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Abstract. In this work we study the problem of reconstructing an image from a per-
ceptual segmentation based on a geometric classification of its points using non-linear curva-
ture filters. We give a mathematical proof that an image can be reconstructed from the
regions of non-zero gaussian curvatures. This result provides the theoretical background for
a new theory of non-linear two dimensional signal processing as proposed by C. Zetzche, E.
Barth and B. Wegmann ([15, 16]). We use curvature measures to detect edges and vertices
(roughly two dimensional regions) and show that reconstruction is possible from these elements.
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1 Introduction

Linear operators are frequently used in vision and im-
age processing. These operators are usually called im-
age transforms. Different transforms have appeared in
the literature from the ubiquitous Fourier transform to
the wavelet transform.

The success of the linear methods in image pro-
cessing comes from the simplicity in computing with
these transforms. The computation of the inverse of a
transform, even though being useless for some applica-
tions, plays a fundamental role in applications such as
image coding and compression.

We should mention that non-linear methods have
appeared in the literature of image processing. Among
them we could mention the well known fractal image
compression technique. In this method the image is as-
sociated to a unique fixed point of an iterated function
system (IFS). The IFS parameters are used to code the
image, and the original image can be recovered from
the action of the IFS on some initial image, which is a
non-linear process.

1.1 Importance of Non-linear filters

In spite of the successful use of linear methods in digital
image processing and in modeling some functions of
the visual system [4, 3], it is well known that some of
these systems contain detectors which are insensitive to
image features whose variation is zero or unidirectional
[9].

It is not difficult to realize that linear filters can
not offer an adequate model to receptive cells that
are insensitive to stimulus that have no variation or
to those that posses only one-dimensional variation.
This happens because the eigenfunctions of the filter
are one-dimensional signals [15, 16]. Experiments re-
veal that most of the information carried by an image
is located in the points which are extremes of the cur-
vature [1].

Such cells can not be modeled by linear filters,
therefore the study of non-linear operators for image
processing becomes a necessity. In [16], C. Zetzsche, E.
Barth and B. Wegmann present a detailed study of the
limitations of linear filters and propose the use of the
Gaussian curvature of the Monge surface associated to
the image as a good non-linear operation for perceptual
studies. Therefore the study of this operator and its
inverse assumes a fundamental role in their proposal.

The Gaussian curvature as a non-linear filter is
studied with more details in [2], where it is shown that
it is possible to obtain a partial reconstruction from a
set of points of non-zero Gaussian curvature. Also, the
authors conjecture that this set of non-zero Gaussian
curvature contains the necessary information to recon-
struct the image completely. A proof of this fact is the
main result of this article.

We should remark that the discussion above is
closely related to the problem of reconstructing an im-
age from its edges, as stated in the famous conjecture



by D. Marr [12]. Reconstruction of images from a sub-
set of points, such as the edges, can provide efficient
compact representation of images. This problem has
been addressed recently in [6].

2 Differential Geometry and Image

We will work with grayscale image. A grayscale image
can be modeled as a function h : U → R, where the
image support U is a subset of the plane, and h(u, v)
represents the gray value at the point (u, v). In order to
use techniques from differential geometry we will need
to differentiate the image. This presents no problem
with the use of scale-space regularization techniques
[10]. In this case we consider the representation of the
image h at some proper scale σ, using a convolution
with some gaussian filter of median 0 and variance σ:

hσ = h ∗ gσ,

where
gσ(u, v) = Ke− u2+v2

σ2 .

The parameterization of the Monge surface of the
image is given by

x(u, v) = (u, v, h(u, v)).

The first and second fundamental forms, [5], are
given by
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From G and B we can compute easily the mean
and gaussian curvatures of the image using the equa-
tions

K =
det B

det C
(3)

and

H = 1/2 trace(BC−1). (4)

The points of the image surface are classified ac-
cording to the sign of K and H:

1. Elliptic if K > 0;

2. Hyperbolic if K < 0;

3. Parabolic if K = 0 and H 6= 0;

4. Planar if K = H = 0.

3 Segmentation

If S is a surface, and X is a subset of S, we will denote
by int(X), X and ∂X the set of interior points, the
topological closure and the boundary of X respectively.

The operation that associates to X the topologi-
cal closure of its interior points is called regularization
and will be denoted by R(X), that is R = int(X).
A set X is regular if R(X) = X. A regular set X is
called a region if its boundary consists of a piecewise
differentiable curve.

Definition. A segmentation of a region R ⊂ S is a
collection S = {Uλ} of subsets of R such that

1. R =
⋃

Uλ;

2. If α 6= β, then Uα

⋂
Uβ has empty interior.

Each subset Uλ is called a segment of U . A seg-
mentation is finite if it possesses a finite number of
segments. A segmentation is locally finite if each point
has a neighborhood that intersects only a finite num-
ber of segments. A segmentation of an image consists
of the segmentation of the associated image surface.

We should remark that if S = Uλ is a segmenta-
tion of a region U , then if S = Uλ is a segmentation of
U using closed sets. Also, it is true that any segmenta-
tion of a region U can be regularized. A proof of this
fact can be found in [14].

3.1 Perceptual segmentation

An image has a huge amount of redundant data, and
this redundancy is exploited in the different image cod-
ing techniques. This redundancy has been classified in
[16]. A description will be given below.

Definition (Perceptual segmentation). We clas-
sify the points of a grayscale image h : U → R accord-
ing to the following criteria:

1. p ∈ 0D if h is constant in a neighborhood of p;

2. p ∈ 1D, if p /∈ 0D and there exists a decompo-
sition of a neighborhood of p as a disjoint union
of parallel straight line segments, such that h is
constant along each segment.

3. p ∈ 2D if it is neither 0D or 1D. Thus in a neigh-
borhood of a 2D point the image function has vari-
ations along any direction.

The classification above produces a segmentation
of the image into three sets of points: 0D, 1D and 2D.
We will suppose that this segmentation is regular, by
regularizing it if necessary.



(a) (b)

Figure 1: Perceptual segmentation.

According to the terminology introduced in [16],
we will say that the segments 0D, 1D and 2D have
intrinsic dimensions 0, 1 and 2 respectively.

From a perceptual point of view, the segment 0D
correspond to regions with small or no variation of the
image intensity; the segment 1D correspond to neigh-
borhoods of the edges and the segment 2D correspond
to regions of high intensity variation in all directions.
For this reason the segmentation introduced above is
called a perceptual segmentation. Figure 1(b) shows
a perceptual segmentation of the blurred image of a
square shown in Figure 1(a).

How to devise good operators to compute the per-
ceptual segmentation of an image? In order to cope
with this question, we remark that the perceptual seg-
mentation introduced above is closely related with the
geometric classification of the points in the image sur-
face as planar, parabolic, elliptic and hyperbolic. This
classification gives the geometric segmentation that we
will introduce in the next section.

3.2 Geometric Segmentation

A geometric segmentation of an image can be obtained
using the geometric classification of points of the image
surface. This segmentation is similar to the perceptual
segmentation of the previous section, for this reason
we will use the notation g0D, g1D and g2D.

Definition (Geometric Segmentation). If h : U →
R is an image, with U ⊂ R

2, then

1. p ∈ g0D, if the point (p, h(p)) is planar;

2. p ∈ g1D, if the point (p, h(p)) is parabolic;

3. p ∈ g2D, if the point (p, h(p)) is elliptic or hyper-
bolic.

(a)

Figure 2: Geometric segmentation.

The segmentation obtained using the above clas-
sification is called the geometric segmentation of the
image.

The geometric segmentation has very interesting
properties. It is possible to show, for example, that
the common boundary between the regions g0D and
g1D is a line segment, and the boundary between the
region g1D and g2D is a differentiable path.

We will suppose that the geometric segmentation
is regular (if not, we regularize it). Figure 2(a) shows
a geometric segmentation of the same blurred square
used in Figure 1(a). Note that for this image the per-
ceptual segmentation coincides with the geometric seg-
mentation.

In general, the geometric segmentation is similar
to the perceptual segmentation. The g0D regions con-
sist of pieces of plane, the g1D regions consist of pieces
of cones or cylinders and the g2D regions have a non-
linear behavior in all of the directions. In spite of the
similarity, these two segmentations might not coincide
exactly. In fact, pieces of cones could appear on g2D
regions. The following inclusions can be easily verified.

0D ⊂ g0D, 1D ⊂ g0D ∪ g1D,

2D ⊂ g1D ∪ g2D, g2D ⊂ 2D.

The similarity between the perceptual and the geomet-
rical segmentations indicate to us that operators based
on the curvature of the image surface could be used to
detect and eliminate redundancies on an image. An
interesting fact about the curvature is that it is a non-
linear point operation.

Invariance. We should remark that both the geo-
metric and perceptual segmentations are invariant by
rotations, translations, change in scale, and also by
changes in the image brightness or contrast.



4 Reconstruction

In order to use curvature operators to detect and elimi-
nate redundancy, it is very important that we are able
to reconstruct the image from the transformed, non-
redundant, image. Theorem 1 below shows that we
can recover an image from the 2D points, as was sug-
gested in [2, 16].

Consider a surface S with gaussian curvature K =
0 and denote the set of planar points by F . The set P
of parabolic points will be given by P = S − F . Note
that if p is a point of the surface and k1 and k2 are
eigenvectors of the Gauss map, than k1(p) = k2(p) = 0
is a closed property. Therefore, the sets F and P are,
respectively, closed and open in S.

Theorem 1. A compact surface is completely deter-
mined by the points with non-zero Gaussian curvature.

To prove the Theorem we need two Lemmas.

Lemma 1. If S is a surface with zero Gaussian curva-
ture, then the only asymptotic line that passes through
a parabolic point p ∈ P ⊂ S is an open line segment.

Lemma 2. Consider a surface S with zero Gaussian
curvature. If s is the arc length of the asymptotic line r
through a parabolic point p ∈ P , and H(s) is the mean
curvature along r, then

H(s) =
1

as + b
,

for some a, b ∈ R.
The proofs of the above lemmas can be found on

[5]. Now we will prove Theorem 1.

Proof of Theorem 1. Consider a compact surface S,
and let R be the topological closure of the set of points
with non-zero Gaussian curvature. Since S is compact,
we have R 6= ∅. Denote by S′ the complement of R in
S, that is S′ = S − R. Of course, S′ is a surface
with Gaussian curvature K = 0 everywhere. Now we
will show that the direction of the eigenvectors of the
Gauss map in the boundary of R determine the surface
S outside of the region R.

If p ∈ P ⊂ S′ is a parabolic point, and r is the
asymptotic line through p, from Lemma 1, r is a line
segment. Since S is compact, r is bounded. Let p1 and
p2 the boundary points of r. We can use Lemma 2 to
conclude that the mean curvature of S satisfies

H(s) =
1

as + b
,

along r. From the continuity of H we have H(p1) 6= 0,
and the same result applies to the point p2. Therefore
p1 is not planar and since K = 0 is a closed property,
we conclude that p1 is parabolic.

From the maximality of r we conclude that p1 be-
longs to the boundary ∂S′ = ∂R. Since p1 is not um-
bilic, because in this case it would be planar, the direc-
tion of the eigenvector of the derivative of the Gauss
map corresponding to the eigenvalue 0 is uniquely de-
termined, and coincides with the direction of r. This
determines r uniquely for each parabolic point in ∂S′.

On the other hand, since the derivative of the
Gauss map is identically zero in F , the connected
components of F are constituted by pieces of planes
and therefore they are completely determined by some
point in ∂R, plus the normal vector at this point. This
concludes the proof of the theorem.

It is interesting to note that the proof above is
constructive, that is, it shows how we could devise an
algorithm to reconstruct the surface from the points of
nonzero curvature. For this, we just have to follow the
lines of zero curvature, which are line segments, taking
as the starting point the boundary of the set of points
with nonzero curvature.

5 Edges

When we look at an image, it is possible to identify
huge regions where we have a small variation of the
image intensity. These regions appear separated by
curves where great variations occur. These curves are
called generically edges. Edges have a very important
role in the perception of the image. In general, trans-
formations that do not preserve the edges cause a no-
ticeable degradation on the image quality.

5.1 Edges and the Human Visual System

A commonly used technique in image processing con-
sists in obtaining a segmentation U =

⋃
Uλ in such a

way that we do not have great variations of intensity
in each segment Uλ. Since great variations occur on
the neighborhood of the edges, the segmentation must
be obtained in such a way that the edges are part of
the boundaries of the segmentation.

Edge based segmentation have deserved special at-
tention since David Marr conjectured that a complete
set of edges provides a complete representation of the
image. In this case, the edges would be computed from
zero-crossings of the Laplacian

∆(h ∗ gσ) = h ∗ ∆gσ,

where gσ is the Gaussian with mean zero and variance
σ. The rationale for using the filter ∆gσ comes from
a Theorem by Loogan, [8], stating that if the ratio be-
tween the smallest and biggest frequencies is smaller
than 1/2 (octave band), then the signal can be recon-
structed, exactly, from the zero crossings.



(a) Octave band-pass
ideal filter

(b) Laplacian of
Gaussian

Figure 3: Band-pass filters on the frequency domain.

Note that ∆gσ is essentially a band-pass filter,
even though it is not a octave band-pass filter (Fig-
ure 3). Certainly, if we can reconstruct ∆(h∗gσ), then
h ∗ gσ can be recovered because the equation

∆h = g

determines the function h up to a boundary condition.

Nevertheless, D. Marr calls the attention to the
fact that perception involves more complex features.
D. Marr’s conjecture was proved by Hummel and Mo-
niot, [7], with the additional hypothesis of having gra-
dient information along the boundaries.

Recently, S. Mallat, [11], used dyadic wavelets to
compute the multiscale edges, and also to reconstruct
an image from its edges. Mallat’s method can be inter-
preted as a sampling and reconstruction scheme where
the sampling points are the edges and the samples are
the derivatives of the image in a proper scale. In spite
of the efforts of Mallat, Hummel and Moniot, Meyer,
[13], has shown counter examples.

5.2 Edges and Gaussian Curvature

One of the problems with D. Marr’s conjecture is re-
lated with the precise definition of edges. A common
model consists in describing edges as the local maxima
points of

dh

dt
= |∇h|2,

where h(t) indicate the line integrals of ∇h.
Therefore, if p ∈ U is an edge point and we use

the notation ν = ∇h(p), we have

∂

∂ν
〈∇h, ∇h〉 = 0,

or equivalently,

〈Hess h∇h, ∇h〉 = 0.

Therefore, we have two possibilities

1. Hess h is singular in p;

2. ∇h and Hess h are orthogonal at p.

The second possibility implies that Hessh has the
form

Hess h =
(

0 b
b c

)

with respect to an orthogonal basis with one of the
vectors in the direction of ∇h(p). This is a rare possi-
bility since these matrices constitute a set of measure
zero on the set of symmetric matrices.

In sum, we conclude that in most of the cases
the matrix Hess h is singular on the edge points of the
image. Consequently, the boundary points have zero
Gaussian curvature. Since p is an edge point, it does
not belong to the interior of a planar region and, typ-
ically, it must belong to a line of planar or parabolic
points.

The above analysis shows that typically the edge
points belong to the lines of planar or parabolic points.
This shows that the information contained in the
parabolic points is extremely important for the recon-
struction of the image, because of the sensitivity of the
human visual system to errors involving edges. Also,
this gives a cue to understand the cause of the distor-
tions obtained when we try to reconstruct an image
without taking into account the parabolic points. See,
for example, the reconstructions in [2, 16].

Figure 4 illustrates the elliptic, hyperbolic and
parabolic regions, and the union of the regions. Note
how the combination of the elliptic, hyperbolic and
parabolic regions can be combined to determine infor-
mation on both sides of the edges of the figure.

6 Implementation

Theorem 1 shows that an image can be reconstructed
from the partial knowledge of its values, if we preserve
information on the points where the Gaussian curva-
ture is non zero. Moreover, the theorem gives a process
to reconstruct the surface. In practice however, this re-
construction process suffers from numerical errors.

The image can be easily reconstructed if, besides
the knowledge of its values on the regions of nonzero
Gaussian curvature (g2D), we also know the image on
the parabolic regions (g1D). In this case, the missing
points belong to pieces of planes and therefore we can
use linear interpolation along the directions u and v to
obtain

hij =
1
2
(hi−1j + hi+1j),

and
hij =

1
2
(hij−1 + hij+1).



(a) Original (b) Elliptical (c) Hyperbolic
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Figure 4: Regions

From this we obtain

hi−1j + hi+1j + hij−1 + hij+1 − 4hij = 0. (5)

The above system is linear and its solution gives a com-
plete reconstruction of the image. Figure 5 shows the
reconstruction of the Lena image using this method:

1. (a) shows the original image;

2. (b) shows the parabolic points;

3. (c) shows the two-dimensional points (Elliptcals
and Hyperbolics);

4. (d) shows the edges computed as the union of the
points in (b) and (c);

5. (e) shows the reconstructed image.

Since some threshold is used in order to compute
the segmentation, equation (5) actually reconstructs
the missing parts of the Monge surface as hyperbolic
patches.

7 Conclusions

In this paper we used differential geometry to seg-
ment and reconstruct an image from its bidimensional

intrinsic characteristics. We presented a theoretical
proof that it is possible to reconstruct a surface from
its points of non-zero Gaussian curvature. This re-
sult answers in an affirmative way the question posed
in [2, 16]. We also presented an algorithm that recon-
structs the image from the points g1D and g2D.

We analyzed the image edges from the point of
view of differential geometry, and we have shown that
typically, the edge points belong to parabolic regions
of the image. This shows that we can introduce recon-
struction errors in the neighborhood of the edges if we
do not take into account the 1D regions. These errors
are perceptually critical because of the sensitivity of
the human visual system to these image features.

7.1 Future work

The results of this paper have a great potential for ap-
plications. Currently, we are investigating several ap-
plications of the technique as well as continuing with
the theoretical studies. Some of the topics we are in-
vestigating are described below:

1. Obtain efficient reconstruction algorithms, and
also investigate the importance of the parabolic
points in the reconstruction process.



(a) Original
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(e) Reconstruction

Figure 5: Reconstruction.



2. Image compression is a natural arena to test these
techniques. In fact the non-linear curvature op-
erators could originate an edge base compression
technique.

3. Curvature based filters can be use to obtain an
adaptive representation of an image.

4. Use the curvature operator to compute a signature
for the image. This signature could be used to
develop a QBIC technique for image databases.

5. The concepts and techniques described in this pa-
per extend to different graphical objects. We are
currently working on a generalization to volumet-
ric graphical objects. In this case the volumetric
image is represented as a hypersurface in R

4.
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