
Multiple Display Viewing Architecture for

Virtual Environments over Heterogeneous Networks

ALEXANDRE G. FERREIRA

RENATO F. G. CERQUEIRA

WALDEMAR CELES

MARCELO GATTASS

TeCGraf – Grupo de Tecnologia em Computação Gráfica, Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio

Rua Marquês de São Vicente 255 – 22453-900 – Rio de Janeiro, RJ, Brazil
{alexgf,rcerq,celes,gattass}@tecgraf.puc-rio.br

Abstract. Visualization systems that support multiple-display viewing can greatly enhance user perception.
The common approach to provide multiple synchronized views uses a powerful centralized processing unit to
support the rendering process on all screens. As an alternative approach, we propose a distributed architecture
that supports a flexible and reliable visualization system that, while giving the users a sensation of immersion,
uses heterogeneous network of low-end graphics workstations. The proposed system ensures portability and
synchronization of all displayed views.

Keywords: Virtual Reality, 3D Visualization, Distributed Systems, Immersion.

1 Introduction

Nowadays, a large number of applications require a visu-
alization system capable of providing multiple views of
an animated virtual environment. Multiple display
devices are arranged around the user composing a
panoramic view of the scene, as illustrated by Figure 1.
The rendering is accomplished by simultaneously
projecting the scene onto multiple displays. We can think
that each display represents a window in the virtual
environment, and the user sees the virtual world through
such windows, proving her immersion sensation. Several
researches have been conducted on this subject and
different applications could benefit from using this
technology, e.g. education, architecture design, scientific
visualization, medicine, military simulation, arts, and
entertainment.

Figure 1 Multiple viewing environment.

Our motivation to develop a multiple display visuali-
zation system came from a naval simulation game devel-
oped by the Brazilian Navy. The game was designed for
training a group of ship commanders, and our goal was to
develop a visualization system capable of providing syn-
chronized views from the commander’s bridge using
multiple displays.

One straightforward solution to accomplish such a
task would be the use of sophisticated, and expensive,
hardware that supports multiple displays. However, we
propose a distributed architecture that provides a flexible
and reliable visualization system that, while giving the
users a sensation of immersion, uses heterogeneous net-
work of low-end graphics workstations. The proposed
architecture is capable of supporting the development of
applications that demand high frame-rates, synchroniza-
tion and a consistent simulation feedback to users. The
main requirement of such applications consists in having
all events in the simulated world occurring at the same
perception time in all visualization surfaces.

We do not address here either the game’s physical
simulation phase, or the input interactions from the play-
ers; we are concerned only with the sensorial visual feed-
back given to the users. The game simulator running
somewhere in the network provides all input data needed
for visualization.

This paper is organized as follows. The next two
sections present some concepts related to virtual environ-

ment visualization. Section 4 discusses issues related to a
distributed visualization approach. Section 5 presents a
detailed analysis of the proposed system architecture.
Finally, in Section 6, some concluding remarks are
drawn.

2 Virtual Environment Description

We consider virtual environment as the theater where the
simulated world runs. Every element that exists in this
simulated world is considered an entity of this virtual
environment.

Since the goal is to provide the user with a visual
feedback of the existing entities inside the virtual
environment, each entity may have an associated shape
description and appearance. These attributes feed the
rendering engine partially and are responsible for
providing realistic images. Realistic and high-quality
images are necessary to reinforce immersion sensation in
the virtual world. In general, the use of detailed 3D
models with appropriate color materials and texture
images gives good results. In this way, the entity shape is
any form of geometry description that can be processed to
represent the entity image. It can be given by an implicit
equation, or a polygon mesh, among others. The entity
appearance, like the shape, can be set in several ways: it
goes from simple flat colors, to material definition and
highly detailed textures that are applied over the entity
shape. A rough geometry description can be
counterbalanced by a rich set of texture images, still
aiming realistic results.

Illumination is also an important concept in the vir-
tual environment. The use of well-modeled illumination
is most important when the virtual world mimics the
human visible world. For example, accurate lighting
computation adds realism for simulating a group of
individuals in a room, but not for simulating molecule
reactions. Usually, for good visual results, the
visualization system should provide several ways for
modeling light sources (spot, ambient, positional,
directional, and distributed), as well as for describing
their attributes (color, intensity, etc).

Entity behavior is another important concept in the
virtual world. Sometimes, a poorly rendered animated
sequence offers more realism than high-quality static
images. That is where the entity behavior plays its role:
to mimic the real world dynamics. Since a virtual entity
has a collection of attributes, its behavior could be
defined as the ever-changing state of all these attributes.
Beyond shape and appearance, spatial attributes (location,
velocity, acceleration, etc.) complete the entity
description in the virtual worlds. The entity behavior

governs the changing of these attributes in time, thus
creating animation.

Entity behavior can be classified into two categories:
deterministic and non-deterministic. Deterministic
entities have their state determined by a function of time.
So it is possible to run forward and backward in time,
knowing precisely the state of an entity at any instant. On
the other hand, non-deterministic entities are
unpredictable, generally reflecting human actions. In this
case, it is impossible to predict its state in the future and
not practical to restore its state at any instant in the past
[Roehl, 1995].

Roehl classifies behavior in different levels, accord-
ing to the way it governs how entity attributes change
over time.

• Level 0. Set the attribute value at each frame (e.g.,
set current location to {x,y,z}).

• Level 1. Set the way the attributes change attributes
over time (e.g., set current location to {x,y,z} and
current course to 250º with 20m/s).

• Level 2. Instruct the entity to accomplish tasks,
generally performed by a series of level 1 behaviors
(e.g., go to the nearest harbor).

• Level 3. Instruct the entity to take a top-level deci-
sion, generally performed by choosing a level 2 be-
havior (e.g., decide whether to attack the enemy or to
retract to the nearest harbor).

General-purpose visualization systems usually sup-
port level 0 and level 1, since level 2 and level 3 demand
greater knowledge of the world under simulation.

3 Virtual Environment Visualization

As previously mentioned, our goal is to provide a visual
feedback of the simulated world. The user of a visualiza-
tion system generally stands in front of some viewing
devices, like monitors, screen projections, or wears it, like
when using head-mounted displays.

Regardless of which viewing device is being used, a
virtual observer is always associated with the user. An
observer represents the mapping of the user into the vir-
tual environment. In certain simulated worlds, the ob-
server needs to be attached to an entity, in order to inherit
its characteristics as shape or behavior. In such a case,
the observer acts as an entity that could be seen by other
observers in the virtual environment.

Bound to this virtual observer we have a virtual
viewing surface that we call canvas. Each canvas corre-
sponds to a viewing device and is placed around the ob-
server acting as actual windows to the virtual environ-

ment. With a multiple display viewing system, the dis-
posal of display devices in relation to the user (real ob-
server) maps the disposal of canvases in relation to the
observer. In this way, the user sees, on each display that
surrounds her, the view of the virtual world that the ob-
server would see through each canvas, providing an im-
mersion sensation.

Mapping each viewing device that surrounds the
user into the observer’s surrounding canvases is a very
important task. Good visual results rely on the perfect
matching between the real and the virtual visualization
surfaces.

To provide the user immersion, a system should in-
duce him to focus on a specific problem or experience
without distractions. Immersion happens when the user’s
perception is removed from the real world and replaced
by a virtual one. Immersive environments are often
associated with head-mounted displays (HMD), engaging
graphics, realistic sound, motion and force feedback, used
in order to block out the real world allowing the user to
focus their senses on the virtual one. However, immersive
environments can also be created without head-mounted
displays, since video projection and visual displays alone
may engage the user. Elements like appropriate
resolution and suitable update rates for a particular task
or experience can become interesting to watch and invite
the user’s participation. This way, to create an immersive
environment would require its design to be enough
technically realistic to convey recognition in the user. It
must also be relevant to the task domain, and must be
interesting enough to engage the user's attention and
participation. Designers of immersive environments must
be able to effectively integrate technology and task re-
quirements with human factors, minimizing distractions
and maximizing features that enhance the user's focus
[Barreau and McGoff, 1993].

4 Distributed Visualization

In this paper, we propose an architecture for the
development of a visualization system capable of
fulfilling most of the requirements addressed in the
previous sections. Our choice was to design a distributed
multiple display visualization system that could run on
heterogeneous networks composed by low-end
workstations. Among the reasons that led us to favor a
distributed approach are scalability, portability, and
system costs.

The key idea behind any distributed architecture is
the absence of a central server. The process is distributed
over several computers that are connected by a network
(possibly even the Internet). A distributed solution
introduces two new issues to the visualization problem

that must be addressed: synchronization, because
distributed systems have to tolerate certain amount of
communication latency; and portability, because it should
accept the use of different computers with different
hardware and software.

A naive approach for designing distributed
visualization systems would be to simply have each entity
attributes broadcasted to all workstations at each frame to
be rendered. This solution could work well in small,
dedicated networks, but certainly it does not scale.

Distributed systems for military simulations
frequently use a protocol named DIS – Distributed
Interactive Simulation [IEEE, 1993]. DIS uses a
technique called dead reckoning to deal with limited
bandwidth and network latency. Using this technique,
instead of broadcasting Level 0 behavior at each frame
fully describing the entity attributes, Level 1 instructions
are sent over the network. The visualizers then project
new states in time, without the need for additional
information. With this approach, the visualizer must have
partial knowledge about the simulation that is running,
being able to foresee new entity attributes, during the
period of time that the behavior stays unchanged. This
simple technique produces good results because updates
are generated only when necessary, minimizing network
traffic [Macedonia et al., 1994].

Dead reckoning is not capable of dealing with non-
deterministic behaviors, because they are difficult to be
handled in all computers composing the system.
Unpredictable behaviors would imply in frequent
updating, causing excessive network traffic. In that case,
a centralized one-processor approach would be a better
choice. However, if human decisions, reflecting non-
deterministic behaviors, have a slow impact in the
simulation, like changing the course of a ship, the
behavior of the entity being simulated could be treated as
deterministic during certain time intervals.

Since the dead reckoning fulfills our requirements
for distributed visualization, we adopt this technique in
our system to reduce network traffic and to solve
problems related to synchronization.

On a centralized visualization system, where all
processing occurs once, without data replication and
without processing being held on different computers,
there is no concern about synchronizing the events shown
on the multiple visualization surfaces, since all devices
are directly connected to the central processor. The
distribution timing through a local bus is negligible when
compared with a distribution over a network.

Two synchronization problems arise with the use of
a distributed visualization approach. The first problem is

having different computers composing the system: the
computer clocks are probably not synchronized within the
precision we need for visualization. Our system spends
some effort during initialization phase to achieve such
synchronization, as will be detailed in the following
section.

The second synchronization problem is related to the
network latency. Considering the use of the dead
reckoning technique, imagine that one module signalizes
an entity behavior change (e.g., changing a ship course).
Certainly, each visualizer will receive such a message at a
different instant of time, and, if no further information
were sent, the entity would assume its new course at the
time the message arrives, resulting in a different
simulation on each process. To solve this problem, all
messages are sent with an enclosed timestamp. Thus, no
matter what time it arrives, the visualizer would be able
to step back in time and reset the new state at the correct
simulation instant. Of course, this method will only
guarantee synchronization if the first synchronization
problem is solved, and if no message is lost. In a
visualization system using this step-back technique, the
entities could change their attributes abruptly, reflecting
the fact that such a changing message was lately received.
However, considering a network with low latency, such
changes are imperceptible to human visual sense. This
perceptual issue in fact limits the scalability of our
approach.

It is worth mentioning that if the system presents
flaws, like desynchronized events happening at different

screens, the user would be distracted, and immersion
sensation would be lost. Therefore, synchronization
should be carefully considered in distributed visualization
systems.

5 System architecture

This section details the distributed scheme we used to
develop a multiple display visualization system. The
proposed approach was originally to implement a naval
simulation game; however, its modular configuration
facilitates customization, allowing its use in other
applications. Figure 2 shows an overview of the whole
system architecture

The external world represents the module where the
world simulation takes place. It is also responsible for
handling external input. The client application translates
messages from the external world and distributes them to
all registered server applications. It plays the role of a
coordinator, thus being called coordinator application.
The server applications represent visualization units and
are responsible for rendering the updated scene. Both
world-client and client-server communications happen
over a distribution infrastructure, based on CORBA
[OMG, 1998]. The last module represents the world
model, describing the virtual environment.

It is worth noting that the system kernel, as
illustrated in Figure 2, is composed by the visualization
units and the client-server distribution infrastructure. The
coordinator and the world model vary with external

...

Server Aplications :
Visualization Units

Client
Aplications :
Coordinator
Applications

Distribution
Infrastructure

VU
Display #1

VU
Display #2

VU
Display #n

World Model

Coordinator

Mediates interactions
from external

application to the
System KernelOneway

data from
external

application

External
Application

Responsable for I/O
and complete world

simulation.

External World

System Kernel

World Model pre-configuration

C
O

R
B

A
 L

ay
er

C
O

R
B

A
 L

ay
er

Commom:

Scene

List of Lights

Shapes

Behavior

Appearance

Li
st

 o
f E

nt
ity

s

Shared:

Observer

W
or

ld
 M

od
el

Exclusive:

Canvas

Figure 2 Overview of system architecture.

application, and their implementations should
appropriately reflect the world being modeled. The
migration of such architecture to support another
application would require changes in both coordinator
and model, but would reuse the system kernel.

In the subsections that follow, each module is
detailed described.

5.1 Distribution Infrastructure

The proposed distributed visualization system requires an
infrastructure that supports heterogeneous platforms.
From this point of view, the socket API [Stevens, 1990]
could provide a high level of portability and
interoperability in a TCP/IP environment. However, the
socket API is based on a programming paradigm with a
low level of abstraction. Since our system adopts an
object-oriented approach, a distribution infrastructure
with a better support to object-oriented programming
would be a more suitable choice.

CORBA [OMG, 1998; Siegel, 1996] is an
architecture specification to support distributed
applications that meets both requirements. CORBA
provides platform-independent programming interfaces
and models for portable, distributed, object-oriented
applications. Its independence from programming
languages, computing platforms, and networking
protocols makes it highly suitable for the development of
applications for heterogeneous networks.

CORBA is strongly based on the concept of object
interfaces. An object interface is the set of operations that
an object provides. To describe object interfaces, CORBA
adopts an Interface Definition Language (IDL). Unlike
C++ and Java, IDL is not a programming language, so
objects and applications cannot be implemented in IDL.
The unique purpose of the IDL is to define object
interfaces in a manner that is independent of any
particular programming language. This mechanism
allows applications in different programming languages
to inter-operate.

From IDL definitions, an IDL compiler generates
stubs that client applications can use to access the remote
objects. The generated stub can be in a programming
language different of the one used to implement the
server object. A client stub behaves like a proxy of the
remote object: It delegates to the remote object any
operation performed over itself. Figure 3 exemplifies the
interaction between a client application and a CORBA
object server.

Since we are interested in distributed synchronous
views of the virtual environment, where entities have
deterministic behaviors, our distribution infrastructure

also have to provide some mechanism to synchronize the
simulation time over all Visualization Units. In order to
satisfy this requirement, we adopt a solution based on the
Simple Network Time Protocol (SNTP) [Mills, 1996],
which is an adaptation of the Network Time Protocol
(NTP) [Mills, 1992] used to synchronize computer clocks
in the Internet.

Client Module

Proxy

CORBA

Object Server

CORBA

CORBA
Protocol (IIOP)

Process A - Host 1 Process B - Host 2

Figura 3 Client-sever interaction with CORBA.

NTP is a sophisticated protocol for synchronizing
clocks across a WAN or a LAN, and can often achieve
millisecond accuracy. SNTP can be used when the
ultimate performance of the full NTP implementation is
not needed or justified.

SNTP satisfies our synchronization requirements (1-
10 ms of accuracy) since all hosts that support our virtual
environment are in the same local network. With this
solution, the time synchronization can be performed
outside the application.

5.2 External World: The Naval Simulation System

The visualization system works integrated with another
distributed simulation system that was developed by the
Brazilian Navy for training warship commanders. This
system performs all physics simulation tasks and
processes the user interactions.

More specifically, the naval system is composed by
several CORBA objects that represent the vehicles (ships,
aircraft, and submarines), their sensors (sonar, radar,
etc.), and the user consoles. Besides these components
that represent real entities, there are some control
components, such as the collision detection module.

The users interact with the system through graphical
consoles where they have navigation instruments and the
sensor displays. The navigation instruments allow
changes in the vehicle’s course and velocity. A sensor
display shows the signal generated by a sensor, such as a
radar or sonar.

The vehicle objects have all information about their
relevant mechanical characteristics: position, velocity,

course, turning ratio, etc. With these characteristics, the
vehicle acts as a deterministic entity, whose position is a
function of the time.

This system adopts the same dead reckoning
approach of our visualization system. For instance, a
sensor object extrapolates the vehicles’ positions in
function of the time. When a specific vehicle has its
kinetic state changed, all sensors must be updated. To
perform this update, the observer design pattern [Gamma
et al., 1995] is used: A vehicle has a collection with
objects interested in listening the changes in its state and,
when any change occurs, all objects in the collection
(listeners) are notified. Figure 4 illustrates the pattern
behavior. In fact, this pattern is used in many other
situations that require a notification mechanism.

5.3 Client Application: Coordinator

There is a specific application to coordinate the
Visualization Units (VU). This application, called
Coordinator, has two main components: the synchronizer
and the mediator components.

The synchronizer component is responsible for
setting the simulation time over all VUs. Each VU has a
simulated clock that determines the local simulation time.
When a VU starts, it registers with the coordinator. Then,
the synchronizer sets the VU’s simulated clock in
accordance with the clock of a reference host (probably,
the same host where the synchronizer is running).

The synchronization task is based on the SNTP
protocol [Mills, 1996]. Although the coordinator only
performs the synchronization when a VU registers with
it, this process could be repeated for long simulations, in
order to avoid synchronization deviations.

Once the simulation starts, the coordinator performs
the integration between our system visualization and the
naval simulator. The mediator component is responsible
for this task. It notifies all VUs that the kinetic state of a
vehicle has changed.

Each VU has an entity that represents a virtual
vehicle in the naval simulation. These entities must be
notified when the state of the related vehicles changes.
The same notification mechanism used in the naval
simulator could be sufficient to solve this problem: The
entities could be registered with their related vehicles as
listeners of their state changes.

However, we have decided to use a mediator
component in order to promote loose coupling between
our VUs and the simulation system. Therefore, the
mediator translates all notification messages sent from
the virtual vehicles to the entities. The motivation to
adopt this solution was to improve the system reusability:

To integrate our visualization system with other
simulators, we only need change the mediator com-
ponent. The following paragraphs describe how the
mediator component works.

Radar Object

Sonar Object

Listener of
Vehicle A

Radar Process

Listener of
Vehicle B

...

Listener of
Vehicle A

Sonar Process

Listener of
Vehicle B

...

change state

notify

notifyVehicle A

Process

proxy5

proxy 4

proxy 3

proxy 2

proxy 1
notify

List of Listeners

notify

Figure 4 The basic observer pattern.

For each virtual vehicle in the simulated world, the
mediator creates an object adapter, which is registered
with its related vehicle to listen to state changes. Then,
the VUs’ entities that are related to the same virtual
vehicle are registered with the respective adapter.

The object adapter translates the relevant
notification messages received from the virtual vehicle, to
a message compatible with the entity interface. The object
adapters act as vehicles’ listeners, while the entities act as
object adapters’ listeners. Figure 5 illustrates this
interaction pattern.

Besides the observer pattern, the mediator
component is based on the adapter and mediator design
patterns presented in [Gamma et al., 1995].

5.4 Server Application: Visualization Units

The visualization units (VUs) are server applications that
are running on several computers over the network. Each
VU has to separately render, from a certain point of view,
the image of the simulated world and display it on the
corresponding viewing device.

The system architecture was conceived with no
communication among different VUs. That means they
run independently and, most importantly, they cannot
send synchronization signals among them. As mentioned,
the coordinator is the module responsible for establishing
VUs clock synchronization at system initialization.
Afterwards, the system synchronization relies only on the

assumption that the computer clocks will be precise
enough. This assumption is reasonable for a certain
period of time if the computers are working in normal
conditions. For simulation that runs for long periods of
time, the coordinator should once a while reestablish
clock synchronization. The important point here is that
each VU can trust its own clock to compute entity
attributes varying in time.

During initialization phase, each VU creates a
CORBA interface that is registered in the interface
repository. Then a CORBA clock object is created to
allow the coordinator to access and set the local
simulation time. The next step is to load the world model.
(Details on how it is carried out will be presented in the
following subsection.) By the time each world element
(canvas, observer, entity, behavior, etc) is loaded into the
VU, an equivalent CORBA object is created and
registered, providing an interface for remote access to all
exported element attributes and methods.

The set of appearances and the drawing of shapes
together demand most of CPU processing time in a VU.
The faster these tasks are fulfilled, greater is the frame
rate obtained. Therefore, during initialization phase, the
entity shapes and appearance are processed to allow faster
rendering. Texture images are arranged by a technique
known as mipmapping [Williams, 1983], and the
geometric shapes are processed to create a (simplified)
view dependent progressive mesh [Hugues, 1996; Melax,
1998a]. These constructions have largely improved the
VU overall performance, because they allow the image to

be rendered with different levels of details (LOD).

Only after finishing all these initialization tasks are
the VUs ready to listen to external commands and to
render updated views of the virtual world. That is when
the external application might start sending simulation
messages.

Internally, each VU performs a simple algorithm. It
keeps listening to external commands while maintaining
an updated view of the virtual world. Each VU stores a
copy of the world model, and traverses such data to
render the appropriated image. Whenever an external
commands arrives, probably signalizing a change in
entity behavior, the VU internally performs all necessary
changes in its current state, so that the next rendering
will display the updated world. To ensure portability the
VU uses the OpenGL graphics system [Neider et al.,
1993; Thompson, 1996].

To ensure synchronization, each external command
brings a timestamp corresponding to the simulation time
the event has happened. The VU uses this timestamp to
properly update the entity attributes. If, due to network
latency, the VU receives the command lately, it uses the
timestamp to back up so that the changes take place at the
correct instant.

The VUs are designed to run in simulation real-time,
that is, the frame being displayed will always reflect the
VU state at the rendering time. If, for some reason, the
VU cannot accomplish the rendering in time, we decrease
its frame rate. This strategy allows the use of
heterogeneous hardware composing the system, while

Visualizer Units

Vehicle

Vehicle Process

proxy5

proxy 4

proxy 3

proxy 2

proxy 1
notify

List of Listeners
notify

notify

notify

Display #1

Display #2

Display #3

Mediator Component

proxy 3

proxy 2

proxy 1
notify

List of Listeners

proxy 3

proxy 2

proxy 1

List of Listeners

Listener
Adapter

Listener
Adapter

Figure 5 The communication through the Mediator.

preserving synchronization.

The following pseudo-code outlines the VU working
algorithm:

initialize CORBA interface

load world model

start listening to external calls

loop
 if (external call)
 process external calls
 end if
 update entity state
 render scene
end loop

5.5 World Model

No matter what kind of world is being simulated, we need
a structured model that describes it. This model should
also provide efficient way to modify and retrieve its
component information. Besides that, if we aim to design
a reusable piece of code, such a model should be
appropriately design to handle the visualization of
different virtual environments. Therefore, we based our
model structure on Virtual Reality systems, once they
face, in a larger scale, the same challenge.

We opt to describe the world using easily editable
text files through the use of Lua [Ierusalimschy et al.,
1996], an interpreted language that combines data
description facilities and conventional procedural
features, using a clear and simple syntax. In addition, Lua
supports all the conventional control structures, including
expressions, loops, conditional statements, and function
calls, and all of them can be combined in defining the
world components.

We limited the space domain where the virtual
world is defined to be the 3D Cartesian coordinate system
(x,y,z).

The components that describe the virtual world are
subdivided in three different groups, according to their
use by the Visualization Units: exclusive, shared and
common.

In the exclusive group, there is a component
description for each VU. For instance, each VU has its
own associated canvas. On the other hand, all the VUs
render the same scene, though from different points of
view. Thus scene components (entities, lights, etc.) are
unique and must be common to all VUs. Finally, there is
the intermediate group formed by components that may
be shared among different VUs. The observer is an
example of such a component: in a multi-users

visualization system, we may have several observers, each
one being mapped to its corresponding set of VUs.

A brief description of the main components is
presented below, with a few examples illustrating the
component description in Lua. In general, position and
direction are given by a {x,y,z} vector, and rotation is
given by a {θ,x,y,z} quadruple, where θ indicates the
rotation angle around the {x,y,z} vector. To perform
internal computation, each VU converts such quadruples
to corresponding quaternions.

Canvas: the canvas component contains information
about the physical display device it is mapped to. Such
information consist in providing the device physical
dimensions and placement related to the user. The Lua
code below illustrates its description.

Canvas{
 name = "LeftCanvas",
 width = 0.30,
 height = 0.25,
 xresoluion = 800,
 yresolution = 600 }
 normal = Vector{0,0,1}
 direction = Vector{0,0,-0.07}
 }

Observer: each observer is attached to an entity in
order to inherit its positional attributes. Moreover, we can
displace the observer within its entity coordinate system.

Observer{
 name = "Commander",
 entity = Ship,
 position = Vector{0.0, 0.1, 1.0},
 rotation = Quadruple{ 0,0,1,0}
 }

Entity: the entity represents any visible objects in the
virtual environment. When describing an entity, we
specify its appearance, shape and behavior. The behavior
establishes the entity mechanics. Currently, we are
dealing with static, kinematic, and oscillatory behavior.

In order to allow the composition of hierarchical
models, an entity shape can be defined by a group of
others entities. Hierarchy is important for building
complex objects and allows us to model sophisticated
behavior, like a person walking on a ship deck or the
propeller of a flying helicopter.

Visualizer: the visualizer component represents the
display surface composing the system. It is described by
mapping a observer–canvas association. Each VU must
have its corresponding visualizer.

6 Results and Conclusion

Instead of using a sophisticated hardware to provide
multiple synchronized views of a virtual world, we
proposed the use of a distributed visualization system.

The proposal brings some immediate benefits like its
scalability and the possibility of using heterogeneous
networks composed by low-end, cheaper workstations.

The proposed architecture can be used in a variety of
applications since its system kernel was designed to deal
with different world models and simulations. The system
is also scalable to support multiple users, where each user
sees the virtual world through a set of viewing devices.

The distributed approach also brought new problems
to be addressed. We need portability to deal with
heterogeneous networks, and we have to ensure
synchronization among all the views. Portability was
achieved by basing the distribution infrastructure on
CORBA and using OpenGL as the graphical system.
Synchronization, in a local area network, is ensured by
using the Simple Network Time Protocol (SNTP) for
clock synchronization. Moreover, the coordinator
encloses a timestamp in each message sent to the
visualization units, allowing them to periodically adjust
their own simulation time.

A prototype of the proposed system was
implemented using ship and aircraft models (composed
by 5-6 thousand triangles each) obtained at [Melax
1998b]. The photograph shown in Figure 6 illustrates this
system in use with a network composed by three PCs
running Windows.

Finally, results based on this prototype have shown
that all requirements needed for providing multiple views

of a virtual environment are achieved.

Acknowledgments

The first author is supported by the Brazilian Army. The
second author is supported by a research grant from the
Brazilian Council for Scientific and Technological
Development (CNPq). TeCGraf is a laboratory mainly
funded by PETROBRAS.

We thank Paulo Mattos for the implementation of the
LOD algorithm.

References

[Barreau and McGoff, 1993] Deborah Barreau, and Kim
McGoff, “Immersion”, http://www.hitl.washington.edu/
scivw/EVE/III.C.1.Immersion.html, Department of
Computer Science, Human Interface Technology
Laboratory, University of Maryland, 1993.

[Gamma et al., 1995] Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995.

[Hugues, 1996] Hoppe Hugues, “Progressive meshes”,
Computer Graphics (SIGGRAPH 96 Proceedings), pp.
99-108, 1996.

[IEEE, 1993] Institute of Electrical and Electronics
Engineers, International Standard, ANSI/IEEE Std
1278, Standard for Information Technology, Protocols

Figure 6 Visualization system snapshot.

for Distributed Interactive Simulation, March 1993.

[Ierusalimschy et al., 1996] R. Ierusalimschy, L. H. de
Figueiredo, and W. Celes, "Lua: an extensible extension
language", Software: Practice & Experience, 26 (6),
pp. 635-652, 1996.

[Macedonia et al., 1994] Michael Macedonia, Michael
Zyda, David Pratt, Paul Barham, and Seven Zeswitz,
“NPSNET: A Network Software Architecture for Large
Scale Virtual Environments”, Presence, 3 (4), Fall
1994.

[Melax, 1998a] S. Melax, "A Simple, Fast, and Effective
Polygon Reduction Algorithm", Game Developer
Magazine, November 1998.

[Melax, 1998b] S. Melax, “Simple Polygon Reduction”,
http://www.cs.ualberta.ca/~melax/polychop/, 1998.

[Mills, 1992] D. Mills, Network Time Protocol
(Version 3): Specification, Implementation, and
Analysis, RFC 1305, March 1992.

[Mills, 1996] D. Mills, Simple Network Time Protocol
(SNTP) Version 4 for IPv4, IPv6 and OSI, RFC 2030,
October 1996.

[Neider et al., 1993] Jackie Neider, Tom Davis, and
Mason Woo, OpenGL Programming Guide, Addison-
Wesley, 1993.

[OMG, 1998] The Common Object Request Broker
Architecture and Specification; Revision 2.2, OMG,
Framingham, MA, February 1998.

[Roehl, 1995] Bernie Roehl, “Some Thoughtson
Behaviour in VR Systems”,
http://ece.uwaterloo.ca/~broehl /behav.html, University
of Waterloo, 1995.

[Siegel, 1996] Jon Siegel, CORBA Fundamentals and
Programming, John Wiley & Sons", 1996.

