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Abstract. This article presents a method for the segmentation of substructures based on exploratory factor
analysis. In this approach, a high-dimensional set of shape-related variables is examined with the purpose of finding
clusters with strong correlation. This clustering can potentially identify regions that have anatomic significance
and thus lend insight to morphometric investigations. Methods: The information about regional shape is extracted
by registering a reference image to a set of test images. Based on the displacement fields obtained form image
registration, the amount of pointwise volume enlargement or reduction is computed and statistically analyzed with
the purpose of extracting a reduced set of common factors. Experiments: The effectiveness and robustness of
the method is demonstrated in a study of the human corpus callosum anatomy, based on a sample of 84 right-
handed normal controls. Results: The method is able to partition the structure into regions of interest that present
correlated shape variation. The confidence of results is evaluated by analyzing the statistical fit of the model.
keywords: Morphometry, factor analysis, corpus callosum, image segmentation, image registration, magnetic
resonance imaging.

1 Introduction

An important problem related to medical image analysis is
extraction of relevant shape-related information from the
large amount of data provided by imaging modalities. The
data should not only be represented in a manageable way,
but also facilitate hypothesis-driven explorations of regional
shape differences and allow the segmentation of regions of
interest. Segmentation is even more difficult when there
is no clear information about borders or textures within a
specific structure. This work presents a novel method for
the segmentation of substructures based on the correlation
among morphometric variables. Shape variation analysis
has been frequently addressed as a step performed after seg-
mentation. In this work, we aim to invert this order: the
information obtained from shape analysis is be used to seg-
ment the structure into regions of interest. Our approach
is based on the analysis of high-dimensional sets of vector
variables obtained from non-rigidly registering or deform-
ing an image, taken as a reference, so as to align its anatomy
with the subject anatomy of a group, depicted in MRI stud-
ies. The result of registration is a set of displacement fields
from which the amount of volume enlargement or reduction

at each point of the image can be computed and statistically
analyzed with the purpose of extracting a reduced set of
common factors. We demonstrate the exploratory potential
of the method in a study of the human corpus callosum and
compare these results with the ones obtained by principal
component analysis.

Principal component analysis (PCA) has been one of
the most relevant mathematical frameworks used o describe
general shape variation. Cootes et al. [2] applied the theory
of PCA to build a statistical shape model of organs based
on manually chosen landmarks. The organs were first seg-
mented and represented as a set of labeled points located
at particular regions in order to outline their characteristic
shape. The model provided the average positions of the
points and the principal modes of variation computed from
the dataset. Le Briquer and Gee [7] applied the method
to analyze high-dimensional displacement fields obtained
from registering a reference image volume of the brain to a
set of subjects, based on the elastic matching framework [1].
The analysis provided the inference of morphological vari-
ability within a population and was the basis for the con-
struction of a statistical model for the brain shape, which



could be used as prior information to guide the registration
process and perform automatic segmentation.

Davatzikos et al. [4] showed how the results obtained
from matching boundaries of structures could be interpo-
lated to determine an estimate for the displacement field.
The method was useful in the registration of structures such
as the corpus callosum, whose contour was of more inter-
est than its inner texture. Further analysis on the gradi-
ent determinant of the resulting displacement fields showed
the amount of area enlargement/reduction while deform-
ing the reference image to match the images in the study.
The method was applied to a small set of images of the
human corpus callosum, revealing gender-related morpho-
logical differences. Using the same dataset, Machado and
Gee [9] performed elastic matching to both the boundary
and the interior of the structure. Based on the displacements
fields obtained from image registration, the method was
able to reproduce Davatzikos’ results and additionally de-
termine the principal modes of callosal shape variation be-
tween sexes. By determining the effect size of the gradient
determinant, regions that presented gender-related shape dif-
ferences could be visualized, but were not used with the
purpose of segmentation.

The major objective of PCA is to represent data in a
new basis whose axes correspond to the principal modes
of the sample variance. However, when the purpose is to
explore the covariance among the variables, factor analysis
(FA) may be considered an appropriate alternative [15]. On
exploring the morphology of a specific structure, one may
be concerned with the relationship between shape-related
variables within regions of interest. FA may reveal aspects
about the correlation between those regions and facilitate
interpretation. Nonetheless, the use of FA in morphome-
try has been restricted to the representation of gross mea-
surements and landmarks, regardless of exploring the rela-
tionship between pointwise shape-related variables, as the
ones obtained from image registration. Marcus [11] com-
pared the application of PCA and FA on a set of length mea-
surements for several hundreds skeletons of birds. The ex-
tracted factors were interpreted as general features related
to the overall size of the subjects. Reyment and Jöreskog [14]
presented a thorough discussion on the factor analysis of
shape-related landmarks. Scalar features such as the dis-
tances between landmarks in the carapace of ostracod species
were considered in the analysis. Some of the resulting fac-
tors were interpreted as shape-changes in specific regions
of the shell, location of eye tubercles and valves. Other fac-
tors, however, were related to global features such as the
dimensions and curvature of the shell.

Stievenart et al. [16] applied FA to study the correla-
tion among parts of the corpus callosum, whose boundary
curvature was measured at 11 different positions. The re-
sults revealed 3 factors that explained 69% of the variation

of the original curvature values. The first and second values
were clearly related to the curvature of the isthmus and pos-
terior region of the splenium, respectively. Another relevant
work on the factor analysis of the corpus callosum was pre-
sented by Deneberg et al. [5], in which the callosal structure
was divided into 100 segments taken along equally spaced
intervals of the longitudinal axis. Although the structure
partitioning criteria was arbitrary and deliberately chosen to
result on transversal segments, the study was able to iden-
tify regions in the corpus callosum, particularly the isthmus,
which presented morphological differences related to gen-
der and handiness.

2 An overview of principal components and factor anal-
ysis

In this section, we present the main concepts of PCA and
FA and discuss the most relevant differences between the
methods.

2.1 Principal component analysis

In PCA, a � -dimensional set of original variables, ������
���
	�	
	�� ������ , is rotated in order to find the orthogonal axes

along which the data is maximally spread out. The new � -
dimensional basis ��� ���

����	
	�	
� ������� is achieved by multi-
plying the original variables by an orthogonal matrix � :

������� 	 (1)

Each new variable
�
, or component, is a linear combination

of the original variables � . The covariance matrix for the
data in the new basis � , denoted as ��� , can be expressed in
terms of the sample covariance matrix � . From Eq. 1,

����� ���� � � �
� ���� � ��� �
� �!���� � � � � �
� �"��� � 	

(2)

The covariance matrix for the sample in the original basis,
� , can be derived from Eq. 2:

�#�$� � � � � 	 (3)

Since the sample covariance matrix � is real-valued and
symmetric, it has real eigenvalues and orthonormal eigen-
vectors can be chosen, so that it can be written as

�%�'&)(!& � � (4)

where & is the matrix whose columns are the orthonormal
eigenvectors of � and ( the diagonal matrix with the corre-
sponding eigenvalues. In PCA, the rotation of axes brings
the new components � to be uncorrelated, so that the co-
variance matrix ��� is also diagonal. Comparing Eq. 3 and



Eq. 4, it can be seen that � � is the diagonal matrix of eigen-
values ( and the transformation matrix � is the transpose
of the eigenvector matrix:

� �'& � 	 (5)

2.2 The factor analytic model

The purpose of FA is to explore the correlation among the
variables of a problem. Similarly to PCA, FA is a powerful
method of data reduction, which makes it possible to man-
age the large amount of information obtained from image
registration. A fundamental feature of FA is that, in addi-
tion to data reduction, it may favor data interpretation. In
this work, we show how the factors obtained in the analy-
sis of shape-related variables can be associated to specific
regions of interest in the images.

In FA, the � -dimensional set of original standardized
variables, � , is represented as linear combinations of � hy-
pothetical constructs called factors:

� � ������� � (6)

where
� � �
	

� �
	�	�	�� 	�� � � is a vector of common factors,� � ��
� �
	�	
	��  � � � are the unique factors or residual terms

which account for the portion of � that is not common to
other variables, and

� � � ���
� � � 	
	�	
� � �

� � � � 	�	
	�� �
� � � �
	
	�	
� � � � � � � � is the loading matrix. The coefficients

�����
,

called loadings, express the covariance between variable
� �

and factor
	 �

. The factor analytic model imposes certain
assumptions on

�
and

�
. Since the expected value � � � �

is the null vector, � � ������� �
must also be � . It is as-

sumed that � � � � is � . In order for the factors to account for
all the correlation among the variables � , the covariances
among unique factor terms and common factors are � . The
covariances among unique factor terms are represented by
the diagonal matrix � ����� ��� �! � �
	�	
	��  � � . Factors are
uncorrelated, so that the corresponding covariance matrix
is the identity. It should also be noticed that FA, as well
as PCA, can be completely modeled from the information
represented in the covariance matrix. In other words, FA
is implemented in the context of the classical assumption
of Gaussianity. Determining if the data fit a multivariate
Gaussian distribution is an additional aspect of the prob-
lem, since the population parameters should be estimated
from the sample. In order to justify the choice of a specific
model, a test of Gaussianity should be made (e.g. forth-
order cumulants [3, 8]), so that the results can be considered
reliable.

Considering the assumptions in the factor analytic model,
the variance " ��

of a given variable
�#�

can be decomposed
into components due to the � common factors,

� ��
�
� 	
	�	 �

� ��$�
, called the communality, and a specific variance

 �
:

" �� �
�
%
�'&

�

� ���� �  � 	 (7)

The population covariance matrix ( can be determined from
Eq. 6. Since

���
and

�
are uncorrelated, the covariance ma-

trix of their sum is the sum of the covariance matrix of each
term. Also, since ���� � � � ��) , the relationship between ( ,�

and � can be written as

( � ���� � ���*�+� � ������ � ��� � � ���� � � �
� � ���� � � � � � � � � ��� � � � 	 (8)

The parameters of FA can be estimated from the sample, by
replacing the population covariance matrix ( in Eq. 8 by
the covariance matrix � obtained from the dataset:

�-,/.� .� � � .� �
where .� and .� are estimations for the loading matrix and
unique factor covariance matrix, respectively, since they are
computed from the sample. Many techniques have been
proposed to determine .� . The simplest one (principal fac-
tor method) neglects .� and factors � using spectral decom-
position:

� , .� .� �
, &"( & �
, � &)( �'0 � ��� &"( �'0 � ��� �

where ( �10 � �2�3� ��� �54 6 � ��	
	�	��87 6 � � is the diagonal matrix
with the square root of the eigenvalues of ( and & is the
matrix of the corresponding eigenvectors. The loading ma-
trix can then be estimated based on the sample covariance
matrix as

.� �'&)( �'0 � 	 (9)

An important property of the loading matrix
�

is that
it can be rotated and still be able to represent the covariance
among factors and original variables [6]. The rotation of
loadings plays an important role in factor interpretation, as
it is possible to obtain a matrix that assigns few high loading
for each variable, keeping the other loadings small. If such
matrix is obtained, each variable will be related to a single
factor or at least to few ones. Since the variables are related
to pixels in the image, the resulting factors can be visually
identified as regions in the structure.

2.3 Differences between FA and PCA

Although the main objective of PCA and FA is data reduc-
tion, they differ fundamentally on two aspects: the alge-
braic model of the transformation and how data reduction
is achieved. In the factor analytic model, the original vari-
ables are represented as a linear combination of new vari-
ables (factors), while in PCA, the new variables (principal



components) are linear combinations of the original vari-
ables. In PCA, data reduction is achieved by changing the
basis of the variable space, so that the new orthogonal axes
represent most of the variance embedded in the dataset. The
objective of PCA can be defined as maximizing the variance
of a linear combination of the original variables. Data re-
duction is obtained (with possible loss of information) by
ignoring the axes in which the data present small variance.
In contrast, FA aims to find a new low-dimensional set of
non-observed variables that maximally represents the co-
variance (or correlation) among the original variables.

PCA and FA are frequently mistaken as a single model
due to the fact that the most commonly applied method to
estimate the loadings, described in Section 2.2, uses the
eigendecomposition of the covariance matrix. In this case,
the models would be identical if the covariance matrix for
the factors could not be assumed to be the identity and the
loading matrix further rotated. In PCA, the model must
represent both the diagonal and off-diagonal elements of
the covariance matrix, so the diagonal elements of � must
be 1, otherwise the analysis of variance will not be prop-
erly performed. In contrast, the aim of FA is to represent
only the off-diagonal elements that account for the correla-
tion among variables. By neglecting the specific variance
matrix .� , the factor analysis of the covariance matrix is
performed by placing communalities in the diagonal ele-
ments. In this case, the recovered covariance matrix .� .� �
will have its off-diagonal elements affected. Hence, it is
important to measure this error in order to have a robust es-
timation of whether the data fit the model. Other techniques
such as the principal factor and maximum likelihood meth-
ods can also be used for determining the loading matrix [6].
These methods have, nevertheless, the drawback of requir-
ing inverting the covariance matrix. When the number of
variables is greater than the number of subjects in the sam-
ple, as it is the case of morphometry studies, the covariance
matrix is always singular.

In PCA, data reduction is obtained after the computa-
tion of � by eliminating the components that do not con-
tribute significantly to the representation of variance. In
principle, the dimension of the new basis � is the same of
� , so data reduction is achieved by discarding components,
with possible loss of information. In fact, since PCA is
directed to the representation of variance, the covariance
information is guaranteed to be preserved only if all com-
ponents are kept. Furthermore, data reduction is possible
only when the original variables � are correlated. In the
case of independent variables, all the eigenvalues will have
similar values. This contrasts with FA, in which dimen-
sion reduction is accomplished during the computation of�

. The number of factors to be considered must be chosen
in order to compute the loading matrix. As a consequence,
the elements of

�
changes as the number of factors � con-

sidered in the analysis varies. As in the case of PCA, in
which the number of components to be kept should also be
defined, the number of factors must also be chosen. The re-
sults of FA should therefore be evaluated by analyzing the
statistical fit of the data.

3 Methods

The rationale for structural shape characterization is to pro-
vide a quantitative description of the morphometric differ-
ences between structures that present a gross common anatomy.
Shape description can be achieved by taking a reference im-
age and warping it as to align its anatomy with the anatomy
of each individual in the study. The spatial transformation
obtained in the warping process can be analyzed and yields
immediate knowledge about the anatomic variation among
the subjects of the sample.

3.1 Image Registration

Image registration aims to determine a correspondence be-
tween each voxel in the reference image to a voxel in the
test image. Registration may be performed by first apply-
ing rigid transformations (translation and rotation), in or-
der to approximately register corresponding features, and
then warping the template to match the subject. Image vol-
umes may be described as continuous media to which a
constitutive model will be prescribed. The linear elastic-
ity model [1], in which the image is deformed as an elas-
tic body, guarantees smoothness to the deformation, so that
neighboring structures in the reference image will be matched
to neighboring structures in the subject’s image, preserving
the gross anatomy common to the majority of individuals
in the population.

3.2 Jacobian Analysis

When the reference image is warped to match a subject im-
age, some regions may get enlarged and some may be re-
duced. It is possible to determine the amount of scaling
applied to an infinitesimal area around each point of the
reference image, by computing the Jacobian determinant of
the spatial transformation. In the case of two-dimensional
images, the displacement vector field from the reference to
subject � , � � , can be decomposed into its components � �
and  � . Similarly, a voxel � can be expressed in terms of
its coordinates

��� � � � . The Jacobian determinant � � � � � is
defined as the determinant of the gradient of the mapping
function � � � � � � � . The set of pointwise Jacobian determi-
nants is the input to FA and PCA. Since the result of image
registration is a smooth displacement field, it is expected
that the factors be correlated to the Jacobian determinants
of neighboring points.



3.3 Statistical fit of the factor analytic model

Another important issue that affects FA is the number of
factors to be considered. Harman [6] presented a compre-
hensive discussion on how to determine the number of fac-
tors that best represent a data set. Machado et al. [10] pro-
posed an iterative algorithm for choosing which factors to
retain by evaluating the number of observed variables asso-
ciated to each factor. In the experiments, only those factors
with correlation greater than 0.5 with at least 2 variables
were considered informative. The initial number of factors
(number of columns in

�
) was determined as the number

of eigenvalues greater than 1, since they accounted for the
variation of at least one variable. The number of factors was
reduced, at each iteration, by discarding factors which did
not present high correlation to at least two variables. Con-
vergence was achieved when the same number of factors
was determined at two consecutive iterations.

In this work, we also discuss the influence of the choice
of the number of factors in the results, based on the quanti-
tative analysis of the statistical fit of the model. A straight-
forward way to analyze whether the loading matrix .� is a
good estimate of the correlation between factors and vari-
ables is to compute the distribution of the correlation resid-
uals. The recovered correlation matrix .� .� � should be a
good approximation to � . Let � ��� be the observed corre-
lation between variables

� �
and

���
,
������ , and 	� ��� be the

corresponding recovered correlation determined as

	� ��� �
�
%
�$&

�

� �'� � � � 	

The residual correlations � ����
 	� ��� should have a distribu-
tion similar to that of a zero correlation, whose standard
deviation is computed as

"� &�� �������� 	
The loading matrix .� can be considered a good approxi-
mation if the standard deviation for the residuals is smaller
or equal to " � &�� .
4 Materials

The MRI images used in the experiments are normal con-
trols recruited at the Mental Health Clinical Research Cen-
ter of the University of Pennsylvania. The images were ac-
quired on a GE 1.5 Tesla instrument, using a spoiled GRASS
pulse sequence optimized for high resolution, near isotropic
volumes (flip angle = 35 � , TR = 35 ms, TE = 6 ms, field of
view = 24 cm, 0.9375 � 0.9375 mm

�

in-plane resolution,
1.0 mm slice thickness, no gap). The images were obtained
in the axial plane and the midsagittal slice extracted and
reformatted into 256 � 256 8-bit images.

The sample used in the study is composed of 42 male
and 42 female right-handed controls. The age of the sub-
jects is in the range of 19 to 68 years (mean � S.D.,30.4 � 11.8)
for males and 18 to 68 years (26.5 � 9.0) for the females.
The sample was chosen in order to provide an approximated
distribution of age and race for both groups and to guaran-
tee a minimum influence of these features in the analysis.
No expressive correlation was detected, in the sample, be-
tween gender and age (0.18) and between gender and race
(0.06).

5 Experimental Procedure

The images were first segmented by supervised threshold-
ing. The process was performed twice by a single rater who
was blind to subject gender. The reliability of the segmenta-
tion was measured by computing the intraclass correlation
coefficient (ICC) based on the area of the corpus callosum.
The ICC value for the dataset was 0.888. Additionally, the
same dataset was segmented by a second rater who was
also blind to demographic information. Using the adaptive
K-means clustering algorithm of Pappas [12], the images
were partitioned into white matter, gray matter and cerebro-
spinal fluid components, from which the corpus callosum
structure was extracted by manual delineation. The inter-
rater variability, measured based on the ICC was 0.884.

Global registration was performed by translating and
rotating each callosal structure to align with the template,
without scaling, through landmark matching. A set of three
landmarks were manually chosen in each subject and in the
template: the intersection of the subject’s callosum bound-
ary to its minimum enclosing rectangle at the most infe-
rior point of the splenium, the most anterior point of the
genu and the most superior point of the callosum body.
The rigid transformation for each subject was achieved by
jointly minimizing the distance between the subject’s land-
marks and the corresponding points at the template. The
process was repeated three times by a single rater, over all
the dataset, yielding ICC values greater than 0.980 for all
coordinates.

Local registration was performed by warping the tem-
plate to match each globally aligned subject callosum. The
displacement fields obtained from image registration were
the basis for the computation of the Jacobian determinants.
Vector � was formed by the determinant of the Jacobian
matrix at each of the 851 pixels in the callosal template and
used as input to FA and PCA. Since the methods assume
that the variables fit Gaussian distributions, a test of nor-
mality was performed by estimating the skewness and kur-
tosis of the distribution for the populations. With a level of
significance of 0.01, there were no evidences to reject the
hypothesis of normality for 71.4 % of the variables, based
on the skewness, and for 86.2% of the variables, based on



the kurtosis of the distribution.
After determining the loading matrix 	� (Eq. 9), it was

rotated in order to maximize the variance of the squared
loadings in each column, so that each variable presented
high loading for fewer factors (varimax algorithm) [14].

6 Results

The algorithm used to determine the number of factors, de-
scribed in Section 3.3, took 9 iterations to converge from
78 to 11 factors with correlation magnitude greater than
0.5 among at least 2 variables. With a level of signifi-
cance of 0.01, a correlation coefficient magnitude of 0.5
computed for the sample gives an estimation that the popu-
lation correlation coefficient, � , is in the confidence interval
of � 	 ������� � � � 	 �	��
 . The value of 0.5 is also sufficient to
reject the hypothesis that � � � with level of significance
� � � 	 ���� . Fig. 1 shows the 11 resulting factors. Each
variable is assigned to the factor for which it presents the
greatest absolute loading. For each factor, the regions in
the callosal structure that have loading values greater than
0.5 are shown in white and the regions that have loadings
smaller than -0.5 are shown in black. The results of PCA
are shown in Fig. 2. The principal modes of variance are
ordered from left to right, top to bottom, by the amount of
variance they represent. Each variable is assigned to the
mode for which it presents the greatest absolute coefficient
value. Variables with positive coefficient values are shown
in white and the ones with negative values are shown in
black. The 11 first components acounted for 64.3% of the
total variance. The contribution of each component is given
in Table 1.

7 Discussion

The use of FA as a statistical model may be questionable
when the interpretation of the factors is not straightforward.
Since factors are non-observed variables, they should have
a natural meaning in order to provide new information about
the data, otherwise the method would serve only as a data
reduction tool. In the case of morphological studies, the
factors are visually interpreted as regions in the structure,
showing its ability to serve as a segmentation method. This
property was explored by Denenberg et al. [5], who ap-
plied FA to the study of the corpus callosum by partitioning
the structure into segments, following the callosal axis at
equally spaced intervals. The width of each interval, to-
gether with other scalar variables such as the callosal area,
perimeter and axis length were examined. Factor analy-
sis were based on the principal component method with
oblique rotation and the criterion for retaining factors was
similar to the one used in our study: eigenvalues should be
greater than unity and the loading value greater than 0.6 for
a variable to be assigned to a given factor. The main prob-

Figure 1: Results of factor analysis. Factors are numbered
left to right, top to bottom, starting from factor

	 �
. For

each factor, the variables that present loading values greater
than 0.5 are shown in white and the variables that present
loadings smaller than -0.5 are shown in black.

lem on the experimental procedure is that no registration
was performed and, consequently, a precise correspondence
between segments and substructures of the corpus callosum
could not be established. The splenium, for instance, is a re-
gion that varies substantially with respect to length, so that
one specific segment may be located at the splenium of one
subject and at the isthmus of another. This may explain
why 3 out of the 7 factors revealed in the analysis were lo-
cated between segments number 77 and 99. Compared to
the results of our study, they correspond to factor number
0, which encompasses the splenium region. The remaining
factors determined in Denenberg’s study correspond to fac-
tors number 4, 8, 5 and 1, respectively related to the isth-
mus, posterior midbody, rostral body and genu regions of
the corpus callosum (see Fig. 1).

The results of the exploratory FA presented in our study
are also in accordance with the topology proposed by Wi-
telson [17], regarding the subdivision of the callosal struc-
ture. Fig. 3 shows a schematic of the callosal midsagittal
plane subdivisions, in which 7 regions of interest are de-
fined. Compared to the factors depicted in Fig. 1, it is pos-
sible to relate the rostrum with factor number 9, the genu
with factors 1 and 3, the rostral body with factor 5, the an-
terior midbody with factor 6, the posterior midbody with
factor 8, the isthmus with factors number 4 and 7, and the



Figure 2: Results of principal component analysis. Modes
of variance are ordered left to right, top to bottom, accord-
ing to the amount of variance they represent. Each variables
is assigned to the mode for which it presents the greatest
coefficient value. Variables with positive coefficient values
are shown in white and the ones with negative values are
shown in black.

splenium with factors 0 and 10. Factor number 2, which
represents the contour of the callosal structure, is probably
related to error in the segmentation and registration steps
— in the elastic matching model, the choice of the stiffness
parameter may hinder perfect matching of high-frequency
details in the boundary. In the case of factor number 9, re-
lated to the rostrum, it may reflect error in the segmentation
step, as this part of the corpus callosum is frequently linked
to the fornix.

A comparison between the results of FA and PCA can
be done based on Fig. 1 and 2. Is is clear that FA pro-
vides results that can be interpreted as regions in the struc-
ture that present correlated shape variation. Since the pur-
pose of PCA is to represent the variance of the dataset, the
morphological meaning of the results, in this case, is not
straightforward.

The impact of parameter � (number of factors) was
investigated by choosing different values, computing the
corresponding loading matrix and analyzing the statistical
fit of the model. Table 2 shows the average magnitude,
mean and standard deviation for the analysis of the corre-
lation residual at different values of � . Since the expected
standard deviation for a zero correlation distribution for the

1

2

3
4 5 6

7

Figure 3: Topology of the corpus callosum, adapted from
Witelson(1989) and projected at the template used in the
study. The regions of the callosal structures are the ros-
trum(1), genu(2), rostral body(3), anterior midbody(4),
posterior midbody(5), isthmus(6) and splenium(7).

same sample size is given as " � &�� � �
� 4 ��� � � 	 � ��� , all

analyses with the number of factors greater than or equal
to 4 were acceptable. The analysis based on the 11 factors
determined by the iterative algorithm presented about half
the expected standard deviation, showing the satisfactory
statistical fitness of this representation.

8 Conclusion

A novel approach to morphometry was presented, in which
the relationship among parts of anatomies were explored.
The method is based on the factorial analytic model, in
which the covariances between variables are represented by
a new variable set of lower cardinality. Applied to high-
dimensional vector representations of the anatomy, the method
is able to provide concise description and allow exploratory
analysis of the correlation between regions of interest. The
application of this approach to the study of the human cor-
pus callosum revealed strong agreement with previous pub-
lished results and was able to segment regions of interest
within the structure.

The current results are preliminary in nature and much
work remains, including studies relating the effect of smooth-
ness in the spatial and intensity transformation and their im-
pact on the correlational structure modeled by the factors,
a careful examination of the anatomy underlying the fac-
tors for a given study and the implications for the particular
condition being investigated.

The application of FA to high-dimensional represen-
tations of the anatomy are particularly advantageous, since
the method circumvents much of the controversy addressed
to it, with respect to the number of factors considered and
their interpretation [13]. The factors can be visually iden-
tified as regions that embed strong correlation. The final
number of factors to be used in the model can be related
to the desired degree of details in the analysis and, conse-
quently, to its completeness: reducing the number of factors
results on larger regions with coarser correlation, whereas
a larger number of factors may represent smaller regions
with stronger correlation. The ability of FA to provide prior



Table 1: Variance acounted for each component.

comp. var.� �
15.30�

� 12.10�
� 9.74�
� 6.07���

5.07���
3.67���
3.31���
2.58���
2.39���
2.15�

�
�

1.91

Table 2: Statistical fit of the model. For each number of
factors � , the table shows the average magnitude, mean and
standard deviation of the correlation residual distribution.

� av. magn. mean std. dev.

3 0.0814 0.0193 0.1130
4 0.0706 0.0107 0.0970
5 0.0619 0.0101 0.0831
6 0.0552 0.0082 0.0751
7 0.0500 0.0078 0.0677
8 0.0463 0.0055 0.0630
9 0.0425 0.0018 0.0588

10 0.0398 0.0005 0.0549
11 0.0376 0.0004 0.0517
13 0.0303 0.0003 0.0468
78 0.0000 0.0000 0.0022

modeling and the effectiveness of factors as discriminant
variable sets are a vast field for future work.
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