
Mesh Collapse Compression

MARTIN ISENBURG, JACK SNOEYINK

University of North Carolina, Sitterson Hall, Chapel Hill, NC 27599, USA
fisenburg j snoeyinkg@cs.unc.edu

Abstract. We present a novel algorithm for encoding the topology of triangular meshes. A sequence of edge
contract and divide operations collapses the entire mesh into a single vertex. This implicitly creates a tree with
weighted edges. The weights are vertex degrees and capture the topology of the unlabeled mesh. The nodes are
vertices and capture the labeling of the mesh. This weighted-edge tree has a very compact encoding.

1 Introduction

Efficiently encoding the topology of triangular meshes has
recently been the subject of intense study [3, 4, 5, 6, 1] and
many representations have been proposed. The sudden in-
terest in this area is fueled by the emerging demand for trans-
mitting 3D data sets over the Internet (e.g. VRML). Since
transmission bandwidth is a scarce resource, compact en-
codings for 3D models are of great advantage. For a survey,
see the paper of Rossignac [4].

We present a novel algorithm for encoding the topol-
ogy of triangular meshes. Our scheme performs a sequence
of edge contract and divide operations that collapse the en-
tire mesh into a single vertex. For edge contract operations
we store the degree of the removed vertex. For divide oper-
ations we store start and end symbols. This uniquely deter-
mines the inverse operations. For meshes homeomorphic to
a sphere, the algorithm is especially simple. However, the
algorithm also encodes surfaces of higher genus at the ex-
pense of a few extra bits per handle. A video demonstration
of Mesh Collapse Compression can be found in [2].

2 Compression Method

As input, we take a mesh, without boundary but of any genus,
that is composed of topological triangles. An arbitrary ver-
tex is chosen to be the mc-vertex, or mesh collapse vertex
and an arbitrary directed edge leaving the mc-vertex is cho-
sen to be the mc-edge, or mesh collapse edge. We cut and
open the mesh along the mc-edge, which creates a new face
that is bounded by only two edges. For easier illustrationwe
arrange this face to be the outer face as shown in Figure 1a.
The resulting configuration is called a digon. This is a trian-
gulation with exception of the outer face, which is bounded
by only two edges.

We distinguishbetween simple digons, complex digons,
and trivial digons: A digon is simple when only the two bound-
ing edges connect the two vertices of the outer face. A digon
is complex when there are more than two edges. Each ad-
ditional edge is a dividing edge. A complex digon with d

Figure 1: (a) Cutting and opening the mc-edge turns the
mesh into a digon. (b) Simple, trivial, and complex digons.

dividing edges can be divided into d + 1 simple digons. A
digon is trivial when it has only three vertices (see Figure 1b).

We use two invertible operations that decompose the
initial digon intoone or more trivial digons. The mc-contract
operation takes a simple digon as input. It first contracts
the current mc-edge, then deletes the resulting loop, and fi-
nally selects the next edge counterclockwise around the mc-
vertex as the new mc-edge. This removes one vertex and
two triangles. The resulting digon is either simple or com-
plex. The mc-divide operation takes a complex digon as in-
put. It divides the complex digon along a dividing edge into
two digons. One of the resulting digons is simple, the other
is either simple or complex.

Starting with the initial digon we repeatedly apply the
mc-contract operationuntil either a complex or a trivial digon
is encountered. For each mc-contract operation we record
the removed vertex and its degree. When we encounter a
complex digon we apply the mc-divide operation. We record



a start symbol and mc-compress the resulting simple digon
by recursion. Subsequentlywe continueon the resultingother
digon. When we encounter a trivial digonwe record its three
vertices and an end symbol and stop. The recorded informa-
tion is sufficient to invert each operation.

This encoding process implicitly creates an mc-tree, a
vertex tree with weighted edges. The mc-tree tends to be
skinny. Only complex digons lead to branches in the tree
and the number of complex digons encountered in practice
is small. For very regular meshes the mc-tree can be trivial.
See Figure 2 for an example.

When a mesh has boundaries or holes, we patch them
with dummy vertices in a preprocessing step. When a mesh
has handles, we encode as before; whenever a handle is bro-
ken, we obtain a complex digon whose by dividing edges
separated components are still connected along the handle.
This can be detected, as the recursive call for encoding one
component works its way along the handle and also encodes
the other. The only change is that we record some additional
information when an mc-contract operation encounters the
other mc-edge and its duplicate. The details are in the full
paper.

3 Summary and Acknowledgments

We presented a novel encoding scheme for mesh topology.
Our algorithm is simpler than approaches by [4, 6, 1] and
produces a code sequence similar to [6]. Subsequent run-
length and/or entropy encoding results into very compact bit
streams of 1 to 4 bits per vertex.

The first author thanks the International Computer Sci-
ence Institute (ICSI) at Berkeley for the research opportu-
nity during the summer of 1998. This work was done while
both authors were at the University of British Columbia and
was supported by NSERC, IRIS, and a UBC Graduate Fel-
lowship.

References

[1] L. de Floriani, P. Magillo, and E. Puppa. A simple and effi-
cient sequential encoding for triangle meshes. In 15th Euro-
pean Workshop on Computational Geometry, 1999.

[2] M. Isenburg and J. Snoeyink. Mesh collapse compression
video. In Video Review of ACM Symposium on Computational
Geometry, 1999.

[3] K. Keeler and J. Westbrook. Short encodings of planar graphs
and maps. In Discrete Applied Math, pages 239–252, 1995.

[4] J. Rossignac. Edgebreaker: Connectivity compression for tri-
angle meshes. In TechnicalReportGIT–GVU–98–35, Georgia
Tech, page 15, 1998.

[5] G. Taubin and J. Rossignac. Geometric compression through
topological surgery. In ACM Transactions on Graphics, pages
17(2):84–115, 1998.

[6] C. Touma and C. Gotsman. Triangle mesh compression. In
Graphics Interface, pages 26–24, 1998. Figure 2: An example of mc-compression: The fourth mc-

contract operation results in a complex digon that is divided
into two simple digons.


