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Abstract. A problem of interest in digital video edition is the elimination of moving objects from one
video and the introduction of pieces of other videos in their places. A fundamental problem to build
computational tools for this purpose is the segmentation of moving objects. This paper approaches this
problem by a new technique, based on Beucher-Meyer's paradigm, with markers detected by morphologi-
cal operators designed by computational learning techniques. The objects in the �rst frames of the video
are marked manually and used to train the markers detector. Then, the operator designed is used to
mark the objects in the other frames and the paradigm is applied to all frames marked by the detector.
Some synthetic and real world examples illustrate the application of the technique proposed. Complex
situations as occlusion are examined.

1 Introduction

A digital video is an ordered sequence of digital images,
called frames. The order is de�ned by the instant the
frame was taken, for instance: frame 1 is the image
taken at the instant t0, frame 2 is the image taken at
instant t0 + �t, frame 3 is taken at t0 + 2�t, and so
on.

Digital video technology has a strong impact on
video production, reducing costs and opening a spec-
trum of new possibilities. A great advantage of digital
videos, in relation to the analogic ones, is that the
edition tasks can be done by computational tools. Be-
sides performing easily conventional tasks, the compu-
tational manipulation o�ers several new edition tech-
niques such as new alternatives for video mixing (i.e.,
combining pieces of di�erent videos for the production
of a new video.)

A well known technique for video mixing is chroma

key [1]. This technique permits the mixing of two
videos, however it supposes some special cares. When
�lming the main video (i.e., the video in which there
will be inserted pieces of other videos), the objects to

be substituted should be covered with a color (usu-
ally blue or green) di�erent of the colors of the other
objects in the scene. For example, if the main video
presents a room that has a window with a blue cover-
ing, it may be substituted by the corresponding region
of the other video. Thus, the mixing could simulate a
room �lmed in New York to be, for example, in Paris.
The image processing technique applied in the chroma
key is classical pattern recognition, using pixel color
intensities as attributes.

A much less simple image processing task is intro-
ducing pieces of other videos in place of non covered
objects. This task depends essentially on segmenting
the moving objects that will be substituted, what usu-
ally is not easy. There are no commercial products
available that properly performs this task. So, usually,
it is avoided by video producers. When this is not pos-
sible, the only alternative is the manual solution, that
is boring and expensive. The literature on the subject
is also very restrict.

This paper presents a new approach for this prob-
lem based on Beucher-Meyer paradigm, with the object



markers detector designed by computational learning
techniques.

Beucher-Meyer paradigm is one of the most pow-
erful known techniques for image segmentation. The
great quality of this strategy is changing problems of
edge detection into problems of marker detection (i.e.,
�nding a small connected component inside the object
to be segmented), that usually is much simpler. The
markers detected are used as reference for �ltering the
gradient of the input image and, �nally, the watershed
gives the exact (without blur) edges of the desired ob-
jects.

In spite of the evolution due to Beucher-Meyer
paradigm, the problem of having a systematic ap-
proach to design operators that detect object markers
still persists. An alternative is to design these opera-
tors by computational learning.

The technique proposed consists of designing op-
erators that perform object tracking (or, equivalently,
detect object markers) by training with a few frames
of the sequence and applying the designed operator to
the other frames. Having marked the objects in all
frames, Beucher-Meyer paradigm is applied for detect-
ing the edges of these objects.

A condition for applying this technique is that
the training frames must be statistically similar to the
other frames where the objects appear. When a set of
frames with di�erent statistical characteristics appear
in the sequence, due to changes in image illumination,
resolution, camera position, etc., a new training is nec-
essary before processing the next frames.

Following this Introduction, Section 2 reviews
Beucher-Meyer paradigm. Section 3 presents a family
of operators, the aperture �lters, used in the statis-
tical design of operators for object tracking. Section
4 shows the application of the technique proposed on
synthetic and real world images. Section 5 gives some
conclusion and future steps of this research.

2 Beucher-Meyer Paradigm

Image segmentation is an important and diÆcult prob-
lem. It is important because it is part of most image
analysis solutions [2, 3]. It is diÆcult because it is an
ill-posed problem [4].

Mathematical Morphology provides us with a
powerful segmentation method, called Beucher-Meyer
paradigm [5]. This method is useful to �nd exact bor-
ders of speci�ed objects. It simpli�es the segmentation
process reducing the problem of segmenting objects di-
rectly to the problem of �nding markers for the speci-
�ed objects [6].

The known approaches for image segmentation use
basically two ideas: �nding the borders of the objects

in an image or grouping the points of the image which
are similar in order to get the points of the objects.
Beucher-Meyer paradigm is based on �nding the bor-
ders of the objects one wants to segment using the
watershed operator [7, 8, 9] composed with some other
morphological operators that are useful to prepare the
image to be segmented. This preparation is necessary
to eliminate the borders of the objects we are not in-
terested in, and also the borders that appear due to
noise in the image.

Borders are, in general, discontinuities in the im-
age and they can be detected by di�erencing operators,
like the morphological gradient [10]. This operator is,
however, very sensitive to noise in the image, i.e., it
enhances the gray-level transitions due to the borders
of the objects but also the transitions due to noise.
Hence, the gradient image is usually a noisy image in
the sense that it carries more information than it is nec-
essary. The application of the watershed operator to
the gradient image usually results in an over-segmented
image [9, 6]. The solution to eliminate the borders one
does not want is to apply an operator that changes the
homotopy [10] of the gradient function [5, 6].

Let IE be a non empty set (usually IE � ZZ� ZZ).
A gray-level image in the discrete space, i.e., an image
where all points can take values in IK = [0; k]; k 2 ZZ
can be represented by a function f : IE ! [0; k]. The
set of all gray-level images is represented by IKIE and
an image f is a point of that space (f 2 IKIE.)

The homotopy operator is a �lter [10, 11] which
main property is to guarantee that the watershed lines
found in the �ltered image are a subset of the water-
shed lines found in the gradient image.

After the application of the homotopy �lter on
the gradient image, the watershed operator �nds only
the borders of the objects one wants to segment. This
method is known as \Beucher-Meyer paradigm" [5].

Beucher-Meyer paradigm simpli�es the segmenta-
tion problem into the problem of �nding markers to
the objects we want to segment. However, this can
still be a hard segmentation problem because it is usu-
ally heuristically done.

Figures 1 to 3 show an example of the paradigm
applied to an image of muscle �bers. Figure 1a shows
the image to be segmented and Fig. 1b shows the result
(inverted to show the details) of the gradient applied
to that image. Fig. 2a shows the over-segmentation
due to applying the watershed operator directly on the
gradient image. Figure 2b shows markers for the dark
objects (the objects we want to segment). Figure 3a
shows the result (inverted to show the details) of the
homotopy operator applied to the gradient image us-
ing the markers image to specify the desired objects.



(a) (b)

Figure 1: Beucher-Meyer paradigm (a) muscle; (b) gra-
dient (inverted).

(a) (b)

Figure 2: Beucher-Meyer paradigm (a) over segmenta-
tion; (b) markers.

Figure 3b shows the �nal result (the watershed lines)
composed with the original image.

3 Aperture Operators

The basic operator design problem for a pair of ran-
dom images, h to be observed and g to be esti-
mated, is to �nd an operator 	 in a class of operators
that minimizes an error measure between 	(h) and
g. A common way to proceed is to de�ne 	 locally
by some function  operating on h in some window
Wp = fw1 + p; w2 + p; : : : ; wn + pg about a point p by
	(h)(p) =  (h(Wp)), where h(Wp) is the restriction of
h to Wp. For digital images, Wp is the translate of a
�nite windowW to p and the problem is to �nd an op-
timal estimator of the random variable g(p) in terms
of the observed random variables in Wp. Often  is
constrained to a subclass of functions over W .

The optimal image operator 	 is called a W op-
erator and is de�ned by 	(h)(p) =  W (X) = E[Y jX],

(a) (b)

Figure 3: Beucher-Meyer paradigm (a) homotopy (in-
verted); (b) �nal result.

where E[Y jX] is the conditional expectation of Y given
X and X = (X1; X2; : : : ; Xn) is observed in Wp [12].
Excluding the situation where X1; X2; : : : ; Xn, and
Y are jointly Gaussian, in which case the optimal
W -operator coincides with the optimal linear opera-
tor [13], one is typically confronted with estimating the
optimal operator from realizations (sample data) un-
der various forms of constraint on optimization. More-
over, for a discrete gray-scale range, which is our con-
cern in this paper,  W (X) is obtained by quantizing
E[Y jX]. In the unconstrained discrete case, in which
there are no modeling assumptions, optimization re-
duces to estimating the quantized conditional expec-
tation. When X1; X2; : : : ; Xn, and Y are binary and
the window is not too large, this can be successfully ac-
complished [14, 15]; for larger windows, various forms
of constraint have been employed [16]. In particular,
a recursive error representation has been used to esti-
mate the morphological basis of the optimal increasing
operator [17]. Optimal binary operators have found
application in digital document processing [18].

A W -operator  W locally de�nes an operator 	W

by

	W (h)(p) =  W (h(Wp)) =
 W (h(p+ w1); : : : ; h(p+ wn))

(1)

By appropriately indexing w1; w2; : : : ; wn, the window
can be centered at p. When using sample data to esti-
mate the conditional expectation, there is an implicit
assumption that, as a random function, the image is
stationary (or suÆciently so) that the same computa-
tional operator  W is applied at each point p.

In this paper the windowing is in both the domain
and gray-level range of the operator. Not only are the
observations constrained to the domain windowW , the
values of the observations are constrained to a range



window K = f�k;�k + 1; : : : ; kg. For j = 1; 2; : : : ; n,
de�ne the truncated random variable by

X�
j =

8<
:

Xj : �k � Xj � k

k : Xj > k

�k : Xj < �k
(2)

and let X� = (X�
1 ; X

�
2 ; : : : ; X

�
n). The �lters of the form

	(X�) will be called aperture �lters, where the aper-
ture A is the product set W �K. Geometrically, ob-
servations within an aperture W � K are unchanged
and those outside of W � K are projected vertically
into the boundary of W � K (from above or below).
The morphological representation of aperture �lters
has been treated previously (under the name of WK

operators) [19].
The aperture operator (A operator) 	A is also

de�ned via an aperture function  A, and the aperture
W �K must be placed into the product space of the
domain and the range. At t, the observed image value
is h(p) and we center W �K at (p; h(p)).

Aperture placement is illustrated in Figs. 4 and 5,
which show additive white noise and blurring, respec-
tively. In each �gure, part a gives the ideal (uncor-
rupted) signal and part b gives the observed (cor-
rupted) signal. Signals are shown as solid dots, �
marks the center of the aperture, shadowed dots show
vertical projections of signal points into the aperture
and black squares with a white + inside shows the ob-
served value in the ideal signal. In part b of Fig. 4, the
aperture is placed vertically at the observed value, x�

(realization of X�) di�ers from x (realization of X) at
four points and in part b of Fig. 5, x = x�.

t

h(t)

(a)

t

h(t)

(b)

Figure 4: Aperture placement for additive white noise:
(a) aperture on ideal signal; (b) aperture on observed
signal.

Design of aperture operators from signal realiza-
tions requires estimation of the local operator  A from
sample signal data and then representation of  A in

t

h(t)

(a)

t

h(t)

(b)

Figure 5: Aperture placement for blurring: (a) aper-
ture on ideal signal; (b) aperture on observed signal.

some computational form.  A is estimated from train-
ing pairs of the form ((x � h(p))�; y) extracted from
pairs of signal realizations. Since we are interested in
de�ning  A on a set of vectors in the aperture A, we
will suppress the vertical displacement h(t) when dis-
cussing training pairs and just write (x�; y). x� is a
training example with label y. If a particular x� is ob-
served m times, then there are m labels y1; y2; : : : ; ym
associated with it in training pairs. The mean of these
labels provides an estimate  A;N (x

�) of  A(x
�), where

N is the total number of sample pairs over all possible
vectors. Using the language of machine learning, we
refer to x� as a pattern and  A;N (x

�) as a �nal label.
We denote the set of labeled patterns by MA.

Having associated labels with the vectors observed
during training, we need to provide a representation for
the operator. Here we need to recognize that MA is
often (and in our case will almost always be) a proper
subset of the set X of all possible vectors and that
X is the true domain of  A;N . A representation for
 A;N will complete the de�nition of the operator. It
is critical that the representation extends the de�ni-
tion of  A;N from MA to X in a consistent manner,
meaning that if l is the �nal label for x� 2MA, then,
upon representation, the operator must assign l to x�.
Given this consistency, the de�nition of  A;N is un-
ambiguous. In machine learning, the extension of the
de�nition of  A;N from MA to X is called prediction,
or generalization, because the extension \predicts", or
\generalizes" a learned concept. Prediction is impor-
tant because the performance of a designed operator
depends on the way in which it maps vectors not ob-
served during training, those lying in X �MA.

In this paper, we use decision trees for operator
representation. They are fast to be implemented, ex-
tend the learned operator consistently, and tend to pro-



vide good generalization [20, 21, 22]. For details on
how they have been used in this context see [12].

4 Applications

In this section we will show the methodology of the
system, the problems involved in the motion segmen-
tation, the solutions that are not implemented yet and
some applications of the method.

4.1 Methodology

The methodology applied for the automatic design of
morphological operators for motion segmentation is
simple because one of the objectives of the automatic
design of operators is that it can be done by a non spe-
cialist in image processing. The steps to be followed
are:
- To train an operator, 	, giving some pairs of images (
ffi; gig where fi is the i-th frame of the sequence and
gi is the corresponding marker image) which should
reect statistically the di�erent situations the object
of interest appear. That means that the indexes i do
not need to form a sequence with uniform step like
ffi; gig, ffi+1; gi+1g, etc. Since one is interested on
only one object of the image, it is natural that the
operator does not need to be trained using the whole
image but just from some neighborhood of the object
of interest. This is done by a mask mi that will be
given to the system together with the training pair
ffi; gig. The mask will restrict the domain where the
training samples (x�; y) will be observed to the area
inside the mask. Figure 6 shows an object in the ith
frame fi and a possible mask mi used to restrict the
learning for the pair ffi; gig. The radius of the circle
that forms the mask is based on a parameter given by
the user that reects the speed of the object in the
sequence. Since the system supports the classi�cation
of several objects, a tool to track more than one object
is being designed. In the training of the operator, the
user may have to try di�erent window sizes and ranges,
i.e., di�erent W and K values, because this part is not
automatized yet.
- To apply the operator to the other frames of the se-
quence, the user gives the location of the object in the
�rst frame of the application sequence manually and
a parameter related to the speed of the objects in the
sequence. The application of the operator is also re-
stricted to a mask but this time the mask mi+1 is built
from the result of the segmentation of the ith frame fi
plus the initial speed parameter given by the user (for
instance, a dilation with a structuring element larger
than �S = V0�T ). Figure 6 shows an object in the
(i+1) frame and the respective application mask built

from the information of the object segmented in the
ith frame.

frame i+1

Mask

Object

Object

frame

in

i in

�S

Figure 6: Restriction mask

- To �lter the image because the result of 	 may not
be perfect (which is usually the case). The �lter is
necessary to eliminate the markers of low statistical
con�dence (usually isolated points or small connected
components.) This �lter is a composition of a con-
nected �lter and a pruning operator. The connected
�lter is parameterized by a structuring element B (to
de�ne the connectivity) and it eliminates connected
components of area less than a value a speci�ed by the
user. This process of eliminating a small connected
component is done by assigning the gray-value of the
largest nearest neighbour connected component to it.
The value a speci�es to the system the minimum size of
connected objects that can be considered a marker, i.e.,
the system will eliminate the markers smaller than a

considering the connectivity speci�ed by B. The prun-
ings are necessary because the marker resulting after
the �ltering may be larger than the object.
- To apply Beucher-Meyer paradigm using the homo-
topy and the watershed operators.

4.2 Simulated experiment

To test the ideas shown above, a synthetic image se-
quence of a simulation of moving disks �lled with dif-
ferent patterns has been generated. Figure 7a shows
an example of such image. The sequence has 50 frames
and each frame i of the sequence has �ve disks moving
in the domain area; moreover, the disks do not collide
with each other, only with the borders of the frame
(where the collisions are elastic). This is like a 3D
model of balls that, because of the initial conditions,
do not collide with each other. This model is useful to
test the system against occlusion (total or partial, see
Fig. 7b). To complicate a little more the model, addi-
tive Gaussian noise (N(0;

p
10)) was applied to 20% of



the pixels.

(a) (b)

Figure 7: Synthetic application: (a) First frame; (b)
Occlusion.

The operator has been trained to track the largest
ball (the one with the �nger print like pattern). Ten
frames were given to train the operator and they were
chosen in a way to observe basically three situations:
isolated ball of interest, interaction of the balls with
and without occlusion. For the frames where the ball
of interest interacts with the other balls, di�erent labels
were given to each ball (the ball of interest has the same
label during all the training) in order to distinguish the
ball of interest from the others.

The application was done to all the 50 frames.
Figure 8 shows the result of the operator for the 40th
frame restricted to an application mask centered in the
position of the object of interest in the last frame. Note
that the operator classi�es the four balls which are seen
inside the mask and there are several small misclassi-
�ed areas.

Figure 9a shows the result of the �ltering. This
result is the marker image to be used in the paradigm.
Figure 9b shows the result of the segmentation after
the application of Beucher-Meyer paradigm (the wa-
tershed line is enhanced in black around the ball of
interest for each image). Note that the system seg-
mented both parts of the occluded ball (the one that
the system was tracking).

Figure 10 and Fig. 11 show part of the segmented
sequence (frames 35 to 46).

4.3 Real sequence

In the second experiment used to test the ideas, we
used the known sequence of the table tennis player [23].
Figure 12 shows part of the �rst image of the sequence.
There are several objects that can be interesting to
segment, for instance: the ball, the racket, the player's

Figure 8: Result of the restricted classi�cation

(a) (b)

Figure 9: Synthetic application: (a) Marker; (b) Re-
sult.

Figure 10: Application on the synthetic sequence



Figure 11: Application on the synthetic sequence

Figure 12: Table tennis player sequence

face, etc. We have chosen to track the ball, but more
experiments will be done to track the racket, as well.

The table tennis ball is relatively easy to segment
in the �rst 8 frames of the sequence because there it
appears isolated. In the next 3 frames the ball interacts
with the racket and in the last 5 frames that the ball
appears in such part of the sequence (after this the
ball disappears, returning much later to the scene) the
form of the ball is not a disk anymore but a cylinder
because the lack of temporal resolution of the movie.

In order to track the ball during that �rst part
(16 frames) of the movie, we used 5 frames to train the
operator, the �rst 3 frames and 2 frames where the ball
interacts with the racket, one of them the ball form is
a cylinder.

Figures 13 to 15 show the result of the application
of the methodology for the �rst 9 frames. The water-
shed line around the ball is colored white because of
the background.

5 Conclusion

Nowadays, the segmentation of moving objects is done
manually by video editors. As digital videos are com-
posed of hundreds or thousands of frames, this tech-
nique becomes too expensive and, consequently, almost
not applied in practice. This paper proposes a new
technique that may reduce signi�cantly the cost of the



Figure 13: Part of the �rst 3 frames Figure 14: Part of the frames 4 to 6



Figure 15: Part of the frames 7 to 9

operation.
The technique proposed for the segmentation of

moving objects is based on Beucher-Meyer paradigm
with the markers detector designed by computational
learning. The objects from few frames of the video are
marked manually and used to train the markers de-
tector. Then, the operator designed is used to mark
the objects in the other frames and Beucher-Meyer
paradigm is applied to all frames marked.

The markers detector designed are aperture �lters,
conditioned to a mask around the target object. The
size of this mask depends on the maximum velocity
of the object in the video sequence, that is supposed
known. This prior information reduces signi�cantly
the statistical complexity of the operator design prob-
lem.

In fact, before the application of Beucher-Meyer
paradigm the markers were �ltered by a connected �l-
tering, that eliminates the markers of low statistical
con�dence. This is done by eliminating all at zones
of small area and aggregating each of them to an ad-
jacent at zone of maximum area.

The technique proposed has been applied to a syn-
thetic video, that presents moving balls degraded by
Gaussian noise, and to a real world video, showing a
table tennis play. In both experiments, the object seg-
mented was a ball, for which is known the position in
the �rst frame and its maximum velocity in the video.
In the �rst experiment, there were cases of occlusion,
but not in the second. The results were quite satisfac-
tory: 10 and 5 frames were marked manually for exper-
iments 1 and 2, respectively, while 50 and 16 frames
were segmented, respectively, in the �rst and in the
second experiment.

We recognize that the method should be tested
more intensively on real world images for a further con-
clusion. This will be the immediate next step of our
research. We also have in mind the extension of this
technique for colored videos.
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