallest acceptable variation to proceed (typ-
ically ε = 10−4) and the maximum number of itera-
tions (typically M = 103).

2. Compute an initial estimate of γ, for example

γ̂(0) = L

(
m̂1

Γ(L)

Γ(L + 1/2)

)2

, (9)

where m̂1 = n−1
∑n

i=1 zi is the first sample moment.

3. Set the values needed to execute step (4c) for the first
time ε = 103 and α̂(0) = −106, and start the counter
j = 1

4. While ε ≥ ε ∨ j ≤ M do

(a) Find α̂(j) = arg maxR
−

`1(α; γ(j−1), z) given
in eq. (7).

(b) Find γ̂(j) = arg maxR+
`2(γ; α(j), z) given in

eq. (8).

(c) Compute ε =
∣∣∣α(j+1)−α(j)

α(j+1)

∣∣∣ +
∣∣∣γ(j+1)−γ(j)

γ(j+1)

∣∣∣ the

absolute value of the relative inter-iteration vari-
ation.

(d) Update the counter j = j + 1.

5. If ε > ε return anything with a message of error, else
return (α̂(j − 1), γ̂(j − 1)) and a message of success.

Equation (9) is derived using r = 1 and discarding the
dependence of α on eq. (2). In this manner, it is a crude
estimator of γ based on the first sample moment m̂1. Other
starting points were checked, and the effect on the algo-
rithm convergence was negligible.

It was chosen to work with the BFGS algorithm in
steps (4a) and (4b) since, for the considered univariate equa-
tions, it outperformed the other methods in terms of speed
and convergence. The BFGS is generally regarded as the
best performing method [11] for multivariate non-linear op-
timization. In our case the explicit analytical derivatives of
the objective function were provided, a desirable informa-
tion whenever available.

Using this algorithm in the same 80,000 samples anal-
ized in Table 1, in only six of them there was no conver-
gence; in these cases the problem was with eq. (4b). This
represents a notorious improvement with respect to classi-
cal algorithms.

5 Application

Using Algorithm 4.1 it was possible to conduct a Monte
Carlo experience in order to evaluate the bias and mean



Table 2: Situations where BFGS failed to converge.
n 121 81 49 25 9
% 1.6 4.8 10.8 19.2 41.2

square error of the MLE for a variety of situations that
had to be left unexplored when using classical procedures.
These results on the bias of α̂ are shown in Figure 3. These
values can be huge, confirming previous results. Efforts to
reduce this undesirable behavior of ML estimators are re-
ported in [12].

Two applications were devised to show the applicabil-
ity of the alternated algorithm: one with simulated data and
the other with a real SAR image. The former consists of
generating samples from the G0

A(α, γ∗, L) law, for fixed L.
Two-hundreed and fifty samples of size n = 121 were

generated, being fifty from the G0
A(−5, γ∗, L), fifty from

the G0
A(−1, γ∗, L), fifty from the G0

A(−15, γ∗, L) and the
remaining 100 samples from the G0

A(αj , γ
∗, L) where αj =

0.14j − 15 and 1 ≤ j ≤ 100 is the integer index.
For each of these samples two algorithms were em-

ployed to obtain the MLE, namely the BFGS and alternated
algorithms. The procedure was repeated for each sample,
but using 81, 49, 25 and 9 observations out of the complete
data set.

In every situation the alternated algorithm achieved
convergence, and the same does not hold for the BFGS al-
gorithm. The percentage of situations for which BFGS did
not converge is presented in Table 2. Again, the classical
procedure is unreliable.

Figure 4 shows, for n = 25, the true value of −α
(in semilogarithmic scale) along with the estimates: “×”
for the alternated algorithm and “◦” for the one obtained
with the BFGS procedure. The missing circles correspond
to those situations where BFGS failed to converge. It can
be checked that when they both converge, they converge to
similar values, and that there are many situations for which
BFGS was unable to return an estimate. Similar behaviour
is exhibited for other sample sizes, the smaller the sample
the less reliable BFGS. Figure 6 shows the same analysis
for samples of size n = 5000. It it noticeable that with
large samples the estimators behave alike.

Figure 5 shows a SAR image obtained by the sensor
E-SAR, managed by the German Aerospace Center DLR.
This airborne sensor has polarimetric and high spatial reso-
lution capabilities. The scene was taken over the surround-
ings of München, and typical classes are marked as “U”
(Urban), “F” (Forest) and “C” (Crops). An hypothesized
flight track is marked with the NW-SE white arrow, where
small samples are being collected at every passage point.

The analysis of these on-flight samples was performed
with both the BFGS and the alternated algorithms. The
latter always returned estimates while the former failed in

Figure 1: Densities of the G0
A(−2.5, 7.0686/π, 1) (solid

line) and the N (1, 4(1.1781 − π/4)/π) (dashes) distribu-
tions in semilogarithmic scale.

28.3%, 32.6%, 42.2%, 49.5% and 63.2% of the sites when
using 121, 81, 49, 25 and 9 observations, respectively. Even
with windows of size 11 almost a third of the coordinates
would be left unanalized by the classical algorithm.
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Figure 2: Log-likelihood function of a sample of size n = 9
of the G0

A(−8, γ∗, 3) distribution.

Figure 7 shows the values of α̂ in two-hundreed and
fifty sites using n = 121, 49, 25 and 9 observations. It can
be seen that the bigger the window the smoother the anal-
ysis, leading to the conclusion that most sites correspond
to heterogeneous or extremely heterogeneous spots (since
α̂ > −7). When the window is smaller, more heteroge-
neous areas appear (α̂ < −10). The sensed area is subur-



α

B
(α

)
^

^

−15 −5 −3 −1

−
25

0
−

20
0

−
15

0
−

10
0

−
50

n = 9 
n = 25 
n = 49 
n = 81 
n = 121  

Figure 3: Estimated bias of the MLE estimator of α for one
look.

ban, and typical spots consist of scattered houses and small
buildings (extremely heterogeneous return) with trees and
gardens in between, where SAR will return heterogeneous
and homogeneous clutter, respectively.

The ground resolution of this sensor can be of less than
one meter, so minute features of about two meters of side
can be detected with the use of the alternated algorithm and
the G0

A model.

6 Conclusions and future work

The numerical problems that arise when estimating the pa-
rameters of the universal model for speckled data using
maximum likelihood are alleviated by the use of an alter-
nated optimization procedure.

An analysis of the performance of MLE estimators for
the G0

A distribution in the presence of small samples was
conducted with the alternated algorithm. This study would
not be possible with conventional techniques, since they fail
to converge and/or to provide sensible estimates in as many
as 60% of the situations.

The same technique was employed to analyze simu-
lated and real data. In the latter sound information about
minute features in the ground was retrieved in a SAR im-
age.

The same alternated technique is being employed to
compute ML estimates of the parameters of polarimetric
distributions for SAR data. These distributions are indexed
by matrices of complex values, and their computation is
prone to severe numerical instabilities.
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References

[1] C. Oliver and S. Quegan, Understanding Synthetic
Aperture Radar Images. Boston: Artech House, 1998.

[2] M. E. Mejail, A. C. Frery, J. Jacobo-Berlles, and O. H.
Bustos, “Approximation of distributions for SAR
images: proposal, evaluation and practical conse-
quences,” Latin American Applied Research, vol. 31,
pp. 83–92, 2001.

[3] A. C. Frery, H.-J. Müller, C. C. F. Yanasse, and S. J. S.
Sant’Anna, “A model for extremely heterogeneous
clutter,” IEEE Transactions on Geoscience and Re-
mote Sensing, vol. 35, pp. 648–659, May 1997.

[4] M. Mejail, J. Jacobo-Berlles, A. C. Frery, and O. H.
Bustos, “Parametric roughness estimation in ampli-
tude SAR images under the multiplicative model,” Re-
vista de Teledetección, vol. 13, pp. 37–49, 2000.

[5] O. H. Bustos, M. M. Lucini, and A. C. Frery, “M-
estimators of roughness and scale for GA0-modelled
SAR imagery,” Applied Signal Processing, vol. 2002,
pp. 105–114, Jan. 2002.

[6] A. C. Frery, S. J. S. Sant’Anna, N. D. A. Mascaren-
has, and O. H. Bustos, “Robust inference techniques
for speckle noise reduction in 1-look amplitude SAR
images,” Applied Signal Processing, vol. 4, pp. 61–76,
1997.



Figure 5: E-SAR synthetic aperture image with L = 1.
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