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Abstract. This paper presents several extensions of the basic CPA algorithm. First we compare CPA to standard
corner detection algorithms and then turn to the question of selecting control points with adequate dispersion since
this is crucial for accurate registration. Two selection methods are proposed. The first consists of clustering the
control points via the Lloyd algorithm followed by selecting the dominant control point in each cluster. This
‘gold standard’ approach produces excellent dispersion but is costly in terms of computational effort. The second
selection method consists of subdividing the image and then selecting dominant control points in each subdivision.
This is extremely fast and produces results comparable to the Lloyd selection method. The paper concludes with
a discussion of how LS operator norm information can be coupled with anisotropic diffusion to produce smoothed
images without corner degradation.

1 INTRODUCTION

This paper considers the problem of registering a reference
imageg and a related imageg1. See Brown [1] for a survey
of registration techniques. We assume thatg1 is a trans-
formed version ofg:

g1 = F (g; p) + �

whereF (�; p) is an image transformation operator,p is a
parameter vector and� is noise. For example, we might
haveg1(x; y) = g(x0; y0) for any of the following transfor-
mations
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Recently a new method of automatically determining con-
trol points has been described by Fonseca et al [2]. This
method is summarized briefly in the next section. The main
problem with this procedure for registration is that the con-
trol points may not be adequately dispersed. Two meth-
ods of dealing with this problem are considered. The first

consists of clustering the control points via the Lloyd algo-
rithm followed by selecting the dominant control point in
each cluster. This ‘gold standard’ approach produces ex-
cellent dispersion but is costly in terms of computational
effort. The second selection method consists of subdivid-
ing the image and then selecting the dominant control point
in each subdivision. This is extremely fast and produces
comparable results to the clustering selection method. Var-
ious examples are given to illustrate CPA and compare the
dispersive algorithms.

2 Control Point Assessment

It is helpful to look at some standard optical flow meth-
ods for estimating the parameter vectorp from g andg1.
Suppose we ignore the effect of noise for the moment and
asssume thatg1 = F (g; p) whereF is the identity atp = 0.
ExpandF (g; p) as a power series inp and drop any higher
order terms inp:

g1 = F (g; 0) + rF p

= g + rF p

whererF is the gradient ofF with respect top.
At each point(x; y) in the image we have one equation

g1 = g + rF p (1)

but several unknowns (the entries ofp). As we have de-
scribed the problem so far we assume that the parameter
vectorp is constant for the entire image. In most optical
flow problems howeverp is allowed to vary withx and
y. To circumvent the underdetermined nature of (1) for
the case of varying parameters, there are several possible



strategies. The most common is to assume that the parame-
ter vector varies smoothly over the entire image. This leads
to the variational approach of Horn and Shunck [3]; the
resulting elliptic linear system of equations forp(x; y) is
globally connected. This limits their usefulness and does-
n’t work well for discontinunous parameter fields associ-
ated with occlusions.

Both of these problems can be ameliorated by assum-
ing that in a window about(x; y) the parameter vector is
constant, see Lucas and Kanade [4] and Bergen [5]. This
gives an overdetermined set of equations forp at (x; y).
Solving forp using least squares gives

p =
�
rF T rF

��1
rF T (g1 � g)

As an example consider simple translation withp =
(dx; dy)T andF (g; p) = g(x+ dx; y + dy). ExpandingF
aboutp = 0 and dropping higher order terms as in (1) gives

g1(x; y) = g(x; y) + gxdx+ gydy

Let g1; : : : ; gn be the window values ofg about(x; y). If
(dx; dy) is constant in the window then we can solve for
(dx; dy) using least squares:
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whereM is the least squares solution matrix
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The assumption that the parameter vector is constant
over a window is needed to overcome the underdetermined
nature of (1). Unfortunately this approach may fail due to
aperture affects. For example if the window image con-
sists of a linear edge moving from left to right ing andg1
then the least squares system of equations is rank deficient
and thus does not have a unique solution. This problem is
well known and leads to a loss of accuracy in the parame-
ter vector estimate as the least squares system becomes ill-
conditioned. This has prompted some investigators such as
Irani [6] et al to assign a reliability measure to the flow es-
timates based on the condition number of the least squares
system. Conditioning of the of the least squares system has
also been shown to be directly related to the curvature of
the level line running through the point(x; y).

In spite of these connections we feel that conditioning
of the least squares system is not the best measure of relia-
bility for the computed flow parameters. The reason for this
is simple. Consider a flat background point ing, say a point
with intensity valuec at (x; y) and alsoc in surrounding

points. The aperture effect is maximal at such points be-
cause the least squares system is doubly rank dificient; its
rank is 0! Now add a slight amount of noise to the image.
Since the condition number is the ratio of the largest singu-
lar value to the smallest singular value of the least squares
system, the condition number can be close to 1 under the
addition of even arbitrarily small noise.

Example 1We generated gaussian random noise with mean
0 and standard deviation� = 10�8 at each point in a 3x3
window and formed the least squares matrix
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using MATLAB with the derivativesgx andgy estimated by
central differences. Running this test 100 times we found
that the condition number varyied between a low of 1.13
which is very well conditioned to a high of 7.36. Thus
none of the tests returned an ill-conditioned estimate even
though the images were within10�8 of an extremely ill-
conditioned problem.

How then can we estimate the quality of the computed flow
field? More generally how can we assess the quality of the
computed estimate for the parameter vectorp?

The kind of quality measure that we want is one that
will identify points in the image where the differencekp�
pestk is small as well as points where the difference is likely
to be large. Here we are using the symbolp for the true pa-
rameter vector andpest for the estimated parameter vec-
tor. If we knewp we could simply form the difference
kp� pestk.

This has limited usefulness since if we knewp we
wouldn’t be trying to estimate it. However we can make
some headway by considering the casep = 0. If g1 is given
by g1 = F (g; p) + � where� is noise andp = 0 then since
F (�; 0) is the identity we find thatg1 = g + �. That is the
difference betweeng1 andg is noise and the least squares
solutionpest is given bypest = M(g1 � g) = M� where

M =
�
rF T rF

��1
rF T

In this case we find that

kp� pestk = kM�k

which shows that the estimation error is determined by the
norm of the least squares operator. Although we have no
control over the noise we can select points at which the
norm ofM is small in order to minimize the estimation
error.

Definition: The control points of the imageg with respect



Figure 1: Original image (top); Control points determined
by CPA (bottom)

to the transformationF atp = 0 are the points in the image
where

r(x; y) = max
�

kM ~�k

k~�k

attains its minimum values.

Lemma: The control points occur where the LS operator
has minimum norm.

Proof: Obvious.

For related work on determining accuracy in optical flow
computations see Simoncelli et al. [24] which takes a prob-
abilistic approach and the work by Shi and Tomasi [25]
which discusses the selection of good tracking features.

2.1 Comparison with Least Squares Corner Detection

The appearance of the work of Fonseca [2] et al raised the
question of how CPA is related to corner detection algo-
rithms. The standard approach to corner detection is to
use the least squares procedure discussed in Haralick and
Shapiro [23]. We can summarize this approach as follows.
An idealized corner consists of the intersection of lines as-
sociated with regions of constant intensity. LetXc = (x0; y0)

T

be the corner location. At any pointX = (x; y)T on an
edge, the intensity gradient points perpendicular to the edge.
At the same time, bothX andXc lie along the edge (by
assumption for both points). This means that the line con-
nectingX toXc is perpendicular to the gradient atX :

rg(X �Xc) = 0

This equation is also true away from the edges if we as-
sume that the image intensity is constant within regions
(i.e., rg = 0 inside regions). Rewrite this equation as
rgXc = rgX . Letting X vary over all the pointsXi

in the window gives a system of over determined equations
for the unknown corner locationXc:

WXc = b

whereW is a 2 column matrix with rowi equal to the gra-
dient ofg at the pointXi. Theith entry of the vectorb is
equal torg(Xi)Xi.

This overdetermined system has the least squares so-
lution

Xc = (W TW )�1W T b

where we assume that the normal matrixW TW is invert-
ible.

Note that there are two limiting assumptions used in deriv-
ing the least squares system of equations. First the corner is
the intersection of straight edges. This limits the size of the
window that can be used since most edges are not straight
over long distances. Second, the regions are assumed to
have constant intensity, so thatrg = 0 inside regions. This
assumption can be violated in images subject to speckle.
The least squares form of the corner equations has some re-
semblance to the form of the LS operator for optical flow
but with one significant difference: the termb in the cor-
ner equations has entriesbi = rgiXi. This means that the
equations of the corner are homogeneous of order zero and
hence invariant with respect to rescaling. That is ifg is re-
placed bysg for any scale factors then we have the same
set of equations. In many situations such invariance is de-
sirable but in this circumstance it is not since it means that
tiny amounts of noise in an otherwise uniform region can
produce the effect of a strong corner signal. This is sim-
ilar to the problem of measuring the reliability of optical
flow by the condition number of the least squares system as
discussed above in Example 1.

2.2 Multiscale Control Point Evaluation

The reference imageg may be heavily contaminated with
noise. Example 1 above shows that noise destroys the effec-
tiveness of the condition number as a reliability measure for
the computed optical flow vectors and the same effect lim-
its the usefulness of standard conrner detectors as described
above. Although this effect is greatly reduced for control
points defined via the minima of the least squares opera-
tor, it is still possible for especially strong speckle noise
to produce image artifacts that mimic good control points.
Fonseca [2] et al give three strategies for dealing with this
problem: 1) prefiltering 2) multiscale control point evalua-
tion and 3) multispectral consistency.



For brevity we will discuss and use multiscale control
point evaluation only since this is the most effective of the
three strategies and by itself produces acceptable results.

In finding the control points forg we look for the min-
ima of the surface defined by the norm of the least squares
operatorM = M(x; y). In practice we found it more prac-
tical to look for the maxima of the reciprocal� = 1=kMk
where for convenience we have selected the Frobenius ma-
trix norm. Since our main goal is to find the dominant mo-
tion in the image we employed a multiresolution framework
using a Laplacian pyramid of Gaussian smoothing followed
by subsampling. At the kth level of resolution we evaluate
�k. This is then interpolated back to the original image and
summed to provide an overall potential surface

� =
X

�k

As a rule of thumb in determining the numberk of levels of
resolution to use we have found that for images of size2m

by2m settingk = Floor(m=2) provides reasonable results.
Once we have formed the surface� we still need to

identify the control points corresponding to the surface max-
ima. This can be a problem for surfaces with discontinuous
variations. Fortunately the averaging over the levels of reso-
lution reduces this problem because it provides a smoothing
effect. In order to distinguish between maxima we adopted
a two part test with control point maxima required to satisfy
both tests.

1. Any maxima must be larger than the surrounding pix-
els as measured by a distance scaled. That is�(x; y) >
�(x0; y0) for 1 � j(x� x0; y � y0)j � d. Generally we
found thatd = 3 gave good results.

2. Since we are mostly interested in the strongest values
of � we introduced a tolerance parameter� . We re-
quired that the control point maxima satisfy�(x; y)�
�� > �(�max � ��) where�� be the mean of� and�max
is the maximum value of�. By its form we want� to
lie between 0 and 1. We found that0:25 � � � 0:75
gave good results with the number of maxima detected
decreasing as� increases.

Example 2Figure 1 (top) shows a detail of a satellite image
of an agricultural area. The heavy speckle in the image
provides a good test of the multiscale CPA method. Figure
1 (bottom) shows the detected control points for a value of
� = 0:5. Note that two of the control points are the result
of stairstepping effects that are reinforced by speckle.

3 Control Point Dispersion

Dispersion is vital when comparing control points between
images for the purposes of determining transformation pa-
rameters such as angle of rotation, scaling etc. As a simple

Figure 2: Original image (top); Control points (bottom)

example consider the problem of determining the rotation
angle between two images. Letx1 andx2 be two points
in the reference image and suppose thatX1 andX2 are
the corresponding points in the transformed image. If the
transformation consists solely of rotation through an angle
� followed by translation then we have

cos � = v � V

wherev = (x2�x1)=kx2�x1k andV = (X2�X1)=kX2�
X1k are unit vectors formed by normalizing the differences
x2 � x1 andX2 �X1 respectively. Here we are using the
symbol� to denote the inner product of the two normalized
vectors.

Now suppose that the control points are computed with
errorsdx anddX : i.e., ~x2 � ~x1 = x2 + x1 + dx and i.e.,
~X2� ~X1 = X2+X1+dX where the tildes denote computed

values.
How is the the computed value ofcos � affected? If we

let dc denote the perturbation incos � we find that to first
order indx anddX we have

jdcj � 2

�
kdxk

kx2 � x1k
+

kdXk

kX2 �X1k

�

Thus the angular error decreases as the reciprocal of the
distance between the control points.

Similar results are obtained for the problem of com-
puting the scaling parameter between two images: the error
decreases as the control points spread out. In order to dis-
cuss incorporating this need for dispersion in the control
points we need some notation. Denote the minima of the
least squares operator norm byxi for i = 1; 2; : : :N where
N is the number of minima. Depending on the image, the



value ofN can be quite large. For example the Goldhill
image in Figure 2 (top) generated over 500 potential con-
trol points.
Previously we pruned these potential control points by look-
ing only at those points with the smallest LS operator norms,
i.e., the strongest control points. These points can however
be rather clustered together as seen in the Figure 2 (bottom)
where setting� = 0:5 reduced the number of control points
from over 500 to 23 as per the multiscale pruning method
described above (Section 2.2).

3.1 Control Point Dispersion Based on Clustering

The first remedy for the problem of undispered control points
is based on clustering the control points intok clusters and
then selecting the strongest control point in each cluster. To
find the clusters we use a simple scheme based on the Lloyd
algorithm.

In this approach we seek cluster centersy1; : : : ; yk to
represent the control point data. These cluster centers are
selected to minimize a distortion measure of the form

f(x; y) =
kX

j=1

X
xi2Cj

d(xi; yj) (2)

where the jth cluster is denoted byCj and consists of all
the data pointsxi that are closer toyj than to any other
cluster center. The distance in this case is measured by
d(xi; yj) =< xi � yj ; xi � yj >. Other distance mea-
sures can be used. See [19] for an excellent treatment of
vector and scalar quantization.

Finding the cluster centers that minimize the distortion
is an unsolved problem at least in a global sense. However
there are some standard results for local minimization.

If we know which data values belong to a cluster then
the best cluster center is the average of the cluster mem-
bers. On the other hand if we know the cluster centers then
the cluster membership is determined by the nearest cluster
center. This suggests the basic Lloyd algorithm [21, 22].

Lloyd Algorithm

Given data valuesfxig and initial cluster centersfyjg it-
erate Steps 1 and 2 until the cluster centers converge.

Step 1Determine the cluster membership forCj by find-
ing those pointsxi that are closer toyj than to any other
cluster center.

Step 2Update the cluster centers by using

yj =
1

N(Cj)

X
xi2Cj

xj (3)

whereN(Cj) is the number of data values inCj .

This algorithm requires an initial guess on the clus-
ter center locations. There are many methods of selecting
these initial cluster locations. Often the cluster centers are
collectively refered to as a codebook.

Some schemes build up a codebook by using the orig-
inal data values. A data vector is evaluated as a codebook
member by looking at its distance from the current mem-
bers of the codebook. If this distance is too small (so that
the data vector is near one of the codebook members) then
the data vector is rejected. This is repeated until we have
a codebook of the desired size; the Lloyd algorithm is then
applied to ‘relax’ the codebook.

Splitting is another standard approach; see [20]. This
method focuses on the clusters rather than the centers. The
first cluster is just the entire set of data values. This large
cluster is split into two clusters and these clusters are then
split until we have the desired number of clusters. Splitting
a cluster can be done in several ways. The most common is
to find the axis of maximum variance (i.e., find the eigen-
vector of the covariance matrix for the cluster correspond-
ing to the maximum eigenvalue). This axis defines a hyper-
plane through the center of the cluster and we use this hy-
perplane to split the cluster. The next cluster to be split can
be selected so as to yield the maximum decrease in the dis-
tortion. We can wait until all the clusters have been found
by splitting before applying the Lloyd algorithm or we can
apply Lloyd after each cluster splitting. The latter relaxes
the cluster centers and redefines the clusters prior to the next
splitting. This takes more computational effort but usually
gives a lower final distortion. This is a greedy algorithm
since it seeks the maximum distortion decrease per split-
ting. Refinements include maximum distortion over two or
more possible splittings.

The last standard codebook initialization method that
we discuss is merging. Merging is the opposite of splitting.
We assume that every data point is a cluster and then merge
clusters together until we have the desired number of clus-
ters. As with splitting, this is usually done in a greedy man-
ner with the next cluster merging chosen so that the new
distortion is as small as possible. The Lloyd algorithm can
be applied after each merging or after the merging process
is completed. See [17], [18].

These codebook initialization schemes produce good
results relatively quickly. They are used since it is not known
how to produce a globally optimal codebook in a reasonable
number of steps. However, for control point dispersion, we
found that simply subsampling the original data set pro-
duced codebooks that were adequate for our purposes. This
is then followed by the Llyod algorithm until the decrease
in the distortion falls below a certain tolerance (we used
1 percent as the cutoff). Once the clusters are determined
we then selected the strongest member of each cluster as
measured by the smallest value of the least squares opera-



tor norm. Figure 3 (top) shows the results for the Goldhill
image using 23 clusters. We see that the control points are
very well distributed over the image. In general we found
that this approach produces excellent dispersion.

Unfortunately this ‘gold standard’ also is computation-
ally expensive because each iteration of the Lloyd algo-
rithm takes many operations and quite often many iterations
are required to achieve convergence.

Because of this we turned to a fast and dirty scheme
that produces almost the same results at a fraction of the
cost. In this procedure we divide the original image into
several smaller images and then take the strongest control
points from each smaller image using the selection proce-
dure described in Section 2.2. Note that when applied to
each subimage this procedure may produce more than one
control point for each subimage, depending on how the se-
lection parameters are set. Dividing the Goldhill image in
16 smaller images produced the results seen in Figure 3
(bottom). Note that the control point dispersion lies some-
where between the tight clustering of Figure 2 (bottom) and
that of the Lloyd algorithm in Fgure 3a. However this is bal-
anced by the fact that the wonderful dispersion of the Lloyd
algorithm is obtained at the cost of selecting control points
that may be rather weak in the sense of having relatively
large least squares operator norm. This is somewhat miti-
gated in the subdivision method as seen by the retention of
many of the original control point locations vis a vis Figure
2 (bottom).

The significance of this is that there are two competing
effects: 1) dispersing the control points leads to a decrease
in the inaccuracy of the tranformation parameter computa-
tion 2) weakness in the control points leads to lower posi-
tional stability between frames, i.e., the control points are
more subject to shift errors between the reference and trans-
form images.

Thus the final parameter estimates derived from the
subdivision control points were found to be just as accurate
as those derived from the clustering control points and in
some cases better.

4 Anisotropic Diffusion

Anisotropic diffusion was introduced by Perona and Malik
[11] to preserve image edges while smoothing the interior
of uniform regions. The guiding principle in this method
is to use gradient information to control a diffusion process
that starts with the original image as initial data. To mitigate
the effects of noise the gradient information is usually com-
puted via a multiscale approach. Thus the imageu may be
smoothed using a Gaussian filter of variance� to produce
an imageS and then the diffusion may take the form

ut = r � (fru)

Figure 3: Dispersed control points using the clustering al-
gorithm (top) and the subdivision algorithm (bottom)

where the weighting functionf depends on the norm of the
gradient of the smooth imageS. By selecting the form of
f properly the diffusion increases as the norm of the gradi-
ent ofS decreases thus yielding more diffusion in uniform
regions and less diffusion at the edges. See Morel and Si-
monelli [9] for details on this and related variational meth-
ods.

One problem with this procedure is that the the noise
reducing smoothing operation can cause some dislocation
in the edges and especially the corners. This is seen in Fig-
ure 4 (top) in which the corners have regressed toward the
interiors of their respective regions. To overcome this prob-
lem we have modified the weight functionf to include in-
formation from not only the gradient but also the norm of
the least squares operator. This can be done in a variety of
ways, so long asf increases with respect to the LS operator
norm and decreases with the gradient norm. We used multi-
scale implementations to evaluate both the gradient and LS
operator norms. Figure 4 (bottom) shows that the results of
applying this to the agricultural image; note that the corner
regression is avoided.

We are currently working on extending this procedure
to variational image processing in the manner of Hewer [10]
et al. in which the objective function is modified to include
LS operator norm information.

5 Conclusion

An analysis has been given showing that inadequate sep-
aration in selected control points can adversely effect the
accuracy of estimates of rotation angle and other transform



Figure 4: Aniostropic diffusion based on gradient only
(top); gradient and least squares operator norm (bottom)

parameters. To deal with the problem of clustered control
points for CPA we have described two methods of ensuring
adequate control point dispersion. The first of these relies
on the Lloyd algorithm to cluster potential control points
and then select the strongest member of each cluster. This
method preforms well but is costly. A second procedure
subdivides the image and then selects the strongest control
point in each subimage. This method is fast and produces
results comparable to the Lloyd algorithm. Both of these
methods presuppose that there are strong control points in
the image that are adequately separated. If this is not the
case then performance can be compromised. We have also
shown how CPA can be applied to filtering methods such
as anisotropic diffusion and variational methods to correct
problems related to corner loss. This area invites further
research.
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