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Abstract. In this paper, we generalize to the oriented projective planeT
2 an algorithm for constructing all order

k Voronoi diagrams in the Euclidean plane. We also show that, for fixedk and for a finite set of sites, an orderk
Voronoi diagram inT2 has an exact number of regions. Furthermore, we show that the orderk Voronoi diagram of
a set ofn sites inT2 is antipodal to its ordern� k Voronoi diagram,8k : 1 � k < n.

1 Introduction

The problem of answeringk nearest neighbor queries with
arbitraryk has an efficient solution based on the a priori
construction of all orderk Voronoi diagrams. This is the
approach used in the optimal algorithm due to Frank Dehne
[1] for the Euclidian Plane. We present a generalization of
this algorithm for the two-dimensional oriented projective
spaceT2 [8]. This space handles oriented lines as well as
many other fundamental geometric concepts in a consistent
way. Section 2 gives some references related to Oriented
Projective Geometry. In section 3, we present several prop-
erties of Voronoi diagrams, some of them intrinsic of this
space. For example, the orderk Voronoi diagram of a finite
set of sites inT2 has an exact number of regions. Further-
more, this diagram is antipodal to the ordern � k Voronoi
diagram of the same set of sites,8k : 1 � k < n. Finally,
section 4 presents the algorithm and a proof of its correct-
ness.

2 Oriented Projective Geometry

For the sake of conciseness and due to limited availability
of space, we refer the reader who might be unfamiliar with
the basic concepts and notations related to Oriented Projec-
tive Geometry to the books [7] and [8]. It might also be of
interest to read the theses [2], [6] and the papers [3], [5].

3 Voronoi Diagrams inT2

In this section, we present several properties of Voronoi di-
agrams inT2. Some properties are general and can be ap-
plied to Voronoi diagrams inR2, while others are intrinsic
of T2.

3.1 Properties of Order k Voronoi Diagrams in T2

Definition 1: Let p, q 2T2, where at least one of them is a
proper point.dT2(p; q) : T2 � T2 ! T

1, is defined as:
dT2(p; q) =hp

(pxqw � qxpw)2 + (pyqw � qypw)2; pwqw

i

Definition 2: The order relation betweenT1 points is de-
fined as follows. Letp, q be points inT1. We say that
p�T1 q if and only if:

(i) pwqw � 0; pw � 0; qw � 0 or
(ii) pwqw > 0; pxqw � qxpw.

It is easy to verify thatdT2 satisfies the same axioms as
(real-valued) distance functions and it is, therefore, a gen-
eralization of this notion. We calldT2(p; q) the two-sided
Euclidean Plane distancefrom p to q.

In the following sections, we letS � T2 denote a set
of n points, calledsites. Let :S denote the set of points
that are antipodal to the sites inS. Let k be an integer,
1 � k < n. For each subsetHk � S of k sites, denote by
Vk(Hk ; S) the set:
fx 2 T2 j dT2(x; p)�T1 dT2(x; q); 8p 2 Hk;

8q � S nHkg;
called the orderk Voronoi region associated toHk.

That is,Vk(Hk; S) is the set of points inT2 whosek nearest
neighbors inS are the sites inHk. It follows fromdT2 being
a generalization of the Euclidean metric that the set of all
orderk Voronoi regions forms a partition ofT2. We denote
this partitionVk(S), and call it the orderk Voronoi diagram
of S.

We assume thatS [ :S contains no four points with
proper circumcenter. Under this assumption, we show that
each Voronoi vertex has degree3, even if it lies on the line
at infinity
.

Every edge of an orderk Voronoi diagram is a por-
tion of a bisectorB(p; q), with p, q 2 S. We denote by
�Bk(p; q) the portion ofB(p; q) which is an edge of the or-
derk Voronoi diagram ofS, denoted byVk(S). If H � S
andjH j = k, Vk(H; S) denotes the region ofVk(S) asso-
ciated to the sites inH .

Lemma 1: If p, q, r are points inT2, then:

dT2(r; p)�T1 dT2(r; q)() dT2(:r; p)�T1 dT2(:r; q)

Proof: Let [x1; w1] and[x2; w2] be the coordinates, inT1,
of dT2(r; p) anddT2(r; q), respectively. Then,



dT2(r; p)�T1 dT2(r; q)() [x1; w1]�T1 [x2; w2]

By the definition of�T1 ,
[x1; w1]�T1 [x2; w2]()
either
(i) w1w2 � 0 and w1 � 0 and w2 � 0 ()
(�w1)(�w2) � 0 and w1 � 0 and w2 � 0 ()
(�w2)(�w1) � 0 and (�w2) � 0 and (�w1) � 0;
or
(ii) w1w2 > 0 and x1w2 � x2w1 ()
(�w1)(�w2) > 0 and x1(�w2) � x2(�w1) ()
(�w1)(�w2) > 0 and x2(�w1) � x1(�w2).

Since((i) or (ii)) () [x1;�w1]�T1 [x2;�w2], it fol-
lows that
[x1; w1]�T1 [x2; w2] () [x1;�w1]�T1 [x2;�w2].

By the definition of two-sided Euclidean Plane distance:
dT2(r; p) = [x1; w1] () dT2(:r; p) = [x1;�w1]:

Similarly,
dT2(r; q) = [x2; w2] () dT2(:r; q) = [x2;�w2]:

Therefore, we have proved that
dT2(r; p)�T1 dT2(r; q)() dT2(:r; p)�T1 dT2(:r; q):

�

Theorem 1: The orderk Voronoi diagram of a setS of n
sites inT2 is antipodal to its ordern� k Voronoi diagram,
8k : 1 � k < n.

Proof: Consider the orderk Voronoi diagram ofS, Vk(S),
and a pointx 2 T2. LetHk be a proper subset ofS, con-
tainingk of its sites. By definition,
x 2 Vk(Hk; S)() dT2(x; p)�T1 dT2(x; q);

8p 2 Hk; 8q 2 S nHk .
By Lemma 1,
x 2 Vk(Hk; S)() dT2(:x; p)�T1 dT2(:x; q);

8p 2 Hk; 8q 2 S nHk ;
which is equivalent to
x 2 Vk(Hk; S)() dT2(:x; q)�T1 dT2(:x; p);

8q 2 S nHk; 8p 2 Hk ;
or

x 2 Vk(Hk; S)() :x 2 Vn�k(S nHk; S):

�

The following lemma, whose Euclidian version can be
found in [4], describes the proper points ofT2 which lie on
edges of some orderk Voronoi diagram. For a description
of points at infinity, see Lemma 3 and Theorem 4.

Lemma 2: LetVk(S) be the orderk Voronoi diagram of a
setS of sites inT2. p =2 
 is a point of an edge�Bk(si; sj)
of Vk(S) if and only if the circle centered atp with radius

dT2(p; si) = dT2(q; sj) containsk � 1 sites ofS in its
interior.

Proof: It is a simple generalization of the proof of lemma 3
due to Lee [4].

�

Theorem 2: Let v, :v 2 T2 be the proper circumcenters of
sa, sb, sc 2 S, with sa, sb, sc on the same range ofT2. Let
H denote the set of sites that are closer tov thansa, sb, sc
are:

H = fz 2 S : dT2(v; z)<T1 dT2(v; sa)g

and letk = jH j. Then,v is a Voronoi vertex ofVk+1(S)
andVk+2(S), while:v is a Voronoi vertex ofVn�k�1(S)
andVn�k�2(S). Furthermore, the edges and regions that
are incident onv and:v are given on the diagrams shown
in figures 1 and 2, respectively.
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Figure 1: Incident edges: (a)v on the front range and (b)
:v on the back range.

Proof: It is a generalization of the proof of theorem 1 due to
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Figure 2: Incident edges: (a)v on the back range and (b)
:v on the front range.

Dehne [1]. By Theorem 1, it follows that the edges incident
on:v are the edges antipodal to those incident onv.

�

Theorem 3: Let sa, sb, sc 2 S andv 2 T2n
 be a Voronoi
vertex ofVi(S) so that:

v 2 Vi(A; S) \ Vi(B; S) \ Vi(C; S);

:v is a Voronoi vertex ofVj(S),

:v 2 Vj(A
0; S) \ Vj(B

0; S) \ Vj(C
0; S);

andv and:v are the proper circumcenters ofsa, sb, sc. Let
H denote the set of sites ofS that are closer tov thansa,
sb, sc are:

H = fz 2 S : dT2(v; z)<T1 dT2(v; sa)g

and letk = jH j. Then, either
i = k + 1 andj = n� k � 1 with
fA; B; Cg = fH [ fsag; H [ fsbg; H [ fscgg and
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Figure 3: Edges ofVk+1 incident onv: (a) v on the front
range and (b)v on the back range. The shaded area repre-
sents the interior of the circle centered atp. Note that, in
both cases, this circle containsjH j = k sites in its interior.

fA0; B0; C 0g = fS n(H[fsag); S n(H[fsbg); S n(H[
fscg)g
or
i = k + 2 andj = n� k � 2 with
fA; B; Cg = fH[fsa; sbg; H[fsb; scg; H[fsa; scgg
and
fA0; B0; C 0g = fSn(H[fsa; sbg); Sn(H[fsb; scg); Sn
(H [ fsa; scg)g.

Proof: It follows as a generalization of theorem 2 in [1].
By Theorem 1, we have thatA0 = S n A, B0 = S n B and
C 0 = S n C.

�

Theorem 2 presents a sufficient condition for a point
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Figure 4: Edges ofVk+2 incident onv: (a) v on the front
range and (b)v on the back range. The circle centered atq,
in both cases, containsjH j+1 = k+1 sites in its interior.

v =2 
 to be a Voronoi vertex ofVk+1(S) andVk+2(S).
On the other hand, Theorem 3 shows that the condition is
necessary. Hence, Theorem 2 describes all proper vertices
and its incident edges and regions of all diagramsVk(S),
8k : 1 � k � n� 1. Before we describe vertices at infinity,
we need the following definition.

Definition 3: Consider the identity homeomorphismhwhich
maps the spherical model ofT2 to the unit sphereS2 � R

3.
Let B(q; �) denote the set of points ofS2 whoseR3 dis-
tance fromq 2 S

2 is less than or equal to�. Theneigh-
borhoodN(p; �) on T2 is the set of pointsh�1(r), with
r 2 B(h(p); �).

The following lemma characterizes the points which
lie on edges of some orderk Voronoi diagram. Corollary
1, which follows from Lemma 3, is used in Theorem 5 for

characterizing the vertices at infinity.

Lemma 3: If p 2 T2 is a point which borders two adjacent
Voronoi regionsVk(H[fsag) andVk(H[fsbg) ofVk(S),
thenp is contained in the line

r = norm(dir(sa _ sb)) _midpoint(sa; sb):

Proof: Consider a pointp 2 T2 which borders two adjacent
Voronoi regionsVk(H[fsag) andVk(H[fsbg) ofVk(S).
If p =2 
, thendT2(p; sa) = dT2(p; sb) and thekth nearest
neighbor ofp is sa or sb. Sincep =2 
, p is contained inr.
If p 2 
, by contradiction, suppose thatp is not inr. Then,
either
(i) sa andsb are on different ranges, in which caser = 
,
which containsp, a contradiction top =2 r;
or
(ii) sa andsb are on the same range, in which casep 2

 and p =2 r. If we take� > 0 sufficiently small, the
neighborhoodN(p; �) contains points of only one region,
a contradiction to the fact thatp bordersVk(H [ fsag) and
Vk(H [ fsbg). Again, we have a contradiction.

�

Corollary 1 : If v 2 
 is a vertex ofVk(S) then there exist
sa; sb 2 S with sa andsb on the same range ofT2, such
that

v 2 r = norm(dir(sa _ sb)) _midpoint(sa; sb):

Let sa, sb, sc 2 S. We denote byM(a; b; c) and
:M(a; b; c) the circumcenters ofsa, sb, sc. Since all sites
are cocircular if we take any point on
 as their circum-
center, there is no site in the interior of a circle centered at
a point on
. Theorem 2 is not enough to characterize to
which Voronoi diagrams a vertex on
 belongs. Theorems
4 and 5 describe which vertexM(a; b; j), circumcenter of
sa, sb, sj 2 S, is adjacent to a vertexv 2 
 and to which
Voronoi diagramsv belongs. Firstly, let us establish suffi-
cient conditions.

Theorem 4: Let v 2 
 andsa; sb 2 S, with sa andsb on
the same range ofT2, such that

v 2 r = norm(dir(sa _ sb)) _midpoint(sa; sb):

If there exists at least one site on the opposite range ofsa
andsb, then it is sufficient forv to be a vertex ofVk(S),
1 � k < n, that either
(i) 9 sj 2 S n fsa; sbg : M(a; b; j) is a proper vertex of
Vk(S), such that there are no other vertices ofVk(S) in the
segment fromM(a; b; j) to v,
or



(ii) 9 sj 2 S n fsa; sbg : M(a; b; j) is a vertex ofVk(S)
and8 sj 2 S nfsa; sbg; with M(a; b; j) 2 Vk(S), we have
M(a; b; j) 2 
.

Proof: Let sa; sb 2 S, with sa andsb on the same range of
T
2, such that

v 2 r = norm(dir(sa _ sb)) _midpoint(sa; sb):

Consider that there exists at least one site on the range op-
posite tosa andsb.
Assume that case(i) occurs. SinceM(a; b; j) is a ver-
tex ofVk(S), then it borders at least three regions, among
themVk(H [ fsag) andVk(H [ fsbg). Since there are
no other vertices ofVk(S) in the segment fromM(a; b; j)
to v, these regions are also adjacent tov. Thus,v borders
Vk(H[fsag) andVk(H[fsbg). Now, consider a neighbor-
hoodN(v; �). If � is sufficiently small, then the portion of
N(v; �) that is on the range opposite toM(a; b; j) contains
points which are closer to a pointsc on that range thansa
andsb are. Therefore,sc is among thek nearest neighbors
of these points, i.e, there exists a regionVk(H 0[fscg), with
sa =2 H 0 andsb =2 H 0, such thatv also bordersVk(H 0 [
fscg). Therefore,v is a vertex ofVk(S).

Assume now that case(ii) occurs. Sincev 2 
 and
v 2 r, v is eitherM(a; b; j) or:M(a; b; j). If v isM(a; b; j)
then it is a vertex. Otherwise, sinceM(a; b; j) is a vertex of
Vk(S) and8 sj 2 S n fsa; sbg; with M(a; b; j) 2 Vk(S),
we haveM(a; b; j) 2 
, M(a; b; j) has an adjacent vertex
on r ^ 
, which is notM(a; b; j). Thus, it is:M(a; b; j),
i.e, :M(a; b; j) is a vertex ofVk(S). Sincev is either
M(a; b; j) or :M(a; b; j), but v is notM(a; b; j), thenv
is:M(a; b; j), which is a vertex ofVk(S).

�

Note that we assumed thatS [ :S contains no four
points with proper circumcenter. Therefore, it is easy to see
that, in case(ii) of Theorem 4, the only vertices onr arev
and:v. We now show the converse of Theorem 4.

Theorem 5: Let v 2 
 be a vertex ofVk(S). Then there
exist sa; sb 2 S with sa andsb on the same range ofT2

such that

v 2 r = norm(dir(sa _ sb)) _midpoint(sa; sb)

and there exists at least one site on the range opposite tosa
andsb. We also have either
(i) 9 sj 2 S n fsa; sbg : M(a; b; j) is a proper vertex of
Vk(S), such that there are no other vertices ofVk(S) in the
segment fromM(a; b; j) to v,
or
(ii) 9 sj 2 S n fsa; sbg : M(a; b; j) is a vertex ofVk(S)
and8 sj 2 S nfsa; sbg; with M(a; b; j) 2 Vk(S), we have
M(a; b; j) 2 
.

Proof: By Corollary 1, ifv 2 
 is a vertex ofVk(S) then
9 sa; sb 2 S with sa andsb on the same range ofT2 such
that

v 2 r = norm(dir(sa _ sb)) _midpoint(sa; sb)

� If sa andsb are the only sites on its range, then either:

1. There is no site on the opposite range,S = fsa; sbg.
Thus, the only Voronoi diagram isV1(fsa; sbg) which is
just line r, i.e, there are no vertices, a contradiction tov
being a vertex of someVk(S); or
2. There exists at least one site on the opposite range ofsa
andsb. Thus,M(a; b; j) 2 
; 8 sj 2 S n fsa; sbg. Since
v is a vertex ofVk(S) andv is a circumcenter ofsa, sb
and any site on its opposite range,9 sj 2 S n fsa; sbg :
M(a; b; j) is a vertex ofVk(S). This implies(ii).

� If there exists at least one site on the same range assa
andsb, then either:

1. There is no site on the opposite range, in which caseS =
S0 [ fsa; sbg, with all sites ofS0 on the same range assa
andsb. Therefore, there is no vertex on
, a contradiction
to v being a vertex of someVk(S); or
2. There exists at least one sitesc on the range opposite to
sa andsb. Sov is an intersection ofr and
, where
 can
be regarded as the bisector ofsc and any other site on the
same range ofsa andsb. By contradiction, assume that(i)
is false. LetS00 � S be the set of sites such thatM(a; b; s0),
with s0 2 S00, is a vertex ofVk(S) in the segment from
M(a; b; j) to v. Consider the vertexM(a; b; s01) 2 Vk(S),
with s01 2 S00. Since(i) was assumed to be false, the seg-
ment fromM(a; b; s01) to v contains another circumcenter
M(a; b; s02) 2 Vk(S), with s02 2 S00. In the same way, the
segment fromM(a; b; s02) to v must contain another cir-
cumcenterM(a; b; s03) 2 Vk(S), with s03 2 S00. This im-
plies that the number of circumcenters is infinite and there-
fore S would also be an infinite set, a contradiction. This
implies(i).

�

Below, we show that the orderk Voronoi diagram of
a finite set of sites has an exact number of regions. Before
that, we present some definitions and properties used in the
proof.

Definition 4: In the orderk + 1 Voronoi diagram, we refer
to v as aclose-type vertex, while in the orderk+2 diagram
v is afar-type vertex. See Theorem 2.

Definition 5: An edgee is aclose-type edgeofVi(S) if and
only if both vertices ofe are close-type inVi(S).



Definition 6: An edgee is a far-type edgeof Vi(S) if and
only if e is incident on at least one far-type vertex ofVi(S).

Definition 7: Vi+1(H) is a type I regionof Vi+1(S) if and
only if Vi+1(H) contains in its interior only one edgee of
Vi(S), ande is close-type inVi(S).

Definition 8: Vi+1(H) is a type II regionof Vi+1(S) if
and only if Vi+1(H) contains in its interior only far-type
vertices and far-type edges ofVi(S).

Lemma 4 guarantees that no other types of regions can
occur. Lemmas 4 and 5 are generalizations of lemmas 8 and
10 in [4], respectively.

Lemma 4: Every region of any Voronoi diagramVi(S) is
either a type I region or a type II region.

Lemma 5: If Vi(H) containsm far-type vertices ofVi�1(S)
in its interior, then it also contains2m+1 far-type edges of
Vi�1(S).

The following lemma establishes a relation between
the number of vertices, edges and regions of any orderk
Voronoi diagram. Lemma 7 shows the exact number of re-
gions of the orderk Voronoi diagram of a finite set of sites.
This is an intrinsic property ofT2.

Lemma 6: Let Vk denote the number of vertices,Ek the
number of edges andFk the number of regions ofVk(S),
1 � k � n� 1. ThenVk = 2Fk � 4 andEk = 3Fk � 6.

Proof: SinceFk is the number of faces of the subdivision
corresponding toVk(S) and each vertex ofVk(S) has de-
gree3. Then, by Euler’s formula,Ek+2 = Vk+Fk. Since
Ek = 3

2
Vk, we haveVk = 2Fk � 4 andEk = 3Fk � 6.

�

Lemma 7: The numberFk of regions ofVk(S), 1 � k �
n� 1, is

Fk = 2k(n� k)� n+ 2

Proof: LetEi be the number of edges andVi the number of
vertices ofVi(S). Let V 0

i+1 denote the number of close-
type vertices ofVi+1(S), i.e., the number of vertices of
Vi+1(S) that do not exist inVi(S). Then,Vi+1 = V 0

i+1 +
V 0
i or

V 0
i+1 = Vi+1 � V 0

i : (1)

LetE0
i+1 denote the number of close-type edges (edges

connecting only close-type vertices) andE00
i+1 the number

of far-type edges (edges incident on at least one far-type

vertex ofVi+1(S)). We haveE1 = E0
1 and

Ei+1 = E0
i+1 +E00

i+1:

Since each close-type edge ofVi+1(S) corresponds to a
type I region ofVi+2(S), the numberF 0

i+2 of type I regions
ofVi+2(S) is equal to the numberE0

i+1 of close-type edges
of Vi+1(S). LetF 00

i+2 denote the number of type II regions
ofVi+2(S) and letmj be the number of far-type vertices of
Vi+1(S) contained in the interior of thejth type II region
of Vi+2(S). Let V 00

i+1 denote the total number of far-type
vertices ofVi+1(S). Then, we have:

F 00

i+2X
j=1

mj = V 00
i+1 = V 0

i

By Lemma 5, the numberej of edges incident on thesemj

vertices isej = 2mj + 1. Then,

E00
i+1 =

F 00

i+2X
j=1

ej = 2

F 00

i+2X
j=1

mj + F 00
i+2 = 2V 0

i + F 00
i+2

orF 00
i+2 = E00

i+1 � 2V 0
i . Therefore,

Fi+2 = F 0
i+2 + F 00

i+2

= E0
i+1 +E00

i+1 � 2V 0
i

= Ei+1 � 2V 0
i

SinceF1 = n, we haveF2 = E1�2V 0
0 = E1 = 3F1�6 =

3n�6, by Lemma 6. Furthermore,Fk+2 = Ek+1�2V 0
k =

3Fk+1 � 6� 2V 0
k .

By (1),V 0
k = Vk�V

0
k�1, andV 0

1 = V1 = 2F1�4 = 2n�4,
by Lemma 6. Then,

V 0
k = Vk � (Vk�1 � V 0

k�2) = (Vk � Vk�1) + V 0
k�2:

Therefore,V 0
k =

Pk
i=dk=2e+1(V2i�k�V2i�k�1)+V2dk=2e�k

=
Pk

i=1[(�1)
k�iVi], i.e.,

V 0
k =

kX
i=1

[(�1)k�i(2Fi � 4)]:

Then,

Fk+2 = 3Fk+1 � 6� 2
kX

i=1

[(�1)k�i(2Fi � 4)]: (2)

By induction onk, we can prove that:

Fk = 2k(n� k)� n+ 2

Basis: F1 = n andF2 = 3n� 6.
Hypothesis(1): 9 j � 2 such that

Fk = 2k(n� k)� n+ 2; 8k : 1 � k � j



Induction Step: By (2),

Fk+1 = 3Fk � 6� 2
k�1X
i=1

[(�1)k�1�i(2Fi � 4)]:

By induction onk, we can prove that:

k�1X
i=1

[(�1)k�1�i(2Fi � 4)] = Fk � n+ 2k � 2

Basis: k = 2:

1X
i=1

[(�1)1�i(2Fi � 4)] = 2F1 � 4 =

= 2F1 � 4 = 2n� 4 = F2 � n+ 2(2)� 2
Hypothesis(2): 9 k � 2:

k�1X
i=1

[(�1)k�1�i(2Fi � 4)] = Fk � n+ 2k � 2

Induction Step:

kX
i=1

[(�1)k�i(2Fi � 4)] =

= (�1)k�k(2Fk � 4) +
Pk�1

i=1 [(�1)
k�i(2Fi � 4)]

= 2Fk � 4�

k�1X
i=1

[(�1)k�1�i(2Fi � 4)]

By hypothesis (2),

kX
i=1

[(�1)k�i(2Fi � 4)] =

= 2Fk � 4� (Fk � n+ 2k � 2)
= Fk + n� 2k � 2
= 2k(n� k)� n+ 2 + n� 2k � 2, by hypothesis (1)
= 2k(n� k)� 2k
= 2(k + 1)(n� k)� 2(n� k)� 2k
= 2(k + 1)(n� k � 1) + 2(k + 1)� 2n
= [2(k + 1)(n� (k + 1))� n+ 2]� n+ 2(k + 1)� 2
= Fk+1 � n+ 2(k + 1)� 2

�

Then,

Fk+1 = 3Fk�6�2[Fk�n+2k�2] = Fk+2n�4k�2

By hypothesis (1),
Fk+1 = 2k(n� k)� n+ 2 + 2n� 4k � 2
= 2k(n� k) + n� 4k

= 2k(n� k � 1)� 2k + n
= 2(k + 1)(n� k � 1)� 2(n� k � 1)� 2k + n
= 2(k + 1)(n� (k + 1))� n+ 2

�

Theorem 6: Let Vk denote the number of vertices,Ek the
number of edges andFk the number of regions ofVk(S),
1 � k � n� 1, then we have:
(i) �(Vk) = �(Ek) = �(Fk), 8k : 1 � k � n� 1
(ii) Fk 2 O(k(n� k)) � O(kn),

8k : 1 � k � n� 1
(iii)

Pn�1
k=1 Fk 2 �(n3)

(iv)
Pn�1

k=1 kFk 2 �(n4)

Proof: It is a generalization of theorem 3 in [1].
�

4 The Algorithm

In this section, we present an algortihm for constructing all
orderk Voronoi diagramsVk(S). An arrayL of all cir-
cumcenters is constructed and with each circumcenter we
maintain their incident edges and regions. EachVk(S) is
represented by a linked list of vertices, each vertex corre-
sponding to a circumcenter inL.

1. Construct an arrayL of all circumcentersM(a; b; c)
and:M(a; b; c), a > b > c, each of which defined
by three sitessa, sb andsc of S. StoreM(a; b; c),
:M(a; b; c) and (a; b; c) on L at address

�
a�1
3

�
+�

b�1
2

�
+ c.

2. TraverseL and calculate, for eachM(a; b; c), the set

H(a; b; c) = fz 2 S : dT2(M(a; b; c); z)

<T1 dT2(M(a; b; c); sa)g

and the rays and regions incident onM(a; b; c), as
described in Theorem 2. For:M(a; b; c), Theorem
1 implies that the set:H(a; b; c) = S nH(a; b; c) n
fsa; sb; scg. If jH(a; b; c)j = k thenH(a; b; c) is
the set ofk sites that are closer toM(a; b; c) than
sa, sb andsc are, while:H(a; b; c) is the set ofn �
k � 3 sites that are closer to:M(a; b; c) thansa, sb
andsc are. AddM(a; b; c) to the end of the corre-
sponding linked lists ofVk+1(S) andVk+2(S). Sim-
ilarly, add:M(a; b; c) to the end of the correspond-
ing linked lists ofVn�k�2(S) andVn�k�1(S). Store
with M(a; b; c) in L, the address ofM(a; b; c) and
:M(a; b; c) in such lists.

3. TraverseL again to link the vertices of the sameVk(S).
EachM(a; b; c) is a vertex in the lists ofVi(S) and
Vi+1(S), with 6 incident rays. For each rayr, which



is a portion ofB(sa; sb), incident onM(a; b; c) of
Vj(S), check whetherM(a; b; d), with sd 2 S n
fsa; sb; scg, is a vertex ofVj(S), such thatM(a; b; d)
� B(sa; sb). If there are more suchM(a; b; d), take
the one with the smallest distance fromM(a; b; c). If
M(a; b; c) 2 
 andM(a; b; d) 2 
, then we take the
one in the smallest neighborhoodN(M(a; b; c); �). If
M(a; b; c) =2 
 andM(a; b; d) 2 
 then we check
the cases described in Theorem 5. Reducer to an edge
(M(a; b; c); M(a; b; d)) and the corresponding ray
of M(a; b; d) to an edge(M(a; b; d); M(a; b; c)).

4.1 Correctness

Step 1 computes all circumcentersM(a; b; c) defined by
three sitessa, sb and sc of S. Step 2 calculates the set
H of the k sites that are closer toM(a; b; c) thansa, sb
and sc are. By Theorem 2, eachM(a; b; c) =2 
 cor-
responds to a vertex ofVk+1(S) andVk+2(S). By The-
orem 3, these are all the proper vertices of all diagrams
Vk(S). Step 3 just links the adjacent vertices. IfM(a; b; c)
andM(a; b; d) =2 
 then the correctness follows from
Theorem 3. It still remains to prove that the vertices at
infinity are correctly linked. By Theorem 5, if a vertex
M(a; b; c) 2 
, then either:
(i) it has an adjacent vertexM(a; b; j) not in
 or
(ii) all of its adjacents verticesM(a; b; j) 2 
.

In case(i),M(a; b; c) is a vertex adjacent toM(a; b; j).
SinceM(a; b; j) =2 
 they are linked in step 3. In case(ii),
the vertex adjacent toM(a; b; c) in Vk(S) is the one with
the smallest neighborhoodN(M(a; b; c); �). It is linked to
M(a; b; c) in step 3.

By Theorem 4, these are all the improper vertices of all
diagramsVk(S). Since all the proper or improper vertices
of all diagramsVk(S) are computed and correctly linked,
we have proved the correctness of the algorithm.

4.2 Space and Time Complexity

The space complexity of the algorithm is

�(

n�1X
k=1

kVk) = �(

n�1X
k=1

kFk) = �(n4):

Each circumcenter is computed in constant time. Since
there are�(n3) circumcenters, step 1 takes�(n3) time. In
the second step, for each of these circumcenters, the algo-
rithm does�(n) iterations, i.e., step 2 takes�(n4) time.
In the same way, step 3 takes�(n4) time. Therefore, the
algorithm takes�(n4) time and uses�(n4) space and, by
Theorem 6, it is optimal.

5 Concluding Remarks

We have presented a generalization forT2 of an algorithm
to construct all orderk Voronoi diagrams inR2. We have
also shown that, for fixedk and for a finite set of sites, an
orderk Voronoi diagram inT2 has an exact number of re-
gions.

We note that the correctness proof of this generalized
algorithm forT2 is more complex than for the Euclidean
plane. However, this generalization maintains the same
simplicity of the original algorithm.

We have implemented the algorithm and it is useful in
visualizing all the diagrams, since we do not have to con-
struct each one independently. Figure 5 shows the order 2
Voronoi diagram of a set of points on the front range. Note
that, as opposed to what happens inR

2, even on unbounded
regions of the diagram inT2 every edge is adjacent to two
vertices, i.e. unbounded regions do not have to be consid-
ered special cases. Figure 6 shows the order 2 diagram for
a set containing points on the front and on the back range.
Note the edges and vertices on the line at infinity.

Even though the algorithm described in this paper con-
structs all orderk Voronoi diagrams inT2 and has remark-
able simplicity, it does not allow for the construction of a
singlediagram. As further studies in this topic, we are now
working on the design of algorithms for constructing each
orderk Voronoi diagram inT2 independently.

Acknowledgments

This research was partially funded by Conselho Nacional
de Desenvolvimento Cient´ıfico e Tecnol´ogico — CNPq
(grants 132357/98-4 and 300157/90-8); by Fundac¸ão de
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