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Abstract. This paper presents a new algorithm for the cyclification of 1D signals, based on a time� frequency
warping. The main goal is to preserve the basic characteristics of the signal, such as low and high frequency
regions. The application outlined in this work is the cyclification of motion captured joint curves (near–periodic
signals). Also, a method for cyclification of articulated figure motion is presented.
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1 Introduction

The data generated by a motion capture device is formed by
a set of samples which represents the position and global
orientation of a real object at uniformly spaced instants of
time. In the case of human motion capture, the position and
orientation of several joints of an actor are recorded, gen-
erating a set of 1D signals also known as motion curves.
These curves are then processed and mapped onto a skele-
ton hierarchy which will drive a virtual actor in the com-
puter [5]. This signal–like nature of the captured data sug-
gests that it should be treated using the paradigms of signal
processing theory [1].

Motion capture data processing has become an im-
portant field of research in recent years [4]. The cres-
cent demand of powerful tools for motion editing has led
to the development of several techniques such as warping
[12], blending [14], concatenation [16] and reparametriza-
tion [6]. In all cases, the main goal is to reduce the overall
time and, consequently, cost of the capturing process. Ani-
mators should be able to manipulate and reuse the captured
data in order to achieve the desirable effect, even when the
recorded motion is not as good or precise as expected.

Another example of motion processing is cyclification.
This technique scales the motion length in time while pre-
serving its basic characteristics. Several important applica-
tions arise from the use of this method. In the entertainment
industry, computer games such as FIFA99 [33] use cycli-
fication to create transitions between basic pieces of mo-

tion according to user interaction. Cyclification/expansion
methods are also used for synchronization purposes in dig-
ital sound+video processing and motion control theory [9].

This paper presents a novel approach for motion cycli-
fication. We use a time warping algorithm [17], initially de-
veloped for audio signals, to generate seamless transitions
between motion loops. The motion curves are warped in
the time� frequency domain, thus preserving the charac-
teristic of frequency components of the original signal. The
techniques presented here work well with motion capture
data, but would work equally well with any other anima-
tion parameter like trajectories, velocities or forces.

The organization of the paper is as follows: Section 2
briefly reviews previous work in the area of motion cycli-
fication; Sections 3 and 4 present our method, discussing
the representation and warping of 1D signals in time� fre-
quency domain; Section 5 applies our method to motion
captured joint curves; Section 6 presents a method for cy-
clification of articulated structures using our algorithm. Fi-
nally, section 7 concludes the paper and presents some fu-
ture work.

2 Previous Work

Motion expansion can be performed by using two different
approaches: reparametrization or cyclification.

In the first method, regions of the motion curves are
reparametrized using resampling techniques. This opera-
tion changes the number of samples at those selected re-



gions, resulting in a expansion (warping) of the signal in
time domain, as shown in Figure 1 (a). Note that this trans-
formation changes the overall characteristic of the move-
ment, because the frequency components of the original
motion curve are also being “deformed”. In [6], a discrete
motion reparametrization technique was proposed to pro-
duce effects such as slow–motion and accelerated–time in
captured data. A local resampling process is performed,
expanding or compressing regions of the motion curves ac-
cording to a user–defined velocity function.
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Figure 1: (a) - Expansion of a periodic signal in time do-
main; (b) - Concatenation of a periodic signal.

The second approach attempts to preserve the fre-
quency components of the original signal. This can be done
naively by concatenating the motion curves several times,
one after another. Observe that this process works very
well for perfectly periodic motions, where the beginning
and end of the curves match precisely so that a smooth tran-
sition is guaranteed between the loops of the concatenated
sequence, as shown in Figure 1 (b). Moreover, the over-
all “shape” of the movement is preserved since there is no
change in the frequency contents of the motion curves (they
are simply being repeated along the time axis).

However, due to the nature of human locomotion, it
is very unlikely that a perfectly periodic motion will oc-
cur. Small variations in phase components of a “poten-
tially periodic” human motion signal are caused by a series
of factors, including oscillations of torque forces in mus-
cles, uneven terrain and other external factors. Moreover,
these biomechanic and external factors introduce an impor-
tant noise component in the signal, which is a fundamental
aspect of natural–looking motion. In fact, Perlin [18] has
pointed out that human motion synthesis should incorporate
some kind of “texture” so that this stochastic characteristic
is simulated. We will call a motion with these properties as
near–periodic. An example of such kind of motion signal
is shown in Figure 2.

In the cyclification process of near–periodic motions,
there is a boundary problem that should be addressed in or-

Figure 2: Motion captured joint curve: a near–periodic sig-
nal.

der to guarantee a correct transition between the movements
(see Figure 3). Smoothing methods can be used to blend
the regions between motion cycles, but this may cause
undesirable features in the final animation, such as self–
intersection of body segments and joint constraint viola-
tions. Another important issue regarding this problem is the
detection of cycles. For near–periodic motions this usually
requires a complicated analysis of the motion curves, mak-
ing the process very time consuming and, consequently, not
suitable for interactive applications.

!

Figure 3: Boundary problem on near–periodic curve cycli-
fication.

Cohen et al. [16] propose a semi–automatic method
for motion cyclification based on minimization criteria. The
algorithm requires user interaction in order to specify the
approximate length of a cycle. The discontinuities existing
when the motion cycles are reduced by minimizing kine-
matic parameters of the articulated structure. Moreover, the
end points of the cycle are deformed so that they match
exactly. At the end of the process, aC2 motion curve is
generated by fitting a least squares cyclic B-spline approx-
imation to the modified motion. Using a similar approach,
Sudarsky and House [15] generate motion cycles by fitting
nonuniform B–splines to captured data. Such interpola-
tion reduces the natural noisy behavior of captured motion
curves, but provides an easy way to generate cycles by us-
ing blending operators based on the B–splines construction
scheme.

Working on the frequency–phase domain, Unuma et
al. [13] developed a method to generate transitions by using
a Fourier expansion of the motion curves. Periodic motions
are interpolated by an automatic synchronization of phases
based on “rescaled” Fourier expressions.

Our approach is novel in two ways. First we use a dis-
crete transform, which allows fast and efficient implemen-
tation. Second, by the choice of this transform: local cosine



basis, which is a real orthonormal transformation (perfect
reconstruction) that achieves window overlapping and dis-
misses the care in the “phase” component. Moreover, the
fine structure (that is, the natural “texture”) of the move-
ment is preserved, since we are not deforming the frequency
contents of the original motion curves.

3 Lapped Cosine Representation of 1D Signals

Since a motion curve is a 1D signal, it seems natural to
use time� frequency transforms to analyze it. Fourier
and Wavelets transforms have been widely used for this
task. There is vast signal processing literature concerning
this theory, such as [21], [22] and [23]. In particular, [25]
and [26] describe warping techniques on the frequency and
space–frequency domain, respectively.

In order to achieve the purpose of developing a time
warping of a motion path without changing the frequency
components, we need a transform that could break the fre-
quency spectra into wave packets of different sizes. In fact,
using such a transform, when scaling the path we replicate
the packets without changing its frequency contents. The
well known process of constructing those wave packets is
the windowing technique, as illustrated in Figure 4.
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Figure 4: Windowing of a periodic function.

By carefully choosing the window, H. Malvar, Coif-
man and Y. Meyer were able to construct an orthonormal
transform, so calledLapped Cosine Transforms(LCT). For
a detailed discussion on the construction of the orthonor-
mal basis using the windowing process, see [27]. We have
chosen the LCT to represent the motion signal in time�
frequency domain. The LCT have two relevant advantages:

1. It is a real transform based on the Discrete Cosine
Transform-IV [28]. This avoids the need for special
care of the phase component.

2. It is an orthogonal transform, whose basis are differ-
entiable and have compact support. Also, its windows
overlap.

The overlapping is responsible for the elimination (or
considerable reduction) of the undesirable clicking, that
usually appears after synthesis and manipulation using the
WFT (Windowed Fourier Transform) representations. This
is a boundary problem, and happens due to discontinuities
in the boundaries of adjoining windows (see Figure 5).

The forward transform is accomplished in two steps:
first a “folding” operation is done on each segment, which
will in some sense add the neighbors’ border information
to each window; then, a normal DCT-IV is executed. This
folding operation must be carefully projected such that an
orthonormal transformation is achieved at the end.
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Figure 5: Basis elements: orthonormality with overlap.

The inverse transform is also done in two steps: the
normal DCT-IV (which is it own inverse), followed by the
unfold operation.

Some of the different elements of this basis can be seen
in Figure 6. They are carefully constructed such as to pre-
serve orthonormality.

Figure 6: Four different elements of the basis.

The representation of a signal in time� frequency do-
main creates a finite partition of the time� frequency plane.
In the vertical axis (frequency axis) there are all the fre-
quency elements of the transform basis, while in the hor-
izontal axis (time axis) the overlapped time windows are
placed. The time� frequency localization is done by a
convolution of each frequency element with its correspond-
ing time window, thus creating a partition of atoms in the
time� frequency plane, as shown in Figure 7.

4 Time� Frequency Warping of 1D Signals

When a 1D signal(f) is represented in a time� frequency
domain, it can be regarded as a continuous 2D image. The
support is a rectangle whose horizontal axis represents the
time support of the phenomenon, and whose vertical axis
represents the frequency axis (from 0 to�).

The time warping operation(W ) in the frequency do-
main uses an affine dilation on the time axis of the time
� frequency representation (i.e., we scale the image on the
time axis). This results in a replication of the atom elements
of the representation, as shown in Figure 8. We transform
the 1D signal,T (f); apply the time scaling (dilation or
compression),W (T (f)); and reconstruct the curve in the
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Figure 7: Time� frequency representation.

time domain using the inverse transform,T�1(W (T (f))).
Since regions of the image represent the presence of certain
frequency components in the time segment limited by its
boundaries, its stretching is responsible for a replication of
the oscillations (prolonging the phenomenon in the expan-
sion case). This sequence of transformations is presented in
Figure 9.
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Figure 8: Time dilatation in time� frequency domain.

5 Warping of Joint Motion Curves

An articulated object consists of rigid bodies connected by
joints, which can be classified into three different types:
revolute, spherical and prismatic. The first two are the most
used for representing complex structures such as the hu-
man body [4]. These joints are geometric constraints which
allow relative movement between segments of the struc-
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Figure 9: Time� frequency representation and warping of
a signalf (top). (from Goldenstein et. al [17])

ture. Such relative movement is called a Degree of Freedom
(DOF).

In traditional animation, the movement of an articu-
lated object is performed by varying the angle of joints in
time. Depending on the control method used to drive the
objects, this angular variation may be produced by kine-
matic or dynamic constraints imposed to the structure. The
resulting sequence of angular values is known as a motion
curve, and can be represented in the computer as a 1D dis-
crete signal. Figure 10 presents a simple articulated ob-
ject (a pendulum with one DOF) and a motion curve (that
is, values of�) generated by releasing the pendulum from
pointA until it reaches the rest position inB.

In human motion capture animation, the angular dis-
placement of joints is recorded directly from the move-
ment of body segments. Due to biomechanic characteristics
of human locomotion, its motion curves are highly com-
plex. General, basic motion patterns are represented by low
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Figure 10: Motion curve of a pendulum.

frequencies components of the curves. This is called the
“shape” of the motion. On the other hand, high frequen-
cies contain detail, subtleties and noise artifacts which are
responsible for the “texture” of the movement. Although
there are innumerous possibilities for human motions, it
is observed that a predominant set is formed by motions
with periodic or near–periodic characteristics. Daily ac-
tions such as walking, running and eating have a periodic
behavior. Even variations of a same movement, such as
“fast walk” or “brisk walk”, have a common periodic shape
on their motion curves (a detailed discussion on this topic
can be found in [1], [13] and [18]). Figure 11 presents
a near–periodic captured curve containing the angular dis-
placement of the left upper arm joint of an actor executing
a walking movement.

Figure 11: Motion captured curve (left upper arm joint)
from a walking sequence.

For best results, a cyclification algorithm must extend
the motion curve in time while preserving both its shape
and texture. In order to accomplish this task, the first step is
the detection of the fundamental cycle, which is equivalent
to the lowest frequency present in the signal (Figure 12).

Our algorithm employs an autocorrelation method,
and the fundamental cycle is given by the distance between
consecutive maximum points of the correlated signal. The
circular autocorrelation function can be used to measure the
similarity between translated versions of a signal:

�(i) =

N=2X

�=0

x(i) + x((i + �)modN): (1)

Figure 12: The fundamental cycle: a low frequency signal.

Observe thatj�(i)j � �(0), since�(0) is the signal en-
ergy. Through the use of a smooth window in the signal be-
fore calculating the circular autocorrelation, we give more
weight to the central part of the data, farther from the bor-
der effects, as well as increase the likelihood of smaller pe-
riods. This is extremely important because in periodic or
near–periodic functions, there will exist at least one maxi-
mum at each multiple of the fundamental cycle. However,
there is no guarantee that other (lower) local minima will
also exist. Without the windowing, all maxima concerning
the multiples of the fundamental cycle will have amplitude
similar to�(0), which makes difficult the task of choosing
the fundamental cycle. With the windowing process, the
function is smoothed and the selection of the fundamental
cycle is taken by choosing the greater maximum, excluding
�(0).
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Figure 13: The process of autocorrelation.

5.1 Some Examples

The following examples illustrate the application of our
method to several individual motion curves. In all exam-
ples, the window size (that is, the fundamental cycle) de-
tected by the algorithm is represented as a gray rectangle in
the original signal, which is placed at the top. A warp factor



of two was applied in all examples.

Sine with variable period and window size

Figure 14 (a) shows a signal which is a combination ofsine

functions with different periods. Also, a frame ruler was
placed at the top of the image, showing all the window sizes
(WS)used with the algorithm in order to observe the effects
on the resulting signal.

1 15 60 115 150

(a)

(a)

Figure 14: (a) - Originalsine function; (b) - Warping
of sine function with variable period (warp factor = 2.0).
From top do bottom, window size of 1, 15, 60, 115 and
150.

In Figure 14 (b), the first signal represents a warping
with WS=1. Note that in this case the result is equivalent to
a reparametrization (that is, expansion in the time domain).
This happens because withWS=1 each frequency of the
original signal is repeated along the time axis. The second

signal shows a warping withWS=15. This time, noisy ar-
tifacts were introduced because the window size is smaller
then the fundamental cycle (the algorithm tries to replicate
frequencies that doesn’t match). The third signal shows the
application of our method withWS=60. Note that there are
still noisy artifacts in the resulting signal, specially in the
high frequency regions. The forth signal presents a warp-
ing with the fundamental cycle detected by the algorithm
(WS=115). Observe that in this example there is a perfect
replication of low and high frequencies of the original sig-
nal. Finally, the last signal shows a warping withWS=150.
In this case, since the window size is greater than the funda-
mental cycle, some discontinuities were introduced during
the cyclification process.

Sine with fixed period

Figure 15 shows the application of our algorithm to asine

function with fixed period. Note that, although thesine
function is periodic, in this example the beginning and end
of the signal doesn’t match, and therefore a simple concate-
nation would not generate good results. By applying our
algorithm, the resulting signal is a perfect cyclification, and
there are no discontinuities in the boundaries of the cycle.

Figure 15: Warping ofsine function with fixed period
(warp factor = 2.0).

Pendulum

In Figure 16 the pendulum function was used as input to
our method. It is important to notice that in this case there
is only a basic frequency which is repeated along the curve,
but its amplitude decreases quadratically with time. The
resulting signal shows a replication of the frequency com-
ponent, while preserving the quadratic decaying of its am-
plitude.

Sine with variable period and noise

Figure 17 presents an example with asine function with
variable period and random noise. Our algorithm has pro-



Figure 16: Warping of pendulum motion curve (warp factor
= 2.0).

duced a signal that preserves both the fundamental cycle
and the higher frequencies of the original signal.

Figure 17: Warping ofsine function with variable period
and random noise (warp factor = 2.0).

Left upper arm joint curve

In the last example of this section (Figure 18), we have used
the motion captured curve of the left upper arm. Note that
the resulting signal is a perfect cyclification of the original
one, with no discontinuities during the motion loops.

6 Cyclification of Articulated Figure Motion

In the previous section of this paper, we employed the time
warping algorithm to transform motion curves of simple ar-
ticulated structures in time. These structures consisted of
only one joint with a single DOF. One of our goals is to
extend the method to work with objects of higher complex-
ity, such as articulated structures that represent the human
body. This is a very difficult task, mainly because of two
aspects:

� To represent the movements of a human body with
exactness, an articulated structure must have a large
number of segments and joints, each with two or three

Figure 18: Warping of left uparm motion curve (warp factor
= 2.0).

DOF’s. This results in a large amount of data to pro-
cess and control simultaneously.

� For near–periodic motions, such as walking, there is
synchronism between segments of the human body.
This synchronism should be preserved by the warping
algorithm in order to generate a dynamically plausible
movement.

The literature of motor control techniques for charac-
ter animation has several examples of methods to deal with
the problem of generating periodic human motion ([9], [10]
and [11]).

Motions with periodic or near–periodic characteristics
have a coupling between the movements of joints or groups
of joints. Depending on the type of motion that is being ex-
ecuted, these joints may have a strong or weak dependence
on their phases. A strong dependence within a group of
joints means that their motion curves have a common peri-
odic behavior, with phases that are multiples of a predomi-
nant fundamental cycle. In a weak dependence, the motion
curves of joints are being influenced by the movement of
other joints or groups of joints. To illustrate this problem,
we will analyze the walk movement.

In a walk movement, the motion of knees, feet, elbows
and hands is strongly influenced by the motion of upper
arm and upper leg joints. This happens due to the structural
relationship existing between these joints and also due to
the nature of the walk motion. Events such as heelstrike
and toe-touch are interpreted and processed by the human
locomotor system in order to trigger actions that will con-
trol the basic aspects of a human gait. Moreover, there is a
weak dependence between the joints of the arms and legs.
This happens due to the necessity of a balance control that
is achieved by a cross synchronization of arms and legs mo-
tions.

Our approach uses the autocorrelation method de-
scribed in the previous section in order to detect the pre-



dominant cycle associated to a group of joints. For each
group of joints, the autocorrelation method is applied to
all motion curves, resulting in a set of fundamental cycles.
We take the greater of these cycles as the representative of
the group. This representative cycle is then used as the
window size that will be applied to all motion curves of
the joints within the group. With this choice, we guaran-
tee that all other fundamental cycles (which in periodic or
near–periodic motions are multiples of a predominant fun-
damental cycle), will be correctly replicated during the time
warping.

We have applied this method in several near–periodic
motions, with promising results. Figure 19 shows some
frames from a walk motion. As discussed before, in this
case there is a strong dependence within the group of joints
that represent the arms and legs. Also, there is a weak de-
pendence (cross synchronization) between these groups due
to balance control.

In Figure 20 we present selected frames from a back-
flip kick motion. Note that in this case there is still a strong
dependence within the group of joints that represent the
arms and legs, but the weak dependence now is represented
by a coupled synchronization of arms and legs. The right
arm of the figure is responsible for the initial impulsion of
the body before the flip. The right leg follows the rotational
movement of the arm, generating the necessary propulsion
to complete the flip. Also, note that the left arm and leg ba-
sically have the same rotational behavior, rotating through
the vertical torso axis in order to complete the movement.

7 Conclusions and Future Work

We have presented a technique for cyclification of motion
curves. The method is based on a time warping algorithm
that works on the time� frequency domain of the motion
curves, thus preserving the characteristics of its frequency
components. We have successfully applied our algorithm
to several periodic and near–periodic motion curves. Also,
we have proposed a method for cyclification of articulated
figure motion, based on an analysis of strong and weak de-
pendencies between the segments of the body. In this case,
the first results were promising, but we are still investigat-
ing the different aspects of this problem.

As future research, we plan to extend and improve the
method to work with complex human figure motion, as well
as with facial animation. In this case, there is a strong re-
lationship between the facial parameters and audio signals.
Non–linear editing of audio and video sequences, and film
dubbing (lip–sync) are important applications that could
benefit from the usage of our method. Our future objec-
tive is to implement the time warping algorithm in a full
animation system, in order to transform simultaneously hu-
man motion, facial animation and sound.
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