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Abstract. In this paper, we generalize to the oriented projective pEhan algorithm for constructing all order
k Voronoi diagrams in the Euclidean plane. We also show that, for fixadd for a finite set of sites, an order
Voronoi diagram il has an exact number of regions. Furthermore, we show that theloxeonoi diagram of
a set ofn sites inT? is antipodal to its order — &k Voronoi diagramyk : 1 < k < n.

1 Introduction Definition 2: The order relation betwe€eR' points is de-

i ; sl
The problem of answering nearest neighbor queries with fined as follows. Lep, ¢ be points inT". We say that
i P<r1q if and only if:

arbitrary k has an efficient solution based on the a prior .
construction of all ordek: Voronoi diagrams. This is the (0) Pugw < 0, pu 20, g <0 or

approach used in the optimal algorithm due to Frank Dehne ~ (#9) Putw > 0; Potduw < doPu-

[1] for the Euclidian Plane. We present a generalization of Itis easy to verify thatl;» satisfies the same axioms as
this algorithm for the two-dimensional oriented projective (real-valued) distance functions and it is, therefore, a gen-
spacel” [8]. This space handles oriented lines as well as eralization of this notion. We cali=(p, ¢) the two-sided
many other fundamental geometric concepts in a consistenguyclidean Plane distandeom p to g.

way. Section 2 gives some references related to Oriented  |n the following sections, we le§ C T2 denote a set
Projective Geometry. In section 3, we present several prop-of n, points, calledsites Let =S denote the set of points
erties of Voronoi diagrams, some of them intrinsic of this that are antipodal to the sites B Let & be an integer,
space. For example, the orde¥oronoi diagram of afinite 1 < k < n. For each subsdif;, C S of k sites, denote by
set of sites ifl'? has an exact number of regions. Further- Vi(Hy, S) the set:

more, this diagram is antipodal to the order k£ Voronoi {x € T? | dy2(x, p) <1 dy2(z, q), Vp € Hy,

diagram of the same set of sit&4; : 1 < k < n. Finally, Vg C S\ Hy},
section 4 presents the algorithm and a proof of its correct- called the ordef Voronoi region associated t},.
ness. Thatis,Vi,(Hy, S) is the set of points ifi? whosek nearest

neighborsinS are the sites iff,. 1t follows fromdr= being
a generalization of the Euclidean metric that the set of all
orderk Voronoi regions forms a partition df2. We denote

For the sake of conciseness and due to limited availability thjs partitionV (5), and call it the ordek Voronoi diagram
of space, we refer the reader who might be unfamiliar with of g

the basic concepts and notations related to Oriented Projec- e assume thaf U —S contains no four points with
tive Geometry to the books [7] and [8]. It might also be of proper circumcenter. Under this assumption, we show that
interest to read the theses [2], [6] and the papers [3], [5].  each Voronoi vertex has degrageven if it lies on the line

at infinity 2.
3 Voronoi Diagrams in T2 Every edge of an ordet Voronoi diagram is a por-

) _ ) . . tion of a bisectorB(p, q), with p, ¢ € S. We denote by
In this section, we present several properties of Voronoi di- By(p, q) the portion ofB(p, ¢) which is an edge of the or-

agrams inT2. Some properties are general and can be ap-derk \oronoi diagram ofS, denoted by, (S). If H C S
plied to Voronoi diagrams ifk?, while others are intrinsic and|H| = k, Vi (H, S) denotes the region df(S) asso-
of T=. ciated to the sites it .

2 Oriented Projective Geometry

Lemma 1: If p, ¢, r are points irl'?, then:
3.1 Properties of Order k Voronoi Diagrams in T2 Pt P

Definition 1: Let p, ¢ €T2, where at least one of them is a dra(r, p) <t dr=(r, ¢) <= dr=(, p) 271 dpa(r, )

proper pointdrs(p, ¢) : T2 x T? — T, is defined as:
dr2(p,q) = Proof: Let [z, w;] and[z., w»] be the coordinates, i,
[\/(pwqw — GeP)E T (e — qypw)Q’pwqw] of dr=(r, p) anddr=(r, q), respectively. Then,




dr2(r, p) <t1dr2(r, q) <= [T1,w1] <11 [T2,W2]

By the definition of <p1,

[Z1, w1] <71 [22, Ws] <=

either

(i) waws <0 and wy >0 and wy <0 <
(—w1)(—ws2) <0 and wy >0 and ws <0 <
(—w2)(—w;1) <0 and (—wy) >0 and (—wy) <0;
or

(i7) wiwe >0 and riws < Towy <
(—w1)(—w2) >0 and x1(—ws) > z2(—wy) <=
(—w1)(—ws2) >0 and x2(—wy) < z1(—ws).

Since((i) or (i1)) <
lows that
[z1, w1] <11 [@2, wo] <= [#1, —w1] >71 [T2, —W2].

[1‘1, —’U}l] >11 [1‘2, —IUQ], it fol-

By the definition of two-sided Euclidean Plane distance:

dr>(r, p) = [z1,w1] <= dp2(-r, p) = [z1, —w1].

Similarly,
dr2(r, q) = [x2,w2] <= dr2(—r, q) = [x2, —w2].

Therefore, we have proved that
d'ﬂ‘z(T, p) <T1 d’ﬂ‘Z(T‘, q) < djrz(—!T, p) >11 d’ﬂ‘z(_'T', q)

O

Theorem 1 The orderk Voronoi diagram of a sef of n
sites inT? is antipodal to its ordem — & Voronoi diagram,
Vk: 1<k<n.

Proof: Consider the ordet Voronoi diagram ofS, Vi, (S),
and a pointc € T?. Let H; be a proper subset ¢f, con-
taining k of its sites. By definition,
x € Vk(Hk’ S) — de(ma p) <r: dTZ(ma (I)a
VpEHk,VQGS\Hk.
By Lemma 1,
& € Vi(Hy, S) <= dr2(=a, p) 211 de2(-a, q),
Vp € Hy, VqES\Hk,
which is equivalent to
x € Vk(Hk’ S) — d'ﬂ‘z(_'l., q) <t d'ﬂ‘z(_'l., p),
VqES\Hk,VPEHk,
or

T € Vk(Hk, S) < € Vn_k(S\Hk, S)
O

The following lemma, whose Euclidian version can be

found in [4], describes the proper pointsTf which lie on

edges of some ordérVoronoi diagram. For a description

of points at infinity, see Lemma 3 and Theorem 4.

Lemma 2: Let V. (S) be the ordek Voronoi diagram of a

setS of sites inT2. p ¢ Q is a point of an edg®;, (s;, s;)
of V. (S) if and only if the circle centered atwith radius

dr2(p, s;) = dr2(q, s;) containsk — 1 sites of S in its
interior.

Proof: Itis a simple generalization of the proof of lemma 3
dueto Lee [4].
a

Theorem 2 Letw, —v € T? be the proper circumcenters of
Sa, S, Sc € S, With 54, s3, s, On the same range @°. Let
H denote the set of sites that are closer thans,, s, s¢
are:

H={z€S: drz(v, z) <p1dr2(v, $4)}

and letk = |H|. Then,v is a Voronoi vertex ofV;4(S)
andV;42(S), while —v is a Voronoi vertex oV ,,_;_1(5)
andV,,_x_»(S). Furthermore, the edges and regions that
are incident orv and—w are given on the diagrams shown
in figures 1 and 2, respectively.
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Figure 1: Incident edges: (a)on the front range and (b)
—w on the back range.

Proof: Itis a generalization of the proof of theorem 1 due to
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Figure 2: Incident edges: (a)on the back range and (b) e
—w on the front range.
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Dehne [1]. By Theorem 1, it follows that the edges incident Figure 3: Edges oV, incident onv: (a) v on the front

range and (by on the back range. The shaded area repre-
O sents the interior of the circle centeredpatNote that, in
both cases, this circle contaifi§| = k sites in its interior.

on—w are the edges antipodal to those incidenton

Theorem 3 Let s, sp, s € S andv € T?\ 2 be a Voronoi

vertex ofV;(S) so that:
(S Vt(Aa S) n Vl(Ba S) N Vl(Ca S)a
—w is a Voronoi vertex ofV; (.S),

—v e V;(A', S)NV;(B, S)nV;(C', S),

andv and-w are the proper circumcentersgf, sy, s.. Let
H denote the set of sites ¢f that are closer te thans,,

Sp, S are:
H={z€S: drz(v, z) <t1dr2(v, $4)}

and letk = |H|. Then, either
i=k+1landj =n — k — 1 with

{A,B,C}={HU{s.}, HU{sy}, HU {s.}} and

{4, B, C'} = {S\(HU{s.}), S\ (HU{s,}), S\ (HU
!

or

i=k+2andj =n — k — 2 with

{A, B, C} = {HU{sq, sp}, HU{sp, s}, HU{sq, sc}}
and

{A', B, C') = {S\(HU{54, 5}), S\(HU{s1, 5.}), S\
(HU {84, sc})}-

Proof: It follows as a generalization of theorem 2 in [1].
By Theorem 1, we have that’ = S\ 4, B’ = S\ B and
c'=S5\C.

O

Theorem 2 presents a sufficient condition for a point



-~ Vi
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Figure 4: Edges oV, incident onv: (a) v on the front
range and (by on the back range. The circle centered,at
in both cases, containfl | + 1 = k + 1 sites in its interior.

v ¢ (1 to be a Voronoi vertex oW1 (S) andV2(S5).

On the other hand, Theorem 3 shows that the condition is
necessary. Hence, Theorem 2 describes all proper vertice
and its incident edges and regions of all diagramss),

Vk :1 < k <n— 1. Before we describe vertices at infinity,
we need the following definition.

Definition 3: Consider the identity homeomorphigmvhich
maps the spherical model @# to the unit spher® ¢ R3.
Let B(q, a) denote the set of points 6 whoseR? dis-
tance fromg € S* is less than or equal ta. The neigh-
borhood N (p,a) on T? is the set of pointd ! (r), with
r € B(h(p), a).

The following lemma characterizes the points which
lie on edges of some ordérVoronoi diagram. Corollary
1, which follows from Lemma 3, is used in Theorem 5 for

characterizing the vertices at infinity.

Lemma 3: If p € T? is a point which borders two adjacent
Voronoi regions/, (H U{s, }) andVy (H U{sp}) of V(5),
thenp is contained in the line

r = norm(dir(sq V sp)) V midpoint(sq, Sp).

Proof: Consider a poinp € T2 which borders two adjacent
Voronoiregions/, (HU{s,}) andVy,(H U{sy}) of V,(S5).
If p ¢ Q, thendrz(p, s,) = drz(p, sp) and thekth nearest
neighbor ofp is s, or s;. Sincep ¢ Q, p is contained in-.
If p € Q, by contradiction, suppose thats notinr. Then,
either
(i) s, ands, are on different ranges, in which case-= (2,
which containg, a contradiction tgp ¢ r;
or
(i) s, ands, are on the same range, in which cas&
Qandp ¢ r. If we takea > 0 sufficiently small, the
neighborhoodV (p, «) contains points of only one region,
a contradiction to the fact thatbordersV,.(H U {s,}) and
Vi.(H U {sp}). Again, we have a contradiction.

(I

Corollary 1: If v € Q is a vertex ofV,(S) then there exist
54, Sp € S with s, ands;, on the same range @2, such
that

v € r = norm(dir(sq V sp)) V midpoint(sq, sp).

Let s,, sp, s € S. We denote byM (a,b,c) and
- M (a, b, c) the circumcenters of,, sp, s.. Since all sites
are cocircular if we take any point dn as their circum-
center, there is no site in the interior of a circle centered at
a point on{). Theorem 2 is not enough to characterize to
which Voronoi diagrams a vertex dd belongs. Theorems
4 and 5 describe which verté) (a, b, j), circumcenter of
ar by 85 € S, is adjacent to a vertex € Q and to which
Voronoi diagrams belongs. Firstly, let us establish suffi-
cient conditions.

Theorem 4 Letv € Q ands,, s, € S, with s, ands;, on
the same range d?, such that

v € r = norm(dir(sq V sp)) V midpoint(sq, sp).

If there exists at least one site on the opposite range of
andsy, then it is sufficient fory to be a vertex ofV(.5),

1 < k < n, that either

(i)3s; € S\ {sq, sp} : M(a,b,j) is a proper vertex of
Vi (S), such that there are no other vertice§/g{.S) in the
segment from\/ (a, b, j) to v,

or



(i1)3s; € S\ {sq, sp} : M(a,b,j)is a vertex ofV;(S)
andvs; € S\ {sq, sp}, With M (a,b,j) € Vi(S), we have
M(a,b,j) € Q.

Proof: Lets,, sp € S, with s, ands; on the same range of
T2, such that

v € r =norm(dir(sq V sp)) V midpoint(sq, Sp).

Consider that there exists at least one site on the range op

posite tos, andsy.
Assume that casé) occurs. SinceM (a,b,j) is a ver-
tex of Vi (S), then it borders at least three regions, among
them Vi (H U {s,}) andV;(H U {sp}). Since there are
no other vertices o¥(S) in the segment fromi/ (a, b, 7)
to v, these regions are also adjacenbtoThus,v borders
Vi(HU{sq}) andV,(HU{ss}). Now, consider a neighbor-
hoodN (v, a). If a is sufficiently small, then the portion of
N (v, a) thatis on the range opposited(a, b, j) contains
points which are closer to a poigt on that range thag,
andsy, are. Therefores. is among the: nearest neighbors
of these points, i.e, there exists a regigui H' U{s.}), with
s, ¢ H' ands, ¢ H', such thaw also border§,(H' U
{sc}). Thereforey is a vertex ofV(S).

Assume now that cas@i) occurs. Sincer € Q and
v € r,viseitherM (a,b,j) or=M(a,b,j). Ifvis M (a,b,7)
then itis a vertex. Otherwise, sindé(a, b, j) is a vertex of
Vi(S) andVs; € S\ {sa, sy}, with M(a,b,j) € Vi(S),
we haveM (a,b,j) € Q, M(a,b,j) has an adjacent vertex
onr A €, which is notM (a, b, ). Thus, it is=M(a, b, j),
i.e, "M (a,b,j) is a vertex ofV,(S). Sincew is either
M/(a,b,j) or =M(a,b,j), butv is not M(a,b,j), thenv
is—M(a,b, j), which is a vertex oW (.S).

O

Note that we assumed th&tU —S contains no four

Proof: By Corollary 1, ifv € Q is a vertex ofV,(S) then
Js,, s € S with s, ands; on the same range @f such
that

v € r =norm(dir(sq V sp)) V midpoint(sq, Sp)
e If s, ands; are the only sites on its range, then either:

1. There is no site on the opposite ran§e= {s,, s»}.
Thus, the only Voronoi diagram 8 ({s,, sp}) which is
just line r, i.e, there are no vertices, a contradictionuto
being a vertex of somg;, (S); or

2. There exists at least one site on the opposite rangg of
ands,. Thus,M(a,b,j) € Q, Vs; € S\ {sa,ss}. Since
v is a vertex ofV,(S) andwv is a circumcenter of,, s
and any site on its opposite ranges; € S\ {sq, sp} :
M(a,b,j) is a vertex ofV(S). This implies(ii).

e [f there exists at least one site on the same rangeg as
andsy, then either:

1. There is no site on the opposite range, in which ¢ase
S’ U {sq, s}, with all sites ofS’ on the same range as
ands;,. Therefore, there is no vertex éh a contradiction
to v being a vertex of somgy(.S); or

2. There exists at least one siteon the range opposite to
s, andsp. Sow is an intersection of and(2, wheref) can
be regarded as the bisectorgfand any other site on the
same range of, ands;,. By contradiction, assume th@j

is false. LetS” C S be the set of sites such thf(a, b, s'),
with s' € S”, is a vertex ofV,(S) in the segment from
M (a,b,j) towv. Consider the verteX! (a,b, s}) € Vi(S),
with s € S”. Since(i) was assumed to be false, the seg-
ment fromM (a, b, s}) to v contains another circumcenter
M(a,b,sh) € Vi(S), with s;, € S”. In the same way, the

points with proper circumcenter. Therefore, it is easy to seesegment fromM (a, b, s5) to v must contain another cir-

that, in caséii) of Theorem 4, the only vertices onarev
and—-wv. We now show the converse of Theorem 4.

Theorem 5 Letv € Q be a vertex ofV,(S). Then there
exists,, s, € S with s, ands, on the same range d?
such that

v € r =norm(dir(sq V sp)) V midpoint(sq, Sp)

and there exists at least one site on the range opposite to
ands,. We also have either

(i)3s; € S\ {sq, sp} : M(a,b,j) is a proper vertex of
V1 (S), such that there are no other vertice§/qf{.S) in the
segment from\/ (a, b, j) to v,

or

(i1)3s; € S\ {54, sp} : M(a,b,j)is a vertex ofV(S)
andvs; € S\ {sa, sp}, with M (a,b,j) € V,(S), we have
M(a,b,j) € Q.

cumcentetM (a, b, s§) € Vi(S), with s§ € S”. This im-
plies that the number of circumcenters is infinite and there-
fore S would also be an infinite set, a contradiction. This
implies(z).

(I

Below, we show that the ordérVoronoi diagram of
a finite set of sites has an exact number of regions. Before
that, we present some definitions and properties used in the
proof.

Definition 4: In the orderk + 1 Voronoi diagram, we refer
to v as aclose-type vertexvhile in the ordek + 2 diagram
v is afar-type vertexSee Theorem 2.

Definition 5: An edgee is aclose-type edgef V;(.S) if and
only if both vertices ok are close-type itV;(S).



Definition 6: An edgee is afar-type edgef V;(S) if and vertex ofV; 1, (S)). We haveE, = Ej and
only if e is incident on at least one far-type verteX(gf(.S).

Eip1 = Ejyy + Ejl,.
Definition 7: V;11 (H) is atype | regionof V; ;4 (.S) if and
only if V41 (H) contains in its interior only one edgeof
V;(S), ande is close-type irtV;(5).

Since each close-type edge ¥f(S) corresponds to a
type I region ofV;»(S), the numbe#7, , of type | regions
of Vi12(S) is equal to the number; | of close-type edges
of Vi1 (S). Let F! , denote the number of type Il regions
Definition 8: Vi1 (H) is atype Il regionof Vi, (S) if of V;4»(S) and letm ; be the number of far-type vertices of
and only if V;;, (H) contains in its interior only far-type  v,,,(S) contained in the interior of thgth type Il region
vertices and far-type edges 9f(5). of Vi4»(S). LetV}", denote the total number of far-type
vertices ofV; ;1 (S). Then, we have:

Lemma 4 guarantees that no other types of regions can
FN

occur. Lemmas 4 and 5 are generalizations of lemmas 8 and it2 .
10 in [4], respectively. Z m; =V, =V
Lemma 4: Every region of any Voronoi diagraii;(S) is By Lemma 5, the number; of edges incident on these;
either a type | region or a type Il region. vertices ise; = 2m; + 1. Then,
Lemma 5: If V;( H) containsn far-type vertices o¥;_; (S) Fiyo Fiyo
in its interior, then it also contairsn + 1 far-type edges of Eliy =) ;=2 mj+Fii, =2V + Ff},
Vifl(S)- j=1 j=1
orFZ+2 =E, - 2V¢'- Therefore,
The following lemma establishes a relation between Fiy Fl, + F!
the number of vertices, edges and regions of any okder _ E’ZH E// _ 9y
z+1 i+1 7

Voronoi diagram. Lemma 7 shows the exact number of re- = By —2V)
gions of the ordek Voronoi diagram of a finite set of sites. SinceFl — n.we haveF2 = E, —2V] =E, =3F —6=

. . . . . 2 1 - - - -
This is an intrinsic property 6. 3n — 6, by Lemma 6. Furthermoréj, > = Ey —2V) =

3Fpy1 — 6 — 2V},
Lemma 6. Let V}, denote the number of verticeg}, the By (1),Vy =V, —V/_,,andVy =V; = 2F; —4 = 2n—4,
number of edges anHj, the number of regions d¥(S), by Lemma 6. Then,
1 S k STL—].. Thend = 2Fk —4andEk :3Fk — 6.

ka =V, — (Vk71 — VkI_Q) = (Vk — Vk71) + V,;_Q.

Proof: SinceF}, is the number of faces of the subdivision , &
corresponding t7,(S) and each vertex o¥,(S) has de-  1hereforeVy =575 oy 1 (Vaiok=Vaiok—1)+Varn 21—k
gree3. Then, by Euler’s formulaly, +2 = V;, + Fy. Since = Zle[(—l)’“*"v;], i.e

B = 3V, we havel}, = 2F), — 4 andE}, = 3F}, — 6. i

O —i
Vi=Y [(=D)*(2F — 4)].
Lemma 7: The numbelF}, of regions ofV(S), 1 < k < =1
n—1,is Then,
F,=2k(n—k)—n+2
Proof: Let E; be the number of edges ahgithe number of Fip2 =3Fip1 —6 -2 [(-D)F(2F, —4)].  (2)
vertices ofV;(S). Let 'V}, , denote the number of close- =1

type vertices ofV;;,(S), i.e., the number of vertices of By induction onk, we can prove that:
Viy1(S) that do not exist iV;(S). Then, Vi, = V{,; +
V! or F,=2k(n—k)—n+2
! !
; = V+1 — V . (l)
o ’ ’ Basis F| = n andF; = 3n — 6.
Let E}_, denote the number of close-type edges (edgesHypothesis(1): 3 j > 2 such that
connecting only close-type vertices) afdl, , the number
of far-type edges (edges incident on at least one far-type Fp,=2k(n—k)—m+2,Vk: 1<k<j



Induction Step: By (2), =2k(n—k—-1)—2k+n
k—1 =2(k+1)(n—k-1)—-2(n—-k—-1)—2k+n
Fipr =3F, —6-23 [(-1)""'7'(2F; - 4)]. =2(k+1)(n—(k+1) —n+2 .

i=1

Theorem 6. Let V;, denote the number of verticek,, the

By induction onk, we can prove that:
number of edges an#j, the number of regions d¥(S),

k1 , 1< k <n —1,then we have:
(D)7 (2F - 4)) = Fr —n + 2k — 2 (i) O(Vi) = O(Ey) = O(F), Vk: 1<k <n—1
= (ii) Fy, € O(k(n — k)) € O(kn),
Basis k = 2: Vk:1<k<n-1

1 (iti) iy Fi € O(n?)
. n—1
SI-D)i2F - 4] =28 — 4= (iv) Yo kFi € O(n)
i=1
' Proof: It is a generalization of theorem 3 in [1].
=2F —4=2n—4=F, —n+2(2) -2 0

Hypothesis(2): 3 k > 2:

k—1
Z[(—l)’“‘l“'(QFi —4)]=Fp—n+2k-2 4 The Algorithm
= In this section, we present an algortihm for constructing all

order k Voronoi diagramsV(S). An array L of all cir-

Induction Step:
cumcenters is constructed and with each circumcenter we

k s maintain their incident edges and regions. E&gHS) is
> (=1)F 7 2F; - 4)] = represented by a linked list of vertices, each vertex corre-
i=1 sponding to a circumcenter if.

e —k k—1 e —1
= (=1 FQ2F —4) + X0, (1) H(2F; — 4)] 1. Construct an array, of all circumcenters\/(a, b, c)

k—1
=2F, —4 =) [(-1)* ' (2F; - 4)]

By hypothesis (2),

k

> I(—1)F(2F; — 4)) =

i=1

:2Fk—4—(Fk—n+2k—2)

=F.+n—-2k-2

= 2k(n — k) —n + 2+ n — 2k — 2, by hypothesis (1)
=2k(n — k) — 2k
=2k+1)(n—k)—2(n—k)— 2k
=2k+1)(n—k—-1)+2(k+1)—2n
=2k+1)(n—(k+1)—n+2—-n+2(k+1)—2
=Fep1—n+2k+1)-2

Then,
Fk+1 = 3Fk —6—2[Fk—n+2k—2] = Fk+2n—4k—2
By hypothesis (1),

Fry1 =2k(n—k)—n+2+2n—4k -2
=2k(n — k) +n —4k

and—-M(a, b, ¢), a > b > ¢, each of which defined
by three sites,, s, ands. of S. StoreM (a, b, ¢),
~M(a, b, ¢) and (a, b, ¢) on L at addresg*;") +
(") +e

. Traversd. and calculate, for each/ (a, b, ¢), the set

H(a, b, c) ={z €S :dp2(M(a,b,c), z)
<rirdr2(M(a,b,c), sq)}

and the rays and regions incident d(a, b, c), as
described in Theorem 2. FerM (a, b, ¢), Theorem
1 implies that the setH (a, b, ¢) = S\ H(a, b, ¢) \
{Sa, Sb, Sc}- If |H(a, b, c)| = kthenH(a, b, ¢) is
the set ofk sites that are closer td/(a, b, c) than
Saq, Sp @nds.. are, while—=H (a, b, c¢) is the set ofn —

k — 3 sites that are closer toM (a, b, ¢) thans,, s,
ands, are. AddM (a, b, ¢) to the end of the corre-
sponding linked lists oW1 (S) andVy12(S). Sim-
ilarly, add =M (a, b, c) to the end of the correspond-
ing linked lists ofV,,_;_»(S) andV,,_;_1(S). Store
with M (a, b, ¢) in L, the address oM (a, b, ¢) and
=M (a, b, ¢) in such lists.

. Traversd. again to link the vertices of the sarig(.S).

EachM (a, b, c) is a vertex in the lists o¥;(S) and
Vi+1(S), with 6 incident rays. For each ray which



is a portion of B(s,, sp), incident onM (a, b, c¢) of 5 Concluding Remarks
V,;(S), check whethetM (a, b, d), with s4 € S\
{Sa, sb, sc}, isavertexolV;(S), suchthaf\/(a, b, d)
C B(sq, sp)- If there are more such/ (a, b, d), take
the one with the smallest distance frdifi(a, b, c). If
M/(a, b, ¢) € QandM (a, b, d) € (2, then we take the
one in the smallest neighborhodd M (a, b, ¢), «). If
M(a, b, c) ¢ QandM (a, b, d) € Q then we check
the cases described in Theorem 5. Redutmean edge
(M(a, b, ¢), M(a, b, d)) and the corresponding ray
of M(a, b, d) to an edgé M (a, b, d), M(a, b, c)).

We have presented a generalizationT8rof an algorithm
to construct all ordek Voronoi diagrams ifk?. We have
also shown that, for fixed and for a finite set of sites, an
orderk Voronoi diagram inT? has an exact number of re-
gions.

We note that the correctness proof of this generalized
algorithm forT? is more complex than for the Euclidean
plane. However, this generalization maintains the same
simplicity of the original algorithm.

We have implemented the algorithm and it is useful in
visualizing all the diagrams, since we do not have to con-
struct each one independently. Figure 5 shows the order 2
4.1 Correctness Voronoi diagram of a set of points on the front range. Note
Step 1 computes all circumcentet§(a, b, ¢) defined by ~ that, as opposed to what happen&fh even on unbounded
three sitess,, s, and s, of S. Step 2 calculates the set regions of the diagram ifi* every edge is adjacent to two

H of the k sites that are closer t/(a, b, ¢) thans,, sp vertices, i.e. unbounded regions do not have to be consid-
ands, are. By Theorem 2 eacM(a, b ¢) ¢ O cor- eredspecial cases. Figure 6 shows the order 2 diagram for
responds to a vertex o (S) andV,;rQ,(S). By The- a set containing points on the front and on the back range.
orem 3, these are all the proper vertices of all diagramsNOte the edges and vertices on the line at infinity.

V5 (S). Step 3 justlinks the adjacent verticesMf(a, b, c) Even though the algorithm described in this paper con-

and M(a, b, d) ¢ Q then the correctness follows from structs_ all (_)r_dek_ Voronoi diagrams irlT? and has re_mark—
Theorem 3. It still remains to prove that the vertices at Ple simplicity, it does not allow for the construction of a
infinity are correctly linked. By Theorem 5, if a vertex S|nglgd|agram. As f_urtherstudlgs in this topic, we are now
M(a, b, ¢) € Q, then either: working on thg d_es,lgn o_f aIg_onthms for constructing each
(i) it has an adjacent verteM (a, b, j) not in Q2 or orderk Voronoi diagram irll? independently.
(i) all of its adjacents vertice®/ (a, b, j) € Q.

Incaseg(i), M(a, b, c)is avertex adjacenttd/ (a, b, 7).
SinceM (a, b, j) ¢ Q they are linked in step 3. In caég), Acknowledgments
the vertex adjacent td/ (a, b, ¢) in Vi (S) is the one with
the smallest neighborhodd(M (a, b, ¢), «). Itis linked to
M(a, b, ) in step 3.

By Theorem 4, these are all the improper vertices of all
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(grants 132357/98-4 and 300157/90-8); by Fui@dade
Amparoa Pesquisa do Estado daSPaulo — FAPESP

diagrar_nwk(S). Since all the proper or improper vgrtices (grant 98/12955-3); and by Financiadora de Estudos e Pro-
of all diagramsV(.S) are computed and cor'rectly linked, jetos — Finep/MCT, Pronex: “Sistemas Avatios de
we have proved the correctness of the algorithm. Informagio” (grant 76.97.1022.00)
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