
Dynamic Scene Occlusion Culling using a Regular Grid

HARLEN COSTA BATAGELO WU, SHIN-TING

Unicamp – State University of Campinas, School of Electrical and Computer Engineering
{harlen,ting}@dca.fee.unicamp.br

Abstract. We present an output-sensitive occlusion culling algorithm for densely occluded dynamic scenes where
both the viewpoint and objects move arbitrarily. Our method works on a regular grid that represents a volumetric
discretization of the space and uses the opaque regions of the scene asvirtual occluders. We introduce new tech-
niques of efficient traversal of voxels, object discretization and occlusion computation that strengthen the benefits
of regular grids in dynamic scenes. The method also exploits temporal coherence and realizesoccluder fusion in
object-space. For each frame, the algorithm computes a conservative set of visible objects that greatly accelerates
the visualization of complex dynamic scenes. We discuss the results of a 2D and 3D case implementation.

1 Introduction

The efficient visualization of large scenes composed by sev-
eral millions of polygons is one of the most challenging
problems in today’s computer graphics. In general, these
scenes aredensely occluded, which means that the fraction
of visible geometry with respect to any viewpoint is only
a small subset of the overall model [2]. The exhibition of
densely occluded scenes can be accelerated byocclusion
culling algorithms that quickly detect occluded geometry
and avoid sending them to the rendering pipeline. However,
the efficient visibility determination of arbitrary dynamic
scenes is still an open area of research in computer graphics
[4]. In general, occlusion culling algorithms require expen-
sive preprocessing stages in order to build hierarchical data
structures for efficient visibility queries in runtime, as large
parts of the scene can be early classified as hidden in high
levels of the hierarchy. Nevertheless, handling changes of
hierarchical relations for multiple dynamic objects may be
prohibitively slow to be done on-the-fly.

Although considerable research effort has been devoted
to the acceleration of updates in hierarchical spatial data-
bases (see section 2), in this work we propose to use a
simple (but fast) regular grid that combines efficient pro-
cedures of grid traversal and occlusion computation for fast
evaluation of dynamic occluders. The visibility algorithm
proposed to work with this data structure is based on previ-
ous works of occlusion culling, mainly on the approaches
proposed by Schaufleret al. [13] and Sudarsky and Gots-
man [15]. Our algorithm inherits most benefits from these
algorithms, such as the ability tofuse occluders in object-
space, the implicit use of dynamicvirtual occluders [4] and
the reduction in output-sensitive complexity (i.e., its run-
time is proportional to the number of visible objects only
- see Sudarsky [15] for details). However, our algorithm
is completelyonline; it does not depend on preprocessing,
pre-selection of occluders or precomputation of PVSs (Po-

tentially Visible Sets).
We hope that this work will motivate a discussion on

applying regular grids in dynamic scenes. While the ben-
efits of most hierarchical approaches do not seem to over-
come the cost of handling a large number of dynamic ob-
jects, regular grids have the drawback of handling dense
and sparse areas of the scene with the same subdivision,
thus being unable to cull out large portions of the scene
in high levels of the hierarchy. We have focused on these
issues aiming at presenting contributions for minimizing
such problems and therefore encouraging the use of reg-
ular grids with occlusion culling algorithms. We exploit the
natural correspondence between regular voxels and pixels
of the frame buffer to: (1) develop a fast procedure of front-
to-back traversal of regular voxels enclosed by the view-
frustum; (2) classify occluded regions of the space by ef-
ficiently “rasterizing”occlusion volumes; (3) optimize the
discretization oftemporal bounding volumes to reduce the
overhead due to handling of hidden dynamic objects [15].

The rest of the paper is organized as follows. In the
next section, we discuss the occlusion culling problem and
review related work on dynamic scene occlusion culling. In
section 3, the basic data structures and the principal steps of
our algorithm are given. Next, we detail our algorithm for
both 2D (section 4) and 3D scenes (section 5). We discuss
the implementation results in section 6 and conclude with
suggestions for future work in section 7.

2 Previous Work

For a comprehensive survey about visibility, we suggest
Durand’s thesis [5]. Visibility culling is specially covered
by Cohen-Oret al. [4], Möller and Haines [10], and also by
Aila and Miettinen [1].

A relatively few of the occlusion culling algorithms
in the literature are devoted to dynamic environments. Al-
though many visibility techniques allow efficient visibility

queries of dynamic objects (i.e., answer whether a dynamic
object is being occluded by some portion of the scene), they
consider as occluders only static objects (i.e., cannot answer
whether a dynamic object occludes some part of the scene)
[6, 13]. Nevertheless, in dynamic scenes with objects in ar-
bitrary motion, any object can be a potential occluder, for
instance, moving right in front of the viewpoint and block-
ing its field of view, or simply growing in size.

While we can find efficient dynamic scene occlusion
culling algorithms for indoor architectural scenes [9] and
2.5D urban scenes [16], 3D cases remain almost unexplored
(a remarkable exception is thedPVS API [1]). Besides the
technique oftemporal bounding volumes [15], we consid-
ered methods that can be further adapted to dynamic scenes,
such as thehierarchical z-buffer [7, 8] and thehierarchical
occlusion map [17].

The hierarchical z-buffer (HZB) uses a pyramid of z-
buffers and an octree to remove large parts of the scene with
few comparisons. The levels of the pyramid are built by
an iterative process that attributes the farthest z-value of
2x2 arrays of pixels of the current level to a single pixel
of the subsequent level, beginning at the base of the pyra-
mid that is a standard z-buffer. In runtime, the octree is
traversed in front-to-back, top-down order, and each node
is compared with the pyramid of z-values. If a node is com-
pletely occluded, then its sub-nodes and objects contained
in its interior are discarded. Unfortunately, HZB needs to
read back the contents of the z-buffer – an operation hardly
supported by most graphics hardware (an exception is the
nVidia’s GeForce3, usingz occlusion culling [12]). Re-
cently, Greene has proposed changes of the original HZB
for feasible hardware implementations [7]. The bandwidth
traffic of z-values is greatly reduced with this new approach
and, in some cases, it is more efficient than using a standard
z-buffer with the visible geometry known in advance.

An alternative to HZB that does not depend on spe-
cial graphics hardware is the technique of hierarchical oc-
clusion maps (HOM), which decomposes the visibility test
in a coverage and a depth test. The hierarchical occlusion
map is similar to the HZB pyramid, differing in containing
opacity values instead of depth values in each of their level
maps. For each frame, a HOM is built for a large group of
occluders selected from an occluder database. The scene
geometry, previously organized as a hierarchy of bound-
ing boxes, is tested for coverage against the pyramid. The
depth test is then performed only for the geometry that cov-
ers (both fully and partially) the discretized occluders in the
HOM. An object is occluded if its projected bounding box
covers only opaque pixels in the HOM and is behind the
occluders according to the depth test.

For dynamic scenes, the hierarchical data structures
used by HZB and HOM are replaced by oriented bound-
ing boxes. In the HOM technique, the precomputation of

an occluder database is circumvented. Instead, occluders
are chosen in runtime according to the size and distance
from the viewer. The cost to select a good set of occlud-
ers in runtime is reduced by using frame coherence. How-
ever, even considering that these methods work in dynamic
scenes more efficiently than a traditional z-buffer (seee.g.,
ATI’s Hyper-Z technology [11]), the complexity of the vis-
ibility determination is still at least linear in the number of
input objects. All objects must be tested against the pyra-
mid, even those that do not contribute any pixel to the final
image.

The main problem that arises in handling dynamic sce-
nes is the difficulty in efficiently updating the hierarchical
data structures that most visibility algorithms use (usually
octrees or kD-trees). In addition, if the data structure is
updated for each frame and for all dynamic objects, the
output-sensitivity is lost.

Many works have been conducted to adapt octrees for
dynamic scenes. Smithet al. present an algorithm for han-
dling objects subjected to rigid-body transformations [14].
Sudarsky and Gotsman use temporal coherence to restrict
the change of the octree to the small voxel that encloses
both the previous and current positions of the modified ob-
ject (called theleast common ancestor voxel), thus reducing
the overhead due to the update of dynamic objects [15].

In order to reduce the number of updates of the data
structure, it is possible to associate to each dynamic object
a region of space that completely encloses the object during
a whole sequence of animation. These bounding volumes
can be inserted in the spatial database such that the corre-
sponding dynamic object can be ignored until the visibility
culling algorithm classifies those bounding volumes as po-
tentially visible. For dynamic objects of arbitrary motion,
Sudarsky and Gotsman suggest to calculate bounding vol-
umes for short periods of time, called temporal bounding
volumes (TBVs) [15]. For instance, if the maximum veloc-
ity of each dynamic object is known, then given the position
of an object in a certain moment, it is possible to compute
a bounding sphere that surely contains this object for any
future time. This future time, or “TBV’s expiration date”,
determines the validity period of the bounding volume. A
hidden dynamic object only needs to be considered if its
bounding volume becomes visible or the expiration date is
reached. Output-sensitivity with respect to the number of
dynamic objects is achieved because the spatial database is
updated only when the objects really happen to be poten-
tially visible. ThedPVS API [1], a commercial visibility
culling library, handles dynamic objects by using TBVs.
It organizes the scene geometry into an axis-aligned BSP
tree that allows faster updates than octrees. The visibility
culling algorithm is based on several optimizations of the
HOM technique, which results in a very efficient culling
solution for a broad class of complex scenes.

Figure 1: Visualization of the data in a 2D regular grid.

3 Overview

The regular grid represents a discretization of the space
where each voxel identifies local features of the scene such
as opacity, occlusion and spanned objects. At each frame,
all voxels that intersect the view-frustum are traversed in an
approximate front-to-back order from the viewer, searching
for opaque voxels that can be used as occluders. Accord-
ing to the approach introduced by Schaufleret al., each oc-
cluder can be extended by the aggregation of opaque and
occluded voxels in the neighborhood of the initial opaque
voxel, thus realizingoccluder fusion – the combination of
sets of small and disjoint occluders to build larger and more
effective ones [13]. Only objects fully contained in oc-
cluded voxels are considered invisible. Therefore, the set
of objects reported for rendering is always an overestimate
of the visible objects.

For optimization purposes, we have organized the in-
formation of the regular grid into four matrices. For illus-
tration, Figure 1 shows an overlaid view of these four ma-
trices associated to a 256x256 regular grid that represents a
2D scene with 300 dynamic objects (32 potentially visible).
Potentially visible objects are shown as filled circles. The
line-of-sight and the view-frustum boundaries are shown as
a dashed black line and two solid black lines, respectively.
In the rest of the paper, for the sake of uniformity and with-
out compromising the comprehension, we will call a regular
grid element a voxel in both 2D and 3D scenes.

• Occluder matrix (O), which classifies each voxel as
opaque or non-opaque. A voxel is opaque if it is to-
tally contained in a potentially visible object. The opa-
que voxels are shown in dark gray in Figure 1.

• Occlusion matrix (H), that classifies each voxel asoc-
cluded or non-occluded. A voxel is occluded if it is
fully hidden by opaque or occluded voxels with re-
spect to the viewpoint. In Figure 1 the occluded voxels
are drawn in light gray.

• Identifiers matrix (I), which associates to each voxel
a list of identifiers (IDs) of objects that span its spa-
tial region in the scene. In Figure 1 the non-empty
I-voxels are depicted as filled circles.

• TBVs matrix (T), that associates to each voxel a list of
IDs of TBVs that span its spatial region in the scene.
Non-emptyT -voxels are in black (each TBV has the
shape of an empty circle) in Figure 1.

We assume that each object has a unique ID, a maxi-
mum velocity and a flag indicating whether a TBV is asso-
ciated with it. When this flag is true, the object should also
provide a TBV expiration date, a TBV position and a TBV
diameter. IDs of TBVs may have the same value of the IDs
of the objects the TBVs belong to.

The dynamic scene occlusion culling algorithm com-
prises the following steps, which are executed for each fra-
me:

• Scene discretization: Update the regular grid for ob-
jects reported in the PVS of the last frame and handle
the hidden objects according to their TBVs.

• View-frustum traversal: Traverse the voxels of the
view-frustum in an approximated front-to-back order
to detect potentially visible objects as well as opaque
voxels that can be used as occluders.

• Occluder extension: Extend each occluder found dur-
ing the view-frustum traversal to the adjacent opaque
and occluded voxels.

• Occlusion computation: Compute an occlusion vol-
ume for each extended occluder and determine the oc-
cluded voxels.

4 2D Case

For analyzing the proposed algorithm, we firstly tested it
with dynamic 2D scenes. Instead of 3D view-frustum and
occlusion volumes, 2D view-polygon and occlusion poly-
gons were used. Since its extension to 3D requires minor
modifications, its implementation is given in this section for
the sake of clarity.

4.1 Scene discretization

All objects classified as potentially visible by the PVS of
the last frame are discretized inO and updated inI. The

remaining invisible objects are updated inT . In the very
first frame, all objects are handled as if they were poten-
tially visible, once they do not have TBVs associated and
we cannot tell which objects are hidden.

The discretization is done by rasterizing the top-view
orthographic projection of each object, then associating each
pixel of the resulting frame buffer to a grid voxel. The only
purpose of this stage is to identify the coverage of pixels by
objects in a scene, so we can disable lighting, texturing and
z-buffering.

The rasterization follows a sampling strategy that im-
plies conservative results in the regular grid,i.e., in whichO
underestimates the opaque voxels of the scene andI over-
estimates the voxels spanned by the objects. In particular,
the outline of each objectM is rasterized as a thick seg-
ments to determine the voxels that are partially covered by
M . These voxels are classified as non-opaque ones and are
considered to be spanned byM , thus the ID ofM is added
accordingly inI. The remaining voxels are set as opaque
ones inO. The outline width required for a conservative
rasterization is computed according to the work of Wonka
et al. [16]: assuming a pixel-centered sampling strategy,
each outline edge is grown and shrunk along its normal by
d/

√
2, whered is the width of a voxel. The rasterizations of

the grown and shrunk objects updateI andO, respectively.
The handling of temporal bounding volumes is based

on the procedure proposed by Sudarsky and Gotsman [15].
It is only applied to invisible objects, and follows the fol-
lowing criteria: (1) Objects not contained in the current
PVS, without TBVs, were potentially visible objects in the
previous frame and are becoming invisible in the current
one. In this case, new TBVs are allocated to them andT is
updated accordingly. (2) Objects not contained in the cur-
rent PVS, but with TBVs, were invisible in the previous and
are invisible in the current frame. In this case, if TBV va-
lidity period is expired, a new validity period is attributed.

For arbitrary dynamic objects, 2D TBVs should be
bounding circles. As the correspondence between pixels
and regular voxels is straightforward, a 2D TBV can be dis-
cretized inT by rasterizing a filled circle, then associating
each pixel of the raster image to a grid voxel. Thus, TBV’s
IDs are added to all voxels that correspond to pixels of the
rasterized filled circle (actually, we perform the rasteriza-
tion directly inT). However, we suggest a more efficient
way to update TBVs inT for scenes where the viewpoint
moves smoothly in the space. Instead of discretizing 2D
TBVs as filled circles, we can update only the voxels that
span the boundary of the empty circle. Indeed, this tech-
nique can be easily implemented by a modification of the
Bresenham’s circle algorithm for 4-connected curves. The
illustration in Figure 1 shows TBVs discretized with this
approach. The TBVs are still correctly detected, provided
the trajectory of the viewer is always 8-connected in the

regular grid, and the validity period of the TBVs are chosen
in such a way that the radii of the corresponding bounding
circles do not enclose the viewpoint. The proof of correct-
ness is shown elsewhere [3].

4.2 View-Frustum Traversal

The visibility determination is actually done in the view-
frustum traversal. It comprehends the traversal of voxels
that span the view-frustum in order to identify occluders
and potentially visible objects. Both are found as non-oc-
cluded voxels ofH: the former as opaque voxels ofO; the
latter as voxels containing non-empty ID lists ofI or T .

The traversal of view-frustum voxels is performed in a
front-to-back order from the viewer, so the algorithm does
not waste time on handling hidden occluders and can deter-
mine the PVS incrementally in a single traversal.

In order to efficiently compute the distance from the
viewpoint to each voxel, and hence perform a front-to-back
traversal, we propose to use the chess metric1. Besides
avoiding expensive square root operations demanding by
the Euclidian metric, the chess metric induces a fast traver-
sal of regular voxels in axis-aligned directions. Since the
line-of-sight is always inside the view-frustum, it is possi-
ble to discretize it incrementally from the viewpoint using
the Bresenham’s line algorithm and, from each voxel that
contains the discretized line-of-sight (calledseed-voxel), tra-
verse the adjacent voxels that have the same chess distance
to the voxel containing the viewpoint. For instance, let
(x, y) be the position of a seed-voxel (voxels in dark gray
in Figure 2) given in coordinates relative to the voxel con-
taining the viewpoint, the traversal directions are: (1)+y
and−y if |x| > |y|; (2) +x and−x if |y| > |x|; (3) −x
and−y if (|x| = |y|) ∧ (x > 0) ∧ (y > 0); (4) +x and
+y if (|x| = |y|) ∧ (x < 0) ∧ (y < 0); (5) +x and−y
if (|x| = |y|) ∧ (x < 0) ∧ (y > 0); (6) −x and+y if
(|x| = |y|) ∧ (x > 0) ∧ (y < 0). The traversal direc-
tion (arrows in Figure 2) only changes when a voxel with
|x| = |y| is reached and proceeds in a direction perpendicu-
lar to the previous one, until a voxel completely outside the
view-frustum or a seed-voxel (in the case of a360◦ FOV)
is reached.

During the traversal, if a non-occluded voxel is reached,
all objects contained in its ID list ofI are added to the
PVS of the current frame. Opaque non-occluded voxels
are considered as occluders, therefore should be used to de-
termine which voxels are being hidden with respect to the
viewpoint (this step comprehends the processes of occluder
extension and occlusion computation, detailed in the next
sections). Non-occluded voxels that contain TBVs indicate
that these TBVs were revealed and that the corresponding

1In the chess metric, the distance between two points(x1, y1) and
(x2, y2) is given bymax(|x2 − x1|, |y2 − y1|).

seed-voxels

view-frustum
voxels

|x|=|y|

viewpoint

Figure 2: View-frustum traversal.

objects may be visible. Therefore, these TBVs are removed
from T and dissociated from the respective objects. More-
over, such objects are immediately discretized inI andO,
so the algorithm can further determine whether these ob-
jects are really potentially visible.

The computation of the PVS is done when the traver-
sal finishes. Before starting the next frame, each voxel of
O andH is classified as non-opaque and non-occluded, re-
spectively.

The view-frustum traversal can be terminated earlier
if, during the traversal in the two directions determined by a
seed-voxel, only occluded voxels are detected. This means
that the remaining voxels of the scene are hidden and the
PVS will surely not be changed at least until the next frame.

4.3 Occluder Extension

The occluder extension is an adaptation of the blocker ex-
tension technique originally suggested by Schaufleret al.
for octrees [13]. This process tries to aggregate maximally
the adjacent opaque or occluded voxels of an initial opaque
voxel in order to increase occlusion effectiveness. This set
of aggregated voxels is called anextended occluder, or vir-
tual occluder, since it acts as an object-space occluder that
actually is not part of the scene model.

Occluders are extended by searching for opaque or oc-
cluded voxels in axis-aligned directions, according to the
method used by Schaufleret al. where the aggregation of
voxels subtends a convex L-shaped occluder. The heuris-
tic, however, is much simpler for regular voxels. Figure 3
shows an example of occluder extension using the follow-
ing steps: (1st) left extension from the initial voxel (shown
as a black voxel); (2nd) bottom extension from the left-
most voxel determined by the first step; (3rd) top extension
from the initial voxel; (4th) right extension from the top-
most voxel determined by the third step. For the cases that
the occluder is convex, the third step is executed only if the

opaque
voxels

initial
voxel

(1st) left
extension

(2nd) bottom
extension

(3rd) top extension
in the absence of

left extension

(4th) right
extension

occlusion
volume

extended
occluder

viewpoint

Figure 3: Occluder extension.

(x, y)

(A)
Ox < x
Oy > y

(C)
Ox > x
Oy > y

(B)
Ox = x
Oy > y

(D)
Ox < x
Oy = y

(F)
Ox < x
Oy < y

(H)
Ox > x
Oy < y

(G)
Ox = x
Oy < y

(A): left, bottom, top, right

(B): left, right

(C): top, left, right, bottom

(D): top, bottom

(E): top, bottom

(F): bottom, right, left, top

(G): left, right

(H): right, top, bottom, left

(E)
Ox > x
Oy = y

Extension directions:

Figure 4: Directions of extension.

first step did not extend any voxel. In the general case, the
directions of each step will depend on the relative position
of the voxel(Ox, Oy) containing the viewpoint to the initial
voxel (x, y) of the occluder extension, as shown in Figure
4.

4.4 Occlusion Computation

With extended occluders computed, an occlusion volume
can be obtained to determine the visibility of the voxels
with respect to the viewer. In 2D, the occlusion volume is a
semi-infinite convex polygon whose semi-infinite edges are
collinear to the supporting lines of the viewpoint and the oc-
cluder, and the finite edges are the edges of the occluder that
are visible to the viewpoint. Therefore, we can compute the
occluded voxels by rasterizing the clipped occlusion vol-
ume (in fact, anocclusion polygon) in the data structure.
The voxels that are rasterized are considered asoccluded.
However, for a conservative result we should guarantee that
only voxels totally inside the occlusion polygon are classi-
fied as occluded.

We can underestimate the number of occluded voxels
with the strategy of polygon shrinking proposed by Wonka
et al. [16] and then use a standard polygon rasterization
algorithm. However, we have adapted this idea to an even
simpler algorithm that makes no use of normal vectors, but
possibly generates more conservative results. We consider
that the center of each voxel is given in integer coordinates,

and use them as vertices of the occlusion polygon. The
slope of the semi-infinite edges is also computed consider-
ing that the viewpoint is centered in its voxel. Finally, we
discretize the occlusion polygon into the regular grid with
an ordinary convex polygon rasterization algorithm, where
the sampling is taken in integer coordinates at the center of
the voxels. The effect we achieve is the same of shrinking
the edges of afrom-region occlusion polygon (i.e., an oc-
clusion polygon valid for all possible point-of-views inside
the voxel containing the viewer) by(|nx|+ |ny|)/‖�n‖·d/2,
whered is the width of a voxel and�n = (nx, ny) is the nor-
mal vector of the edge that should be corrected [16]. This
term describes the greatest normal distance of a line from
the center of a voxel to its boundary, thus implying a con-
servative rasterization.

4.5 Adaptation for Static Scenes

Although static objects could be merely considered as dy-
namic objects of null motion, it is possible to handle these
objects more efficiently taking into account that invisible
static objects do not need TBVs at all, and static objects
only need to be discretized once in the structure.

We have introduced a new occluder matrix, thestatic
occluder matrixOs that contains opaque voxels of static
objects only. Each static object is discretized inOs andI
as a preprocessing stage. In runtime, the contents ofOs

are transferred toO before starting the visibility determi-
nation for the current frame (this is required sinceO is re-
initialized at the end of the view-frustum traversal). Finally,
we do not allocate TBVs to static objects found inI.

5 3D Case

Unlike most visibility algorithms, the 2D regular grid oc-
clusion culling algorithm can be easily adapted to the 3D
case, as the visual events of occluders remain planar for
axis-aligned voxels [5]. Therefore, most concepts used so
far for the 2D case are the same for 3D scenes.

5.1 Scene Discretization

Although we could extend the strategy of 2D scene dis-
cretization to the 3D case (e.g., by slicing the object in 2D
planes and using the 2D algorithm for each cross section),
we use pre-computed simplified models (bounding spheres
and boxes) for determining the opaque and spanned regions
of the space according to anocclusion-preserving principle:
for the classification of opaque voxels, the simplified model
should be entirely inside the original geometry, and for the
classification of spanned voxels, it should fully contains
the original geometry. From our experiments, this strategy
seems to be more efficient.

5.2 View-Frustum Traversal

The view-frustum traversal starts at the seed-voxels of the
light-of-sight discretized by a 3D Bresenham’s algorithm.
Similar to the 2D case, the traversal is performed in layers
of voxels that have the same chess distance of the seed-
voxel to the voxel containing the viewpoint. This includes
a plane-sweep traversal instead of the two directions used
for the 2D case. The catalogue of directions may be easily
derived from the 2D case.

While we can discretize 2D TBVs as empty circles in
order to reduce the number ofT -voxels changed, we can
discretize 3D TBVs as spheres instead of balls. However,
we can achieve further reductions of accesses ofT by rep-
resenting 3D TBVs as cube’s faces. In addition, the de-
composition of an sphere in circles is not so trivial as the
decomposition of a cube in squares. The cubical TBVs are
discretized by orthographically projecting the edges of the
cube’s faces onto the coordinate planesXY , XZ andY Z,
then using three two-dimensionalT matrices (Txy, Txz and
Tyz) to store the projected TBVs of each plane. During the
view-frustum traversal, TBVs are found by testing whether
the current(x, y, z) voxel has the same TBV ID inTxy, Txz

andTyz . For a given ID, this existence test should satis-
fies(Txy ∨ Tyz) ∧ (Txy ∨ Txz)∧ (Tyz ∨ Txz) for respective
coordinates of(x, y), (x, z) and(y, z) in Txy, Txz andTyz.

5.3 Occluder Extension and Occlusion Computation

Instead of using the 3D case heuristic proposed by Schau-
fler et al. [13], we propose a new strategy that explores the
fact that we are using regular voxels and a fast occlusion
computation without convexity constraints. The search for
adjacent opaque or occluded voxels is restricted to the set of
voxels that have the same relative chess distance of the cur-
rent seed-voxel to the voxel containing the viewpoint. Due
to the chess metric, this set of voxels always lies on axis-
aligned planes (a maximum of six planes, which are the
sides of a cube formed by these voxels). Recalling the nat-
ural correspondence between regular voxels and pixels, we
can consider each of these planes as bitmap images where
opaque and occluded voxels are the opaque pixels. By vec-
torizing each bitmap, we build a “cap” polygon of the oc-
clusion volume, which is a simple polygon (possibly with
holes). This polygon is further extruded with respect to the
viewpoint and each extruded cross section is rasterized in
the data structure. Conservative results are ensured by us-
ing the sampling correction proposed in section 4.4.

6 Implementation and Results

The algorithm and visualizer for both 2D and 3D cases
(Figure 6) has been implemented in C++ using OpenGL
and tested on a PC with a 1.5 GHz Athlon XP processor and
graphics accelerator using a GeForce2 GTS chipset. The

0

15

30

45

60

75

90

105

120

135

50 150 250 350 450

Input size (no. of objects)

M
ill
is

e
c
o
n
d
s

p
e
r

fr
a
m

e

ZB

RGVC (50x30x50)

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140

Frame

F
ra

m
e
s

p
e
r

s
e
c
o
n
d

RGVC (50x30x50)

RGVC (100x60x100)

ZB

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120 140

Frame

P
o
te

n
tia

lly
v
is

ib
le

o
b
je

c
ts

VFC

RGVC (50x30x50)

RGVC (100x60x100)

Exact

Figure 5: Test results.

Figure 6: Top: visualization of a 3D regular grid with
7,000 objects (resolution of1003 voxels) showing hidden
and opaque voxels. Bottom: scene snapshot as seen from
the viewpoint.

3D scene used in the tests was a clustering of spheres of
varying size and arbitrary motion. A different number of
objects was used, up to 5,000 spheres that totalize 6 million
of polygons. Two grid resolutions were used: 50x30x50
and 100x60x100 voxels.

The first test (see Figure 5, left) measured the ren-
dering time of our regular grid visibility culling algorithm
(RGVC) against standard hardware z-buffer (ZB) for an in-
creasing number of hidden dynamic objects. The results
show that the performance of our algorithm depends mostly
on the number of potentially visible objects, while z-buffer-
ing has an unsurprising linear behavior. The overhead of
handling TBVs is also negligible for most applications; fra-
me rates of 100 FPS were obtained for more than 10,000
moving objects. The increase in the grid resolution from
50x30x50 to 100x60x100 has added an average of only
0.20ms to this time.

The second test (Figure 5, center) measured the ren-
dering time of a walkthrough in a scene with 200 dynamic
objects and 4,800 static objects. The performance was again
compared with standard z-buffering (ZB). Note that the ren-
dering time of z-buffering is constant for all frames, while
the performance of the regular grid approach is output-sen-
sitive.

We also recorded the number of potentially visible ob-
jects and exact visible objects during the walkthrough in the
scene used for the second test (Figure 5, right), using our al-
gorithm (RGVC) and view-frustum culling only (VFC) in
order to verify the tightness of approximation of the con-
servative set to the exact visible set. We observed that there
is a strong overestimation of potentially visible objects due
to our choice for only using a low resolution grid and oc-
clusion fusion in object-space. While increasing the reso-
lution yields tighter results, the efficiency decreases due to
the high number of voxels to be visited, as shown in Figure
5 (center).

7 Conclusion and Future Work

We have presented an occlusion culling algorithm for den-
sely occluded dynamic scenes based on a regular grid that
uses opaque regions of the scene asvirtual occluders. Be-
sides the efficiency of representing visible dynamic objects
and temporal bounding volumes, the benefits of using regu-
lar grids are strengthened by novel methods of view-frustum
traversal and occlusion computation based on raster princi-
ples. In addition, the algorithm fuses occluders in object-
space in order to increase occlusion size and is output-sen-
sitive: its runtime is proportional to the number of visible
objects – both dynamic and static – and does not depend on
the number of polygons that compose these models. Hence,
it can be used in scenes of finely tessellated geometry and
even in non-polygonal scenes.

We have made an implementation of the algorithm for
both 2D and 3D cases. According to the timing tests, the
overhead due to the handling of hidden dynamic objects is
very low for most scenes. For large and complex scenes, we
achieve speed-ups of up to one order of magnitude com-
pared with standard z-buffering (though this value greatly
depends on the number of potentially visible objects). How-
ever, the results are still too conservative, and the limitation
of the algorithm to closed objects (polyhedra) is not desir-
able. For future work, we suggest to use both object-space
and image-space occluder fusion in order to produce tight
conservative results and handle arbitrary scenes. It is worth
noting that our algorithm satisfies all requirements needed
to be adapted to image-space methods such as HZB and
HOM [1]. Finally, we intend to compare the maintenance
performance of TBVs in the regular grid against hierarchi-
cal approaches such as octrees and BSP trees.

References

[1] T. Aila and V. Miettinen. dPVS Reference Manual
Version 2.10. Hybrid Holding, Ltd., Helsinki, Finland,
October 2001.

[2] J. M. Airey, J. H. Rohlf, and Jr. F. P. Brooks. To-
wards image realism with interactive update rates in
complex virtual building environments. In R. Riesen-
feld and C. S`equin, editors,Computer Graphics (1990
Symposium on Interactive 3D Graphics), volume 24,
pages 41–50, March 1990.

[3] H. C. Batagelo and S. T. Wu. 2d dynamic scene
occlusion culling using regular grids. Technical
report, State University of Campinas, Campinas,
Brazil, December 2001.ftp://ftp.dca.fee.unicamp.br/proj/

prosim/publications/reports/batagelo-wu-2001-2dvis.pdf.

[4] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Du-
rand. A survey of visibility for walkthrough applica-
tions. SIGGRAPH 2001 Course Notes, August 2001.

[5] F. Durand. 3D Visibility: Analytical Study and Ap-
plications. PhD thesis, Universite Joseph Fourier,
Grenoble, France, July 1999.

[6] F. Durand, G. Drettakis, J. Thollot, and C. Puech.
Conservative visibility preprocessing using extended
projections. InProceedings of SIGGRAPH 2000,
pages 239–248, July 2000.

[7] N. Greene. Occlusion culling with optimized hierar-
chical z-buffering. SIGGRAPH 2001 Course Notes,
August 2001.

[8] N. Greene, M. Kass, and G. Miller. Hierarchical z-
buffer visibility. In Proceedings of SIGGRAPH ’93,
pages 231–238, July 1993.

[9] D. Luebke and C. Georges. Portals and mirrors: Sim-
ple, fast evaluation of potentially visible sets. In Pat
Hanrahan and Jim Winget, editors,1995 Symposyum
on Interactive 3D Graphics, pages 105–106, April
1995. ISBN 0-89791-736-7.

[10] T. Möller and E. Haines.Real-Time Rendering. A.K.
Peters Ltd.,2nd edition, 2002.

[11] S. Morein. Ati radeon hyper-z technology. InHot3D
Proceedings - Graphics Hardware Workshop, 2000.

[12] T. Pabst. High-tech and vertex juggling - nvidia’s new
geforce 3 gpu.Toms Hardware Guide, February 2001.

[13] G. Schaufler, J. Dorsey, X. Decoret, and F. Sillion.
Conservative volumetric visibility with occluder fu-
sion. InProceedings of SIGGRAPH 2000, pages 229–
238, 2000.

[14] A. Smith, Y. Kitamura, and F. Kishino. Efficient al-
gorithms for octree motion. InIAPR Workshop on
Machine Vision Applications, pages 172–177, 1994.

[15] O. Sudarsky and C. Gotsman. Dynamic scene occlu-
sion culling. IEEE transactions on visualization &
computer graphics, 5(1):217–223, 1999.

[16] P. Wonka and D. Schmalstieg. Occluder shadows for
fast walkthroughs of urban environments. InProceed-
ings of Eurographics ’99, August 1999.

[17] H. Zhang, D. Manocha, T. Hudson, and K. E. Hoff III.
Visibility culling using hierarchical occlusion maps.
In Proceedings of SIGGRAPH ’97, volume 31, pages
77–88, August 1997.

