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Abstract: In this work we introduce an iterative method that deforms brain models built from tomographic
images. The deformation is used for normalization purposes: individual models are deformed to match the
shape, orientation and internal morphology of a reference model. In this method the individual and the reference
models are each enclosed in a cube which is subdivided to form a rectangular grid. The vertices in the
individual model’s grid are perturbed and the contents of each cell is then trilinearly mapped into a cube.  The
composite of all resulting cubes form the deformed model to be compared with the reference. The perturbations
on the vertices are generated by a simulated annealing optimization technique. To maximize the performance,
the models are represented in a multi-resolution fashion and the method is parallelized.

 1    Introduction

A considerable part of the development of our knowledge
about the human body in recent years has been supported
by studies conducted in an interdisciplinary fashion,
mainly with the introduction of digital computers,
equipment for biological data acquisition, lasers and many
more tools. These studies have helped to establish a more
accurate and useful modeling of the human body and have
added more efficiency to the diagnosis of a variety of
diseases, and more efficiency, effectiveness and less
invasiveness to their treatments. Despite the enormous
progress achieved lately, we have barely started
understanding the highly complex nervous system and, in
particular, our brain. The studies on the human brain face
great difficulties not only due to its structural complexity
in both microscopic and macroscopic levels, but also due
to its anatomical variability across individuals and
populations, as well as its changes through different scales
of time. These obstacles have induced a fragmentation in
the neuroscience research worldwide to an extent that it
becomes difficult to fully relate the works and results from
different researchers.

An earlier effort in the direction of standardization
was the development of the human brain atlas by Talairach
[1]. He used two landmarks (Anterior and Posterior
Commissures) and other structures to establish a three-
dimensional coordinate system. Any individual brain
could easily be warped into this atlas and some anatomical
and structural information from the atlas could be
transferred to the individual brain. Although popular and
useful for anatomical normalization required for surgical
procedures, the atlas is known to be limited. The Tailarach
atlas assumed perfect inter-hemispheric symmetry (it used
only one hemisphere) and excluded the brain stem and
cerebellum. In addition, the brain model was extracted

from one individual. Therefore, this atlas is more accurate
for areas of the brain that have low inter-subject variability
and for sites close to the landmarks of the reference
system. Highly variable and asymmetrical portions of the
brain in the cerebral cortex call for a more general
approach.

A comprehensive, coordinated effort for providing
researchers with access to the latest information is being
conducted by researchers from institutions such as UCLA,
Montreal Neurological Institute, UT San Antonio,
Stanford, and others, under the name of Human Brain
Project (HBP). Their goal is to develop a comprehensive
map of the human brain that incorporates structural
information (Magnetic Resonance Imaging-MRI, for
instance) and functional information (Positron Emission
Tomography-PET, for instance). The project is a
probabilistic model that accounts for variability across
individuals and groups, and the database is organized
under several attributes, such as sex, age, race, etc. Any
researcher will be able to arbitrate the criteria to obtain
his/her desired segment of the population and have the
corresponding average atlas displayed using several
techniques for 3D visualization. The first step in dealing
with digital images in this project and others using
different individuals and modalities of acquisition, is the
spatial normalization of the models to an average model.
A geometric deformation is required to standardize their
coordinate system and, as a second step, to minimize their
variability in order to increase the power of the statistical
operations. The existing techniques that perform this
normalization are numerous but all suffer from different
types of limitations that restrict their applicability. One of
the most common limitations is their computational effort.
Due to that, some of them just perform affine
transformations to the entire model, while the nonlinear
deformation is restricted to 2D slices that compose the



model. Others need human interference to skip difficult
steps, or just wait for faster computers to appear.

2    Some Existing Techniques

Although there are many available classifications of the
existing techniques, we find convenient to classify them as
(1) iterative, (2) landmarking or (3) dynamical.

(1) In the iterative techniques, a penalty function is
established between the reference model and the generated
one. It drives some form of iterative optimization that
affects the geometric attributes of the model, usually a
deforming operator, in order to minimize the penalty
function. This penalty function accounts for the
geometrical differences between the models. A known
reference is Collins et al. [2] in which routines were
developed to alter parameters of affine maps to reduce
penalty functions. Affine methods are global and do not
address local morphometric variations in the brain.
Iterative techniques also include the famous Free Form
Deformation Sederberg et al. [3], in which the deforming
model is embedded in the volume determined by a B-
spline control net. When the control points are
repositioned, the corresponding piecewise Bezier volume
and its enclosed 3D model are deformed. This method
generates smooth deformations, but the degrees of
freedom for optimizing all control points may become
prohibitive.

(2) In landmarking techniques, a discrete set of points
related to the brain landmarks is identified in both source
and target models, forming a pair wise correspondence,
usually by manual interaction. At the end of the
deformation, each landmark in the source model is left at
the same location as its corresponding landmark in the
target model. The deformation is defined by interpolation
or extrapolation techniques. Methods that attempt to
identify or establish automatically the landmarks
(Minoshima et al. [4]) face problems with the spacial
frequency of brain images. Some of the most successful
methods are those that do not require a structured set of
landmarks, called scattered data deformation methods -
Ping  [5]. Since a deformation is a mapping of a 3D point
into another 3D point, we can also see this as a triple
scalar field. Scattered deformation methods solve a triple
problem of scattered data interpolation, one for each
coordinate. A scattered data interpolation method solves
the problem of finding a smooth function that passes
through an unstructured network of points with their

respective functional values given. Any arbitrary point can
be obtained as a summation of basis functions multiplied
by their respective landmark. A known problem in these
techniques is that, while there is a satisfactory smoothness
inside the convex hull of the landmarks, the extrapolation
outside is usually very poor. A remarkable method,
described in Yun [6], solved that problem and was
designed to be very general. In addition to the landmarks
chosen by the user, the method adds deformation points on
a surface surrounding the model and optimizes their
positions to minimize a penalty function that accounts for
smoothness outside the landmarks’ convex hull. It also
allows the incorporation of transfinite constraints for the
user to control the shape. As of today, the method is being
fine-tuned to fully work in 3D.

(3) Dynamical techniques present the most realistic
modeling of the human brain. The brain model is assumed
to have certain material properties and the deformation
obeys physical laws such as elasticity. Forces, generated
by a potential related to the models’ differences, are
applied to produce the deformation. A complex system of
PDE’s with perhaps millions of unknowns for a 3D model
needs to be solved. Such complexity waits for a more
feasible computational model. Some references are Miller
[7] and Terzopoulos [8].

The methods are also classified as interactive (user
intervention) or automatic, linear or nonlinear, non-
retrospective (artificial, extrinsic image properties are
used such as skin markers or various kinds of frames) or
retrospective, voxel-based, or a combination of them.
These properties may also be used as criteria to evaluate a
method.

In this work we describe a novel approach to the
anatomical standardization of brain models from a single
or multiple individuals, or from multiple modalities. This
iterative technique is a fully automated, parallel, nonlinear
normalization of 3D models that uses piecewise trilinear
deformations.  

3    Description of the Standard Iterative Technique

We use simple trilinear transformations of a unit cube to
achieve the deformation of our tomographic model. They
map a unit cube into a volume determined by eight
arbitrarily chosen points in a 3-dimensional euclidean
space.  Figure 1 illustrates such a volume with the vertices
conveniently indexed by numbers in binary:



Figure 1 Trilinearly deformed cube.

The restricted trilinear transformation maps a triple
(t,s,r) in the cube  [0,1]3 into a point T(t,s,r)  inside the
volume determined by the given points b000, b001,..., b111.
Its computation is the application of a 3-step linear
interpolation:

1.bjk(t)=(1 – t) b0jk + t b0jk, j,k in {0,1}

2.bk(t,s)=(1 –s) b0k(t)+  s b1k(t), k in {0,1}

3.T(t,s,r)=(1 – r) b0(t,s) + r b1(t,s)

This algorithm can also be used to find the
transformation’s explicit form, which can be seen as the
original points bijk  multiplied by  a polynomial in the
variables t,s,r of total degree 3 (the diagonal in the cube
r=s=t  is mapped into a cubic curve, for instance.) The
explicit form can be used to show some desirable
properties such as:  (1) convex hull property: any point in
the range T(t,s,r) is always inside the convex hull
determined by bijk ; (2) affine invariance: evaluating
T’ (t,s,r) from the affinely transformed points Φ(bijk ) is the
same as applying the affine transformation Φ to T(t,s,r)
that was evaluated from the original points bijk ; (3)
Invariance under affine parameter transformations: we
may affinely transform the cube in the domain (doing
scaling or translation, for instance) and still obtain the
same volume determined by the points in the range bijk .
Other interesting properties can be seen in Farin [9],
where the trilinear transformation is given as a triple
tensor product of Bézier curves of degree 1.

Trilinear transformations are also used in popular
algorithms in C.G. such as Marching Cube (Foley et al.
[10], Watt et al. [10]) and Levoy’s color and opacity
computation (Levoy  [12]).

We are now entitled to deform tomographic models,
which are represented as scalar fields I:R3−>−>R for the
original model and  I 1:R

3−>−>R  for the deformed one.
These scalar fields assign a color intensity to a point in the
volume, typically a value between 0 and 255 (1 byte).
Since we are given 2D images of gray levels, we could
assign to a point (t,s,r) in the volume the gray level
associated with pixel (t,s) in the r-th image.

The deformation scheme assumes the existence of a
cube large enough to contain the stack of images,
represented by the scalar field I . Thus, if we know the
original model’s scalar field we can obtain the deformed
model’s scalar field by doing I 1(T(t,s,r))=I (t,s,r). To avoid
sampling problems that can happen to highly deformed
models we invert the scheme: we enclose the original
model in the volume determined by the points bijk  (in the
space regarded originally as the range). We find the
deformed model by doing: I 1(t,s,r)= I(T(t,s,r)). That
means that the deformed model will appear inside the unit
cube. This scheme is called a re-sampling filter (Wolberg
[13]).

Figure 2 Iterative Deformation of a 3D model.

We illustrate our iterative deformation algorithm in
Figure 2. We first enclose the 3D model in the volume
determined by the points bijk  (step 1); we then scan the
unit cube to visit each voxel (t,s,r) to trilinearly map it into
the voxel T(t,s,r) in the volume determined by the points
bijk  and then we obtain (t,s,r)’s gray level by doing
I 1(t,s,r)= I(T(t,s,r)) (step 2); finally we compare in a voxel
by voxel basis the deformed model with the reference
model (which is placed in another unit cube and has scalar
field I 2:R

3−>−>R) (step 3).  We will see how these
comparisons are done in a moment. To address the
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variability that exists in the brain’s local structures we
need to apply subdivisions to the volumes. By finding the
midpoint of each edge, the center of each face and the
centroid of the volume, and then connecting them
appropriately we obtain eight new volumes. These
subdivisions are done to all three volumes in Figure 2. We
may now apply a trilinear map to each sub-volume in the
volume determined by bijk  to obtain as result the
corresponding sub-volume in the unit cube. We then
proceed with the comparison with the corresponding sub-
volume in the reference model. The validity of these
operations is guaranteed by the 3 properties discussed
earlier. The volumes in Figure 2 can be seen as
corresponding sub-volumes from the three initial volumes
that contain the models.

The comparisons use a functional called energy
which is based on a voxel by voxel statistical measure
called correlation of  gray levels, and it is given by:

e(I 1 , I2) = 1 – |cov(I 1 , I2) / σ1.σ2 |     (Eq. 1)

where cov is the covariance between the two
intensity-based models, given by:

cov(I 1 , I2) = E[(I 1 – µ1)( I 2  – µ 2])

with E being the expected value, µ1, µ 2, the simple
average of gray levels of each unit cube and σ1 ,σ2 , their
standard deviation.

Roughly speaking, we can say that the larger the
energy, the more distinct the two models are from each
other. There are some technical limitations on this claim,
that can be seen in Melo [14]. However, the experiments
have shown that the use of this functional results in a
superior quality of matching when compared with the use
of a simple voxel by voxel absolute value of the
differences of gray levels.

It becomes clear now that we need to generate a
sequence of configurations for the vertices bijk  in such a
way to minimize the energy between the two models. Due
to the complexity of this functional and the variability
present in different brain models, there is no recipe for
reaching the absolute minimum. We use an optimization
algorithm called simulated annealing (Metropolis et al.
[15], Laarhoven et al. [16], Melo [14]), with an
improvement that takes advantage of the energy’s
smoothness: gradient descent technique (Wismer et al.

[17]). The algorithm starts off with an arbitrary
configuration and computes the energy’s gradient at that
configuration; the next configuration is computed as the
current configuration added with the negative of the
current gradient vector (multiplied by a scalar). When  we
reach a local minimum (not able to descend) we record
this position and then “move away” from the local
minimum by accepting a sequence of configurations with
increasing energy, until we step on the top of a “hill” to
explore other valleys. Laarhoven et al. [16] shows that,
although there is no guarantee of reaching the absolute
minimum, it actually does converge asymptotically to the
optimal solution. To us that means the more the algorithm
iterates the better the quality of the matching.

We may now announce the standard iterative
algorithm which comprises two phases: the normalization
of the entire volume and the normalization of  sub-
volumes. For the first phase we optimize the positioning of
the eight vertices and, in order to compute the energy of a
given configuration of vertices, we apply the 3 steps
associated with Figure 2 for the deformation and use the
resulting scalar field I 1 together with the given scalar field
I 2 in  (Eq. 1). Notice that a configuration here is an
element of a 24-dimensional space (eight vertices with
three coordinates: x, y and z).

When we reach the best configuration in phase one,
we subdivide the volume corresponding to this
configuration and also the unit cubes for the deforming
model and for the reference. In this phase we only
optimize the centroid (affecting each sub-volume in just
one vertex). In order to compute the energy of a given
configuration we apply the 3 steps associated with Figure
2 for the deformation independently for each triple of sub-
volumes: in the bijk -volume, its corresponding one in the
unit cube for deforming model and in the reference unit
cube. The energy associated with a configuration is the
summation of the energy of the eight sub-volumes. When
we reach a satisfactory energy level we subdivide each
sub-volume and reapply the algorithm to each of them. We
recursively repeat this procedure until no more
subdivisions can be done. We should point out that no
subdivision is required to a sub-volume when its energy
reaches a satisfactory value before the same happens to
this sub-volume’s siblings.

4    Improvements in Speed and Quality

The more experienced reader may have noticed the
problem that appears due to the lack of smoothness
presented by the scalar field of the deformed model on the
borders between sub-volumes. The visual results are the
presence of objectionable kinks and artifacts on otherwise



smooth areas such as the surface of the cortex or
cerebellum (for more details: Melo [14]). We can
satisfactorily minimize these artifacts by reapplying the
algorithm to some suitably composed volumes. We can do
that since at the end of our algorithm we are left with the
set of cells at the highest subdivision level. What we need
to do is to compose a sub-volume from eight contiguous
cells in such a way that its centroid lies on a surface that
used to be a border between two old subdivided volumes,
optimized in the second phase of the algorithm. We then
apply the algorithm normally to this composed volume.
This artifact correction can be done before each new
subdivision in phase 2 takes place.

In view of the computational effort necessary for the
optimization we decided to speed up the algorithm by
representing the models in a multi-resolution fashion. We
adopted a tensor product of three wavelets spaces using
Haar basis to represent the scalar field of each model
(Muraki [18]). A pyramid of 3-dimensional models in
different resolutions is built at the beginning of our
algorithm. Each time we have a volume or a subdivided
volume to optimize, we take its representation in the
lowest resolution and optimize it first. When we reach the
best possible energy value, we transform the last
configuration to the next higher resolution and then
optimize it further in this resolution. When we finish in
this resolution, we repeat this procedure until we reach the
highest resolution. Only then we proceed to the next
subdivided volume.

The idea of using a multi-resolution representation is
to achieve a more controllable gradual convergence. In the
lowest resolution we may work with a large space of
configurations; with that we may obtain a rough
convergence. As we move to a higher resolution we may
gradually restrict the space of configurations, perhaps
centered in the configurations reached in previous
resolutions. We usually save time by doing this, but we
should not expect a better quality in the matching, on the
contrary, normally the result is worst than if we had used
that initial space of configurations in the highest resolution
in the first place (although much faster).

Another improvement is to take advantage of this
algorithm’s intrinsic parallel structure. In our
implementation we use PVM (Parallel Virtual Machine) to
distribute the computation among eight processors (Al
Geist et al. [19]). The distribution obeys a master-slave
structure. We leave the first phase and the optimization of
the centroid in the subdivided volume to the master
processor and after that we assign a sub-volume to each of
the slaves. They take over from then on. As for the inter-
slave communication, it is necessary only because of the

artifact correction that requires neighboring slaves to
exchange information concerned the borders (Melo [14]).
The improvement achieved with this distribution is
remarkable. Figure 3 presents a flowchart of a slave task.
By current position we mean the geometric location in the
space of the energy graph (or simply the current
configuration). Notice that a local minimum is reached
when the gradient vector has zero norm. A satisfactory
value for the energy is determined by the user’s arbitration
for a set of control parameters; the current local minimum
is only recorded if it is lower than the best local minimum
so far.

Figure 3 Flowchart of a slave task.

5    Results

Serial and parallel versions of an iterative piecewise
trilinear deformation based on the aforementioned
algorithm were applied to two data sets with many
parameter settings. All data sets were provided by the PET
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center in the Phoenix Good Samaritan Hospital. We
should point out that the only real 3D deformation
approaches for normalization of human brain models
available are simple affine deformations or piecewise
affine deformations; the best nonlinear methods of today
still work in 2D.

The brain models were semi-automatically segmented
from the scalp and background; they are: two sets of 86
images of size 256x256 (source and target); and two sets
of 100 images of size 256x256.

We used versions of the algorithm with the energy
function e as well as the absolute differences in gray level.
The results with the latter function were obtained faster by
orders of magnitude, but with a severely inferior quality. A
cost function that accounted for matching highly
contrasting areas was added to that function, but it only
improved the contour matching. The internal structures
were normally damaged, and the results were discarded.
Figures 4 and 5 concern data sets from two different
subjects. For both we used 4 levels of subdivision and 3
levels of resolution. Higher numbers of resolution levels
were attempted, with better performance but inferior
results. In Figure 4 we have 2 columns, each with a set of
triple images: a slice from the source (individual brain),
the corresponding slice from the reference followed by the
corresponding slice from the deformed brain model. We
start in the left column, from the upper image to lower
ones, and then we move on to the right column. This
procedure corresponds to moving away from the base of
the cerebellum up into the top of the brain.

In these figures, only a few central slices out of 86
are shown. The serial version spent 40h27min in a SGI O2
machine. The parallel version took about 10h in the same
machine. The initial energy was 0.1555. An energy value
of  0.0 means that the models are identical (up to global
gray displacements). A value of 1.0 means that the models
posses no linear correlation between themselves, with
respect to any of their sub-regions. Since the energy
function is based on the linear correlation coefficient,
which is standard in many fields, these numbers can be
directly tested and used in comparisons with other
methods. With an initial bounding box identification, our
energy value went down to 0.1235. After the optimization
of the eight initial vertices, the value became 0.0942, and
the final value was 0.0565. Needless to say, the quality of
the deformation visually improved during these steps, but
we only show the last.

The reader should  notice the higher similarity of
internal structures between the reference and the deformed
models as opposed to that between the source and the

reference ones.  It is more visible around the inter-
hemispherical plane and close to the contours.

In Figure 5 we have two views of the contour
surfaces for each model in the same order: source,
reference and result. The first two images were done by
projecting the models in a standard plane and illuminating
them. The normals were computed by using the
neighboring voxels and their elevation in relation to the
plane. The light source was placed in the line of sight. The
other two images are two planar cuts of each model
(sagital and coronal planes) in the same order: source,
reference and result.

Figure 6 brings data sets from the same subject. The
original model was initially deformed by using the popular
package SPM96 (Statistical Parametric Mapping)
(Frackowiak et al [20]). The deformation comprises of a
general affine transformation (automatic) followed by a
discrete cosine transform, in order to express the intensity
maps in terms of a smooth basis. Iterative approximations
to a deformation field, which is derived from the models’
differences, are conducted to obtain the final co-registered
model. Each slice from the resulting deformation is shown
as the first part in a triple image in each column. The
second part is a slice of the original model, which is our
reference model. Our aim is to ‘undeform’ the model
deformed by SPM96. Our results are shown as the third
part in the triple images. Before applying the algorithm,
we rotated the model by 14 degrees around the X-axis
(adding some artifacts). We used 4 levels of subdivision
and 3 levels of resolution. Higher numbers of resolution
levels were also attempted, with better performance but
inferior results.

In Figure 6 only a few central slices out of 100 are
shown. The serial version spent 70h30min in a busy SGI
onyx machine (low priority-250). The parallel version in 8
machines takes approximately 1/8 of the serial version’s
time + few hours. The initial energy was 0.2365. With the
bounding box identification, it went down to 0.1305. After
the optimization of the eight initial vertices, the value
became 0.1214, and the final value was 0.0566.

6    Conclusion

We have presented a nonlinear approach for the 3D
normalization of human brain models. In view of the
current approaches, which face computational problems,
we have decided to introduce a method intended to be
computationally simple and yet able to perform a ‘better’
3D normalization than a simple linear method, which is
nowadays the only method accepted to validate 3D
normalization. Although a piecewise trilinear
transformation obviously suffers from smoothness



problems, it still needed to be formulated, tested and
validated before more sophisticate methods are attempted,
for its simplicity and its relatively reasonable
computational time.

Several aspects of this method may benefit from
further investigation. For instance, smoother wavelets
basis may decrease some artifacts. It also may induce a
representation for a database of brain models, deformed or
not, in the future. A study on how the energy function and
the optimizer behave as we change resolution levels may
be important. We need to know with certainty whether a
convergence in lower level really provides a convenient
starting point for a higher one. Our results suggest that in
most cases, if we want to improve the quality, we need to
use only higher resolution levels.

It might be necessary to incorporate more precision
in the concept of quality of a matching. In some cases it
might be convenient to have a good overall statistical
matching rather than a good visual matching.

Finally, the method may need a strong statistical
validation to become popular. It has been suggested that
the method should be validated by deforming MRI models
from a group of patients into a standard shape. The
deformed models would be co-registered to PET images
from the same patients in two situations: resting and
performing an elementary task. Some statistical measures
would indicate if the deformation improved the precision
of how the regions corresponding to the elementary task
are detected.
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Figure 4 Results of a Piecewise Trilinear Deformation (14 central slices)
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Figure 5 Other Views of the Deformation in Figure 4
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Figure 6 Other Results of a Piecewise Trilinear Deformation (14 central slices)


