
Working with Remote VRML Scenes through Low-Bandwidth Connections

ALBERTO BARBOSA RAPOSO1 , LÉO PINI MAGALH ÃES1;2, IVAN LUIZ MARQUES RICARTE1

1State University of Campinas (UNICAMP)
School of Electrical and Computer Engineering (FEEC)

Dept. of Computer Engineering and Industrial Automation (DCA)
CP 6101 — 13083-970 — Campinas, SP, Brazil

Phone: +55-19-239-8385 — Fax: +55-19-239-1395
alberto, leopini, ricarte@dca.fee.unicamp.br

2University of Waterloo — Computer Science Dept. — Computer Graphics Lab.
200 University Ave. W Waterloo, On N2L 3G1, Canada

Phone: +1-519-885-1211 ext. 2041 — Fax: +1-519-885-1208
lpini@cgl.uwaterloo.ca

Abstract. We have developed a Web-based application to accelerate the visualization of VRML scenes
located in a remote server. This application enables the user to extract only the parts of a scene that are
of actual interest. The extracted parts represent one or more sub-trees of the hierarchical structure of the
VRML scene, and only these parts will be rendered and visualized in the local computer. By reducing the
complexity (size) of the remote scene, less data are transmitted from the remote server and the rendering
process becomes faster in the local computer. The application is written in Java and is executed as an applet
embedded in an HTML page.

1 Introduction

The World-Wide Web (WWW) [1] has integrated and ex-
panded the services offered by the Internet and other net-
works, with an easy-to-use user interface, responsible for
the impressive growth of the global information space.
Furthermore, the number of WWW users is increasing
rapidly and the information they need is becoming more
and more complex, requiring new ways of communica-
tion and interaction with these networks. The challenge
is to reach the Global Information Infrastructure (GII),
considered as a step beyond the WWW, which will allow
moreefficient interaction with the informationand will
beglobally accessible[2, 6].

Regarding theinteraction with the information, com-
puter graphics plays a crucial role, since it can provide ef-
ficient ways to visualize and interact with a large amount
of data. Particularly concerning the GII, the Virtual Re-
ality Modeling Language (VRML) [15] has emerged as
a promising tool. It describes interactive 3D objects and
worlds in the WWW just as HTML describes hypertext
pages, allowing hyperlinks to other VRML worlds or me-
dia, such as sound, animation, and hypertext. Further-
more, VRML is deeply integrated with Java, probably
one of the dominant languages for GII applications.

Regarding theglobal accessibility, mobile comput-
ing and wireless networks are key technologies, since
only they can effectively provide access to anyone, any-
where and at anytime. However, these technologies face
two major problems, namely the low bandwidth of wire-

less networks and the limited processing power of mobile
devices.

Our paper presents an application whose main goal
is to reduce the size of VRML files while preserving most
of the relevant information. By reducing the file size, the
visualization of VRML scenes is accelerated due to two
effects: lower transmission time and faster rendering for
a simpler scene. It is a further small step towards the GII.
On the other hand, the application has also the interesting
capability of mixing elements of different VRML worlds.
In this way, the user can read several worlds, selecting
and combining elements from each of them.

In the next section we introduce the VRML and its
features. In Section 3 we describe our application and in
Section 4 we present analytical results that illustrate the
benefits that can be obtained with this application. Fi-
nally, in Section 5, we present the conclusions and future
works.

2 VRML

VRML [9, 15] is a file format to describe highly interac-
tive 3D graphic environments, allowing the user to define
static and animated worlds, and to interact with them.

The current version of VRML supports interaction
by the definition of sensors and detectors, such as time
sensors, touch sensors, and collision detectors. Anima-
tion resources in this version includes keyframe and script-
ing facilities that support custom protocols for many
scripting languages, specially Java [3] and JavaScript [10].



The work in conjunction with these programming
languages opens many possibilities for VRML. It can be
used, for instance, to query databases and display results,
to interact with users via pop up menus, and to work in
multiuser environments [7].

In order to view a VRML scene a specific browser
is necessary. Such browser may be an independent pro-
gram, a Java applet, or a plug-in to a conventional Web
browser. Some available browsers are Silicon Graphic’s
Cosmo Player [13], Sony’s Community Place [14], and
Liquid Reality [5].

The structure of the objects in a VRML file is highly
hierarchical. The transformations applied to an object are
applied to all its descendants. Our application follows
this approach, enabling the user to select or to remove
whole sub-trees as a single object.

3 Extracting Elements of a VRML Scene

The target application is mainly directed to a scenario
where the users are connected to the Internet via a low-
bandwidth communication channel (e.g., dialup or wire-
less connection), with typical transmission rates about
20Kbps. In this scenario, the user requests the visualiza-
tion of a VRML scene located somewhere in the WWW.
The description of the requested scene should be retrieved,
rendered, and displayed on the user’s computer (client).
However, due to the low bandwidth of the connection and
also due to the restricted power of the client computer (a
laptop or a Network Computer [4]), we need intelligent
strategies for the interactive handling of the scenes. Sim-
ply stated, the straightforward approach of retrieving the
scene description and rendering on the client is not an ad-
equate solution, specially if we think of more complex
scenes.

In order to deal with these problems, we have de-
veloped an application using the strategy of reducing the
amount of data to be transmitted and rendering on the
client only the parts of the scene that are really of inter-
est. In this way, less transmission is required (adequate
to the low-bandwidth connection) and the rendering pro-
cess is simplified (adequate to the limited resources of the
client).

The application defines three main entities (Figure 1):
client, application server and information server.

Theclient is the user’s computer, that downloads an
HTML page containing the application’s interface (a Java
applet).

The application serveris the application’s host,
where all the application is executed (except the user in-
terface). The application server has two main goals:

� to execute most part of the data reduction process,
reserving for the client only the user interface, and

� to overcome security restrictions of some Web

(user’s computer, where the

application’s interface is 

executed as an applet)

(where the basic methods

are executed)

APPLICATION
SERVER

(where the VRML

file is located)

INFORMATION
SERVER

CLIENT

low bandwidth

high bandwidth

Figure 1: The entities of the application.

browsers (e.g., Netscape), allowing the user to work
with VRML scenes located in other servers besides
that of the application (the application server acts
as a proxy server [8], a service to grab information
from the WWW and send to whoever has requested
it).

The third entity defined by our application is thein-
formation server, where the VRML file is located.

The client is connected to the application server via a
low-bandwidth communication channel, while the appli-
cation server is connected to the information server via a
high-bandwidth channel (in fact, both servers may even
be the same computer).

The application server is capable of requesting and
receiving a VRML scene from the information server,
parsing it and sending its hierarchical structure to the
client. The client then provides an interface adapted to
that hierarchical structure, enabling the user to select only
the elements he/she wants to visualize. The selected ele-
ments are then sent to the application server, which parses
the the original VRML file and extracts from it only the
desired elements, sending a valid “sub-VRML” scene to
the client, which can finally visualize it. This process is
illustrated in Figure 2.

3.1 Tasks Sequence

The application is initialized when the user activates it
using any Java-enabled WWW browser. At this moment,
a connection is established between the client and the ap-
plication server. After that, the user can specify the URL
of the desired VRML scene to the application server (this



URL of the VRML file 1
2

(plug-in or helper
application)

Java Applet

Graphical Interface

(selection of elements)

(VRMLServer.class)

4

3

CLIENT APPLICATION SERVER

5

WWW SERVER

(ReadVRMLFile.class)

(ParseVRMLFile.class)

(Interface.class)

1 - Send the URL of the file to be read.

5 - Send the "sub-VRML".

VRML File

VRML Browser

2 - Read and parse the VRML file, to compose the scene graph document.

3 - Send the scene graph document (with the elements’ hierarchy).

4 - After the selection, send the document with the desired elements of the scene.

Figure 2: Sequence of tasks in the use of the application.

is represented by arrow labelled 1 in Figure 2). The ap-
plication server then uses Java resources to connect with
the information server, reads the VRML file and parses
it (arrow 2 in Figure 2), composing the document repre-
senting the hierarchy of the elements of the VRML scene
(we call this document “scene graph document”). This
document is then sent to the client (arrow 3).

Based on the scene graph document, the client’s ap-
plet creates an interface that allows the user to select the
desired elements of the scene. After this selection, a new
document is sent to the application server, describing the
selected elements (arrow 4 in Figure 2). Using this new
document, the application server creates a new VRML
file from the original one, by extracting only the desired
parts of it. This final sub-VRML scene is then sent to
the client (arrow 5), that visualizes the results using any
VRML browser connected to the Web browser (as a plug-
in or helper application).

3.2 Java Classes

The application, as shown in Figure 2, is composed of
four main Java classes. The application server is divided
into three main classes (VRMLServer.class, ReadVRML-
File.class, andParseVRMLFile.class) and the client has
one class (Interface.class).

The VRMLServer.classrepresents the application
server’s main program. It has an infinite loop that waits
for a connection on a specified port. When this connec-

tion occurs, it creates a new thread1, which deals with the
client communication protocol, reading the VRML file,
translating it into the scene graph document, and doing
the final parsing of the VRML (i.e., removing the unde-
sired parts of the original file), as requested by the client.
The creation of a new thread when the client connects to
the server enables multiple simultaneous client connec-
tions, each one treated separately.

TheReadVRMLFile.classis the program that effec-
tively reads the remote VRML file and translates its struc-
ture into the scene graph document to be sent to the client.

The ParseVRMLFile.classis used in the final steps
of the process, after the user has selected the desired ob-
jects of the scene. This class receives the information
about the selected objects from the client, parses the orig-
inal VRML file (stored in a global variable since the mo-
ment it was read byReadVRMLFile.class), and composes
the sub-VRML to be visualized in the client. This sub-
VRML file is stored in the application server having the
namesubVRMLddmmyyhhiiss.wrl , whereddmmyyis the
current date (day, month, year) andhhiiss is the time
(hour, minutes, seconds) when it was created.

Interface.javais the program being executed at the
client. It is an applet embedded in the application home
page. When this applet is initialized, it opens a socket

1Java supports multithreaded programming, i.e., it allows programs
to have many threads of execution at the same time, each thread carry-
ing its local data and sharing global information. This is an important
facility to multitask and distributed computing.



connection to the application server, that should be wait-
ing for a connection (infinite loop ofVRMLServer.class).
At this moment, the applet also creates a simple user in-
terface, with which the user will be able to select the
VRML scene and the objects of this scene he/she wants
to see.

3.3 The Applet Interface

On the top of the applet window (Figure 3) there is a text
field to write the URL (Uniform Resource Locator) of the
VRML file the user wants to work with. When this name
is correctly written in the text field, the user can click one
of the two buttons labelledRead itto send this URL to the
application server. After that, the application server will
read that VRML file, parse it, and send to the client the
document with the hierarchical structure of the VRML
file.

Figure 3: Interface of the developed application.

When the client receives the scene graph document,
it is shown in the large text area below the two buttons.
The document proposed to send the information regard-
ing the hierarchical structure of a VRML scene is simply
a text file that represents each hierarchical level by a num-
ber. Every time the wordchildrenis found on the VRML
file, a deeper hierarchical level is defined and when the
definition of the child is finished, we come back to the
upper level. Besides the information about the hierarchi-
cal level, the document gives information about the ob-
jects of the scene (here, the term “objects” refers to geo-
metric objects, light sources and cameras). For example,
it contains information such as the geometry of the ob-
jects, the position and direction of light sources, being a

summary of the VRML file. This information, although
not directly necessary to select the sub-trees, can be used
to help the user in knowing with which object he/she is
dealing and to facilitate future extensions of the applica-
tion — for example, the client could be able to change the
characteristics of an object. To transmit this information,
the scene graph document uses the same keywords as the
VRML, thus ensuring consistency.

The scene graph document is shown in the applet
only for demonstration purposes, since the user does not
have to work on it. Actually, the user does not even have
to know about the existence of this document.

The user can select the desired objects of the scene
using the buttons below the text area. The user should
click the buttonGeometric Objectsto select among the
geometric objects of the scene,Light Sourcesto select
among the light sources, andCamerasto select among
the cameras. When one of these buttons is clicked, a col-
ored panel appears, with the name of all the objects of
that kind in the first hierarchical level. If there are objects
of the selected kind in a deeper hierarchical level, a but-
ton Next Levelcan be used to change the panel contents
to the names of the objects in the next level.

By default, all the objects are chosen; the user has
to click only on the objects he/she does not want to vi-
sualize. If the user deselects (selects) an object, all its
descendants will be automatically deselected (selected).

Once the user has deselected the objects he/she does
not want to visualize, he/she can click the buttonSee
the resulting VRMLto visualize the created sub-VRML
scene. At this moment, the user’s work is finished; he/she
must only wait for the image.

After the buttonSee the resulting VRMLis activated,
the client rewrites the scene graph document, adding the
wordstrue or falseafter each object, indicating whether
the object is selected or not. This new document is sent to
the application server, which will create the sub-VRML
scene based on it (ParseVRMLFile.class).

A final observation about the applet interface should
be made, regarding the difference between the two but-
tons Read it. The buttonRead it (new)makes the ap-
plication server read the VRML as a new file, throwing
away the information about the sub-VRML scene previ-
ously created. The buttonRead it (add)makes the ap-
plication server maintain that information, merging two
sub-scenes. In this way, the application allows objects of
different VRML scenes to be joined in another scene —
the tool can be used not only as an object-extraction tool,
but also as a merging tool.

A detailed description of this application is found in
[12].



3.4 Instancing and Animated Scenes

In particular, two features of VRML require special atten-
tion during the extraction of objects from a VRML file.

The first one is theinstancing, that allows an ob-
ject to be named and referred again later in the file. For
example, a red ball can be defined asDEF REDBALL
<definition> and later a similar red ball can be cre-
ated by simply writingUSE REDBALL. If the user (us-
ing our application) wants to exclude the first ball from
the final visualization and include the second one, a prob-
lem might occur, since the definition of the ball was ex-
cluded. To avoid this problem, every time a definition
object (i.e., an object following theDEF key word) is
excluded from the scene, its name and its definition are
stored in a table we called “unused DEFs table”. Then,
every time the parser founds a referred object (i.e., an
object following theUSEkey word) included in the final
sub-scene, it checks that table. If the object is in the table,
its definition has not been included in the sub-VRML file
yet; then the reference (USE) is substituted by the defini-
tion (DEF) in the new file, and that element is removed
from the unused DEFs table (meaning that its definition
is now in the file, and futureUSEs of it will not have that
problem). In this way, the user can exclude each object
individually, not worrying about possible future instances
of it.

Another aspect of VRML that should be taken into
account during the selection of objects is related to ani-
mated scenes. An animated VRML scene can be defined
by routing events throughout the nodes, building an event
chain that drives the animation. For example, a sensor
can be linked to an interpolator, that generates the move-
ments of a geometric object. This event chain establishes
that the user action on the sensor starts the interpolator,
that defines the movement. If the user excludes from the
final visualization a sub-tree containing the interpolator,
for example, the event chain is broken and the geometric
object will not move under the user action detected by the
sensor.

We considered two solutions for this problem: the
more rigid one establishes that an object belonging to an
event chain will not be excluded from the final visual-
ization, even if the user defines the contrary; the second
solution is to simply warn the user that the object being
excluded belongs to an event chain, and its exclusion may
cause a “wrong behavior” in the animation (the decision
of excluding it or not is left to the user). We have adopted
the second solution at this time.

Another way to define an animation in VRML is by
theScriptnode, that links the animation to a program, re-
sponsible for processing the events and generating results
that drive the animation. If an excluded object would
generate an event processed by the program, a “wrong
behavior” could occur in the animation. The solutions

considered for this case were the same than those for the
previous case: the object is not excluded, or the user is
warned about the possibility of “damage” in the anima-
tion.

4 Results

It is difficult to achieve a general numerical result for
our application, since it depends on several variable fac-
tors: the bandwidth of the connections (client / applica-
tion server, and application server / information server),
the network traffic, the size of the VRML file to be read,
and, principally, the parts of the file selected (if the user
selects a small part of a large file, the application will
show better results than if he/she had selected almost all
the objects of the file).

In spite of that, we have developed a model based on
some practical results we obtained. This model demon-
strates some advantages of our approach.

First of all, it is necessary to model the conventional
situation (i.e., without the use of our application), where
the client is directly connected to the VRML server via
a low-bandwidth communication channel. In this situ-
ation, the time necessary to visualize a remote VRML
file (tconventional) is a function of the file’s size. In our
model, we divide this time into three components: the
time for accessing the file in the disk (t1), the transmis-
sion time (t2), and the rendering time (t3). So, we have:

tconventional = t1 + t2 + t3

t1 = S=B

t2 = S=Wl

t3 = S=V

whereS is the size of the VRML file to be accessed;B is
the bandwidth for the disk access (a reasonable value for
this constant is 8 Mbps);Wl is the bandwidth of the con-
nection (standard modems have values of 14.4 and 28.8
kbps); andV is what we call “rendering bandwidth”; our
tests showed that the medium value for this constant is
about 500 kbps — this value depends on the client’s com-
puter performance, but since it is considerably larger than
Wl (that means,t3 << t2), small variations on this value
will not significantly affecttconventional.

The next step is the modeling of the time neces-
sary to visualize the remote VRML file using our appli-
cation (tappl). We divided this total time into five compo-
nents. The first of them is the same of the conventional
case (time for accessing the file in the disk). The second
component is the transmission time between the VRML
server and the application server; it depends on the file
size (S) and on the bandwidth of the connection (Wh —
high bandwidth). The third component is the processing



time. In this component, we include the time necessary to
read the VRML file in order to compose the scene graph
document, and the time to parse it in order to compose
the sub-VRML file. The fourth component is the time
to transmit the sub-VRML file to the client on the low-
bandwidth channel (Wl). This value depends on the size
of the sub-VRML file (S0). The last component is the
rendering time, also dependent ofS0. For this case, we
have:

tappl = t0
1
+ t0

2
+ t0

3
+ t0

4
+ t0

5

t0
1

= S=B

t0
2

= S=Wh

t0
3

= S=R

t0
4

= S0=Wl

t0
5

= S0=V

whereS is the VRML file size;S0 is the sub-VRML
file size;B andV are the same constants of the conven-
tional case;Wh is the (high) bandwidth of the connec-
tion between the VRML and application servers;Wl is
the (low) bandwidth of the connection between the client
and the application server; andR is the “processing rate”
(this value depends on the performance of the application
server; in the current host, a Sparcstation 20, we mea-
sured an approximate value of 250 kbps for this constant).

To achieve some numerical results for this model, let
us first consider a VRML file of 1 MByte (S = 1MByte)
and a low-bandwidth connection of 14.4 kbps. Figure
4 shows the total time for the visualization (tappl) for
two different high-bandwidth networks. These values are
also compared to the time needed in the conventional
case (tconventional — the horizontal line). It can be in-
ferred from the graphic that in the slower network (Wh =

80kbps), the use of our application is advantageous for
sub-VRML smaller than 75% of the size of the original
file. In the faster network (Wh = 1Mbps), the results
are even better (our application is advantageous for sub-
VRMLs with sizes up to 90% of the original file).

Similar results are presented in Figure 5 for a mo-
dem of 28.8 kbps (Wl). Our application is useful for sub-
VRMLs with sizes up to 55% (Wh = 80kbps) and 85%
(Wh = 1Mbps) of the original file.

Figure 6 returns to the 14.4 kbps modem, but con-
siders a smaller VRML file (S = 300KB). In this case,
our application has superior performance only for sub-
VRML files with sizes smaller than 30% of the original
file.

The following conclusions can be inferred from this
model:

� The application is more efficient for higher- band-
width connections between the VRML and the ap-
plication servers (Wh).

Figure 4: Total time needed for the visualization of a
1 MB remote VRML file, client using 14.4 kbps modem.

Figure 5: Total time needed for the visualization of a
1 MB remote VRML file, client using 28.8 kbps modem.



Figure 6: Total time needed for the visualization of a
300 kB remote VRML file, client using 14.4 kbps mo-
dem.

� If the connection between the client and the appli-
cation has lower bandwidth (Wl), the results of our
application become more significative.

� The application is more adequate for larger VRML
files.

5 Conclusions and Future Work

There is a growing need for tools supporting the interac-
tive access, manipulation, and visualization of distributed
multimedia information to realize the vision of “all infor-
mation at your fingertip.” One great challenge is the im-
provement of the accessibility in the WWW using low-
bandwidth connections (e.g., mobile devices and dialup).

In this paper we developed an application allowing
the user to select elements of a VRML scene. This se-
lection can reduce the amount of data transferred and the
utilization of client resources. Its main advantage is the
use of interactivity to achieve an efficient transmission.
In order to “filter” the data or to reduce the complexity
of the scene (efficient transmission) the user selection is
needed (interactivity).

Our results have shown that the adopted approach
is more efficient for larger VRML files and clients with
slower connections.

In the current version of the application, which
works with arbitrary VRML files, the interactivity still
requires some knowledge of VRML by the user. In fu-
ture improvements, the goal is to achieve as much trans-
parency as possible in the selection process. One idea in
this direction is to use semantic information to define the
role each object plays in the environment. For example,
it is possible to establish a “semantic content header” in

the file that assigns levels of priority to the objects; high
priority objects are essential to the scene, while low pri-
ority objects are not. This semantic content header can be
included in the VRML file as special comments or using
the WorldInfo node, normally used to transport general
information about the VRML scene. In this way, the user
could visualize only objects with priority levels above a
predefined threshold level, without having to manually
select them. Another interesting possibility is the auto-
matic selection of this threshold level, based on the band-
width of the connection. In other to achieve these goals,
adequate authoring tools have to be defined.

The idea of the semantic content header is very inter-
esting and can be used for other purposes besides objects’
selection. The semantic information can be used, for ex-
ample, to associate VRML objects to queries in databases
or, in addition to information about system resources and
user preferences, can be used to distribute the rendering
tasks among various machines in a local network (details
about this proposal are found in [11]).

The results of this work can be useful in several dif-
ferent areas (actually, in all the areas that Mobile Com-
munication makes sense), such as distance learning (for
places without high-performance networks), marketing
(demonstration/simulationof products running on station-
ary servers), and repairing of equipments in distant places.

A binary encoding format for VRML files is cur-
rently being discussed [16], emphasizing the reduction of
the file size for fast transmission, and the simplification
of the file structure for fast parsing. Nevertheless, this
is an improvement orthogonal and complementary to the
solution proposed in this work.

Despite the communication technologies improve-
ments, it is our understanding that the relevance of this
work will not be diminished. The discrepancies between
mobile and static environments, mostly regarding trans-
mission rates, will continue to exist, and the same prob-
lems shown here will be present.

Acknowledgements: This paper is a result of ProBrAl
002/94, a cooperation project between UNICAMP and
the TH-Darmstadt, sponsored by CAPES (Brazil) and
DAAD (Germany). We appreciate the support granted
by these institutions. We would like to thank FAPESP,
CNPq, and the Dept. of Computer Science of the Univer-
sity of Waterloo for the support of some authors, and also
Luc Neumann and Dr. R¨udiger Strack for helpful pointers
and clarifying discussions.

References

[1] T. Berners-Lee, R. Cailliau et al. The World-Wide
Web. Communications of the ACM, 37(8):76–82,
August 1994.



[2] M. S. Blumenthal. Unpredictable Certainty: The
Internet and the Information Infrastructure.IEEE
Computer, 30(1):50–56, January 1997.

[3] M. Campione and K. Walrath.The Java Tutorial —
Object-Oriented Programming for the Internet. The
Java Series. Addison–Wesley, 1997.
http://java.sun.com/nav/read/
Tutorial/index.html

[4] R. Comerford. The battle for the desktop.IEEE
Spectrum, 34(5):20–28, May 1997.

[5] Dimension X.Liquid Reality.
http://www.microsoft.com/java/
gallery/lrpro.htm

[6] N. Gershon, J. R. Brown et al. Computer Graphics
and Visualization in the Global Information Infras-
tructure (special report).IEEE Computer Graphics
and Applications, 16(2):60–75, March 1996.

[7] R. Lea. Java and VRML 2.0 Part 1: Basic Theory.
VRML Site Magazine, February 1997.
http://www.vrmlsite.com/feb97/a.
cgi/spot2.html

[8] A. Luotonen and K. Altis. World-Wide Web Prox-
ies. InFirst International World-Wide Web Confer-
ence, Geneva, Switzerland, May 1994.
http://www1.cern.ch/PapersWWW94/
luotonen.ps

[9] L. P. Magalhães, A. B. Raposo, and F. S. Tamiosso.
VRML 2.0 — An Introductory View by Examples,
1997.
http://www.cgl.uwaterloo.ca/
˜lpini/tutorial/vrml-tut.html

[10] Netscape Communications Corporation.JavaScript
Authoring Guide, 1996. http:
//home.netscape.com/eng/mozilla/2.
0/handbook/javascript/index.html

[11] L. Neumann and A. B. Raposo.An Approach
for an Adaptive Visualization in a Mobile Environ-
ment. IDMS’97 (European Workshop on Interactive
Distributed Multimedia Systems and Telecommuni-
cation Services), Darmstadt, Germany, September
1997.

[12] A. B. Raposo, L. Neumann, L. P. Magalh˜aes,
and I. L. M. Ricarte. Visualization in a Mo-
bile WWW Environment. WebNet’97 — World
Conference of the WWW, Internet, and Intranet
Toronto, Canada, November 1997.http://www.
dca.fee.unicamp.br/projects/
prosim/3djava/publications/
webnet97/webnet97.html

[13] Silicon Graphics, Inc.Cosmo Player, 1997.
http://vrml.sgi.com/cosmoplayer/

[14] Sony Corporation.Community Place, 1997.
http://vs.spiw.com/vs/

[15] VRML Consortium. The Virtual Reality Model-
ing Language Specification ISO/IEC DIS 14772-1,
April 1997.
http://www.vrml.org/
Specifications/VRML97/DIS/

[16] VRML Consortium – Compressed Binary File
Working Group. The VRML Compressed Binary
Format Specification - Draft 4, June 1997.
http://www.research.ibm.com/vrml/
binary/specification/index.html


