
An Efficient Filling Algorithm for Non-simple Closed Curves
using the Point Containment Paradigm

ANTONIO ELIAS FABRIS1 LUCIANO SILVA 1 A. ROBIN FORREST2

1Instituto de Matem´atica e Estat´ıstica, Universidade de S˜ao Paulo
Caixa Postal 66281, 05315-970, S˜ao Paulo – SP, Brazil

aef,lucianos@ime.usp.br

2School of Information Systems, University of East Anglia
Norwich, NR4 7TJ, U.K.

forrest@sys.uea.ac.uk

Abstract. The Point Containment predicate which specifies if a point is part of a mathematically defined
shape or not is one of the most basic notions in raster graphics. This paper presents a technique to counteract
the main disadvantage of Point Containment algorithms: their quadratic time complexity with increasing
resolution. The implemented algorithm handles complex geometries such as self-intersecting closed curves.

1 Introduction

The Point Containment paradigm is a natural way to
perform raster graphics operations such as filling and
stroking. However, Point Containment-based algorithms
generally have been judge to be too slow [14]. In [9],
Forrest expressed the need for an eficient and robust algo-
rithm to decide if a given point is part of a mathematically
defined shape. Such an algorithm was later developed by
Corthout et al. [2, 3, 4, 5] and implemented in dedicated
silicon, the Pharos chip fabricated by Philips, on support
of the PostScript page description language.

The most widespread approach to filling is scan con-
version but even for simple concave polygons known
scan conversion algorithms require a computationally ex-
pensive presorting and marking phase before they can
compute the actual intervals of points contained in the re-
gion. The latter phase – specially for curved boundaries –
requires careful attention to both geometric and numeric
detail in order to provide robust algorithms. Conventional
filling of curved regions is based on algorithms for scan
conversion of polygons where the end points of spans are
incrementally updated and pixels in between are filled.
At some stage the intersection formula derived in the con-
tinuous plane and usually computed using real arithmetic
has to be mapped to the discrete plane. This mapping
necessitates an implicit or explicit epsilon-test that may
cause incorret results [17, 8, 2].

Brooks [1] quoting Poulton points out that if current
hardware trends continue, the number of pixels per prim-
itive rendered by hardware will approach unity, and in
such circumstances we might as well compute pixels di-
rectly from the underlying geometry rather than first ap-
proximating the geometry by polygons or line segments.
The point containment approach is an example of this

strategy, generating pixels directly from curves and thus
avoiding the difficulties in curve rendering tackled by
Klassen [12] and Lien et al. [13]. In Corthout–Pol point
containment technique [2, 3, 4, 5], the problems of dis-
cretisation are acknowledged and tackled by casting the
problem to be solved as a discrete integer problem from
the outset rather than attempting to accommodate all the
problems of numerical accuracy which follow from float-
ing point discretisation, geometric approximation, or a
less rigorous approach to discretisation later in the ren-
dering process. Corthout and Pol’s thesis contains details
of the overall integer precision required for rendering on a
chosen device together with proofs of robustness and ac-
curacy. Furthermore, the method lends itself to hardware
implementation: the Pharos chip implements the point
containment algorithm in full and could be used serially
or in a variety of parallel configurations. The algorithm
is fast on parallel hardware using Pharos chips.

The major disadvantage of the Point Containment
approach, even from the hardware implementation point
of view, is its quadratic behaviour with respect to resolu-
tion. In [5], Corthout and Pol describe a way to reduce
the time complexity of the Point Containment approach
to quasi–linear. This paper presents a method whose time
complexity depends not on the resolution but only on the
perimeter of the polygon boundary.

2 The mathematical structure

In [5], Corthout and Pol state and prove a version of
the Jordan curve theorem for regions bounded by non-
simple discrete curves which is the basis of their point
containment technique. To enunciate this theorem, we
describe the basic mathematical structure built on the dis-
crete planeZ2, which will also be used to develop the fast

point containment algorithm presented in this paper.
Building on the discrete plane, the notion of list will

be used to represent the vertices of a polygon as well as
the control points of a B´ezier curve. Alist of lengthn is
an element of the set

�n = fL : [0::n]! Z2g:

A list L is called aclosed list, or alternatively a polygon,
iff L(0) = L(n). The set of all lists will be denoted by�
and the set of closed lists by�c. Let d8 be the metric on
Z2�Z2 defined by

d8 (x; y) = maxfjx1 � x2j; jy1 � y2jg :

A list L is called8-connected iff thed8 distance between
any two consecutive points is at most1. Using the well
known metricsd4 andd6 [15, 5] we can define respec-
tively 4- and6-connected lists. A regionR in Z2 is m-
connected (m 2 f4; 6; 8g) iff for all x,y 2 R, there exists
am-connected listL embedded onR such thatL(0) = x

andL(n) = y.
The point containment algorithm must detect, for

each given query point and outline, whether it is con-
tained in the region enclosed by the outline or not. This
detection is based on the concept ofwinding number.
There are two ways to define the winding number: the
analytic version employs a complex line integral and the
geometric version counts the number of direct intersec-
tion with a ray.

For the geometric version, let" 2 R2 be given and
consider the functionW" : �� �! Z defined by:

� W" : �0 � � [�� �0 ! Z,W"(L
1; L2) = 0

� W" : �1 � �1 ! Z,
8<
:

'(L1) \ '"(L
2) = ;)W"(L

1; L2) = 0

'(L1) \ '"(L
2) 6= ;)W"(L

1; L2) =

signal((�(L1)��(L2))z)

where(�(L1)��(L2))z denotes thez-coordinate
of the cross product between the vectors�(L1) and
�(L2) (embedding inR3 is implicit), '(L) is the
usual embedding inR2 that represents the line seg-
mentL(0)L(1) and'"(L) = '(L) + ".

� W" : �n1
� �n2

! Z for n1 > 1 or n2 > 1 by:
W"(L

1; L2) =
P

n1�1

i=0

P
n2�1

j=0 W"(< L1
i
; L1

i+1 >

;< L2
j
; L2

j+1 >)

Taking" as a pair" = (q; r) or " = (r; q), whereq 2 Q�
Z andr 2 R � Q, Corthout and Pol show that" 62 '(L)

for all L 2 �1. Under this restriction on" they prove that

W"(L
1; L2

) =
1

2�i

Z
'(L1)

dz

z � '"(L2
n2
)

�
1

2�i

Z
'(L1)

dz

z � '"(L
2
0)

and

W"(L
2; L1

) =
1

2�i

Z
'"(L1)

dz

z � '(L2
n2
)

�
1

2�i

Z
'"(L1)

dz

z � '(L2
0)

whereL1 is a closed list1. With " as defined above,W" is
calledcross-weight function. Note that, differently than
the analytic version, the geometric version is more suit-
able to implementation.

With this linking between the geometric and the an-
alytic version of the winding number, Corthout and Pol
state and prove the discrete version of the Jordan curve
theorem for non-simple closed curves.

Theorem 2.1 (Corthout–Pol) Let� be an angle with ir-
rational tangent. Given any closed listL1, the cross
weight functionW� divides the planeZ2 into a finite num-
ber of regions with pointsP of equal winding numbers

1

2�i

Z
'(L1)

dz

z � '�(P)
:

Precisely, one of these regions is infinite, and that region
contains points with zero winding number. Furthermore,
when for any listL2 of lengthn2 we have

1

2�i

Z
'(L1)

dz

z � '�(L
2
0)
6=

1

2�i

Z
'(L1)

dz

z � '�(L2
n2
)
;

we must have'(L1) \ '(L2) 6= ;.

The last part of this theorem states that under certain con-
ditions, the polygonal embeddings of two lists must have
a point in commom. The Corthout–Pol Point Contain-
ment technique is based on this result.

3 Filling

In this section, we will describe a specific rasterizing
function based on the cross weightW� to fill the interior
of polygons and discrete B´ezier closed curves.

Consider the functions

F�(L; P) = lim
Q!1

W�(L;< Q;P >):

and let the rasterizing functionF be defined by

F = lim
�"0

F�:

Taking the� size infinitesimally small minimizes the ef-
fect of the� translation [5].

As F distributes over concatenations, the first step
of its implementation is to sum over the polygonal sides
of the list argument. The algorithm for this is:

1HereR2 is embedded inC for the evaluation of the complex line
integral.

winding_number(List L, Point P)

1. sum<-0;
2. For each position i of L (not including the

last element)
3. sum<-sum+Contribution(L[i]-P,L[i+1]-P);
4. return sum;

The step(3) computes the contribution of each line
segment to the winding number. The translation of each
element in the list is to speed up the evaluation of the
Contribution procedure whose goal is to compute each
term on the decomposition ofF (L; P). The elements
used to compute the contribution of each line segment
are represented in the Figure 1.

Figure 1: The elements of the contribution procedure

To compute the value of each term on the decompo-
sition ofF (L; P) we use the following remarks [5]:

(R1) If (P y > maxfL
y

i
g _ P y � minfL

y

i
g _ P y <

minfLx
i
g) thenF (L; P) = 0.

(R2) If (P y < maxfL
y

i
g ^ P y > minfL

y

i
g ^ P x �

maxfLx
i
g) thenF (L; P) = signal(L

y

0 � L
y

1).

(R3) Let minfL
y

i
g < P y � maxfL

y

i
g and

minfLx
i
g � P x < maxfLx

i
g. Let l be the line

through the line segmentL.

� If l is parallel to thex-axis, thenF (L; P) = 0.

� If l is not parallel to thex-axis, then�(L)y 6=

0. Let v be the vector perpendicular tol, such
thatvx > 0: v = +�(�(L)y ;��(L)x). Let
c = L0 � v, thusl is described by(x; y) � v = c.
We have:

P � v � c) F (L; P) = signal(L
y

0 � L
y

1)

P � v < c) F (L; P) = 0

The Contribution procedure implements these re-
marks which evaluates the contribution of each line seg-
ment to the winding number:

Contribution(L0,L1)

1. Compute the values
minx = min(L0.x,L1.x)
maxx = max(L0.x,L1.x)
miny = min(L0.y,L1.y)
maxy = max(L0.y,L1.y)

2. If minx>0 or miny>=0 or maxy<0
return 0 (According to remark (R1))

3. Compute s=signal(L0.y - L1.y)
4. If maxx<=0

return s (According to remark (R2))
5. Compute the vector v

v.x = L0.y - L1.y
v.y = L1.x - L0.x

6. If v.x=0
return 0 (According to remark (R3),

first condition)
7. If v.x<0

v.x = -norm.x
v.y = -norm.y

8. If InnerProduct(L0,v)>0 (Second condition
of the remark (R3))

return 0
9. return s

Bézier curves can be incorporated on the case of
polygonal lists, first converting the curve into a polyg-
onal list, and evaluating the rasterizing function on this
list. As one of the essential aspects of the Point Contain-
ment paradigm is the exclusive use of integer arithmetic,
both Bézier curve and the polygon into which the curve
is converted must be described with integers. But, nu-
merical errors may arise due to this polygonalisation. To
avoid this, Corthout and Pol [5] describe the notion of
discrete Bézier curves in a discrete model space which is
of higher precision than device space. Based on this, they
derive a recursive algorithm to compute the curve wind-
ing number based on the corresponding control points.

4 Coherence with Point Containment

As we have remarked earlier, for each point in the im-
age its winding number with respect to the given outline
needs to be executed. Thus, if we have an image of res-
olutionn, the time complexity isO(n2):cwn, wherecwn
is the cost of the interior/exterior test, that is, the Point
Containment has quadratic behaviour with respect to res-
olution.

There is a way to reduce the time complexity of
the Point Containment to almost linear behaviour using a
technique calledcoherence testing. LetL a closed list and
F a rasterizing function be given. A regionR is calledco-
herent with respect to the filled outlineL iff R is a subset
of a single class of the equivalence relation onZ2 induced
byF .

Note that if in the coherence testing a region is
found, it is only necessary to evaluate the winding num-
ber for just one element inside the region.

The problem is: how to find these regions? Corthout
and Pol [5] describe a general method to detect coherence
with filling:

Theorem 4.1 (Corthout–Pol) Let (m1;m2) 2 f(4; 4);

(4; 6); (4; 8); (6; 4); (6; 6); (8; 4)g. If L is a closed,m1-
connected list, andT is am2-connected region, thenP 62

fLig � T) P � T is coherent with respect toL.

The symbol� denotes the usual Minkowski addition (e.g.
see [10], [16]). This theorem states that the coherence of
the tileP�T is implied when a single Point Containment
test with a stroked outline returns negative. In Figure 2,
regions indexed byP0 andP2 are filling–coherent, but
the regionP1 is not. Note that the(assertion is not true.

P
0

P
1

P
2

List L

Interior of L

T

Figure 2: Coherence tests for filling

For this, take the tailL = L1] R(L1); since a filled tail
contains no points, any regionP � T is coherent, while
fLig � T need not be empty.

4.1 Time complexity with coherence

Following the above methods, we can derive an algorithm
for filling curves with coherence.

When an image is to be generated, first we detect
whether the entire image is coherent, and if so, what
colour it has. If not, the image is subdivided into four
quadrants, and applied the described procedure recur-
sively to each of the four quadrants. Note that this pro-
cedure always finishes, because a point is coherent. The
stopping points of this algorithm are coherent regions.

The recursive structure of this algorithm creates a
quadtree. Hunter and Steiglitz [11] show that the number
of nodes in the quadtree is of orderO(p + n), wherep is
the perimeter of the contour, andn is the maximum sub-
divison level. As the number of Point Containment tests
needed to build the tree depends linearly on the number
of nodes, the number of tests is also of orderO(p + n),
that is, if coherence is used, the algorithm has almost lin-
ear time complexity.

5 The new approach to filling coherence

Note that the approach of quadtrees to detect coherent re-
gions is not optimal, because it finds squared coherent
regions that can be frequently embedded into greater re-
gions. For example, in Figure 3 the white leaves could
be embedded into a2 � 2 square as they have the same
winding number.

Figure 3: Decomposition to find coherence

Our approach is to detect an element of each coher-
ent regions and propagate its colour to the whole region.
The algorithm uses two auxiliar procedures:Detection
andPropagation.

The Detection procedure tries to find a point of inte-
rior of L:

Boolean Detection(Point P,List L, Point Q)

1. If(P has a neighbour V belonging
to the interior of L, with
diferent from INTERIOR_COLOUR)

2. Q <- V
3. return TRUE
4. else return FALSE

Given a pointQ belonging to interior ofL, the Prop-
agation procedure assigns the INTERIORCOLOUR to
all points on the coherent region that containsQ:

Propagation(Point Q)

1. Queue <- EMPTY;
2. enqueue(Q,Queue);
3. Colour(Q)<- INTERIOR_COLOUR;
3. While(Queue is not EMPTY)
4. P <- dequeue(Queue);
5. For all neighbour T of P that

has not colour INTERIOR_COLOUR
6. Colour(T)<-INTERIOR_COLOUR
7. enqueue(T,Queue);

Finally, the Filling with coherence procedure fillsL
by calling the Detection procedure to find a coherent re-
gion and, if such a region exists, it fills the region using
the Propagation procedure :

Filling_with_coherence(List L)

1. For each point P in the image
Colour(P) <- EXTERIOR_COLOUR

2. Embedd the points of L on the image, setting
their colours to INTERIOR_COLOUR

3. For each point P in L
4. If Detection(P,L,Q) is TRUE
5. Propagation(P,L,Q)

The following results analyses the steps of the pro-
posed algorithm. Firstly, we introduce some notation.
The interior of a closed listL will be denoted byint(L).
LetW be am-connected region. Theboundaryof L will
be denoted by@W = fP 2 W j9Q 62 W;d(P;Q) = 1g,
whered is the metric associated toW . A path (or a
Z2–path) between two pointsP andQ(the path ends)
is a sequencefV1 = P; V2; � � � ; Vn�1; Vn = Qg, where
d(Vi; Vi+1) = 1 for all i = 1; :::; n � 1. The points
Vi(i 6= 1; n) are called internals. Note that, ifW is a
m-connected region then always there exists a path link-
ingP andQ for all P;Q 2W .

Lemma 5.1 LetL be a closed list andP 2 int(L). Then
there exists a path with end pointsP andQ (Q 2 L),
whose internal points are contained inint(L).

Proof: If int(L) = ;, then the result holds. Ifint(L) 6=
;, according to the Theorem2:1, P 2 W � int(L),
jW j (the cardinality of the setW) finite andW is m-
connected, for anym 2 f4; 6; 8g. W is limited by a
closed sublistL1 6= ; of L, and more,8T 2 L1 exists
S 2 W such thatd(T; S) = 1. It is clear thatW [L1 is
m-connected. Thus, there exists aZ2-pathfV1; :::; Vng
linking P to any pointQ 2 L1. If n = 2, there are no
internal vertices and then the lemma holds. Ifn > 2,
consider the setI = fV1; :::; Vng \ int(L). It is clear
that it can be choosen a subsetI 0 = fVi1 ; :::; Vikg of I ,
such thatVik = P , d(Vil ; Vil+1) = 1; l = 1; :::; k� 1 and
consequently there exists a pointQ 2 L, d(Q; Vi1) = 1.
Thus, the path of the lemma isfQ; Vi1 ; :::; Vik = Pg.

To introduce the next lemma we need the following
definition:

Definition 5.1 LetW be a limited region ofZ2 andL be
a closed list.W is called maximal connected coherent if
W is m-connected,w(L; P) = w(L;Q) for all P;Q 2

W and ifV � Z2 satisfies:

� W � V

� V m-connected

� 9T 2 V ,9S 2 W , such thatw(L; T) = w(L; S)

thenV =W .

Lemma 5.2 If a point Q is detected by the Detection
procedure, then the Propagation procedure assigns IN-
TERIORCOLOUR to all pointsP 2 W , whereW is a
maximal connected coherent region that contaisQ.

Proof: Suppose that the Detection procedure found a
point Q. According to the theorem2:1: Q 2 W �

int(L) , jW j is finite andW is m-connected, for any
m 2 f4; 6; 8g. Observe thatW is maximal connected
coherent. Now let us prove that the Propagation proce-
dure covers exactly all points insideW . As W is con-
nected, there exists aZ2–path linkingQ to P for all P
in W . Thus,P is enqueued just once. From this, we
conclude that the procedure coversW . The regionW
is limited by a closed sublistL1 of L andL1 [W is
m-connected. Observe that all pointsP 2 L1 satisfy
Colour(P)=INTERIOR COLOUR. Thus, they are not
enqueued and the Propagation procedure can not reach
the exterior ofW .

The following theorem shows that our algorithm
finds the maximal connected coherent regions of the in-
terior ofL.

Theorem 5.1 The Filling with coherence algorithm
finds the maximal connected coherent regions of the in-
terior ofL, whereL is a closed list.

Proof: If int(L) = ;, there are no interior points and
the Detection procedure always returns FALSE. Thus, the
Propagation procedure is never called.

If int(L) 6= ;, then9W1;W2; � � � ;Wn � int(L),
such thatint(L) =

S
n

i=iWi andWi 6= ;. Using theorem
2:1 we haveWi \Wj = ;, 8i 6= j. Suppose that there
existsWi not detected by the algorithm. Observe that the
only way to detect a point ofWi is by using the sublist
L1 that boundsWi. Therefore, Detection(P;L1; Q) is al-
ways FALSE. According to the Lemma5:1, such a region
does not exist.Applying lemma5:2 for eachQi returned
by Detection(P;L;Qi), the result holds.

The Corthout–Pol Point Containment test is only
performed in the Detection procedure. This test is called,
at mostm times for each query point,m 2 f4; 6; 8g.

Thus, the Detection procedure has time complexity
O(1):cwn, wherecwn is the cost of Point Containment
test.

Finally, for each point in the list, the Detection test
is called just once. Thus, the total number of calls to the
Point Containment test isO(p), wherep is the perimeter2

of the list.

5.1 Comparison of theoretical results

Three approaches to perform the filling task were given:
the initial quadratic version, the quasi-linear version and
our resolution-independent version.

Observe that any rasterization process has two com-
mon steps:

2Perimeter of the discrete curve represented by the list.

� Testing: the points in the image are tested to decide
if they are interior or not.

� Propagation: According to the interior/exterior po-
sition, the colour of points are changed. Note that,
for any rasterization process, this step has quadratic
behaviour with respect to resolution.

The Table 1 summarize the theoretical complexities of
these approaches, according to the preceding step classi-
fication.

Approach Testing step Propagation step
Initial O(n2):cwn O(n2)

Quadtrees O(n+ p):cwn O(n2)

New O(p):cwn O(n2)

Table 1: Results summary

In the testing step, the new algorithm reduces the
theoretical complexity. We observe that the the testing
step is highly more expensive than the propagation step.

6 Results

Images were generated on a Macintosh Quadra 605,
with monitor resolution 256x256 and no arithmetic co-
processor, saved as PostScript files and printed on a
Hewlett–Packard LaserJet 4 Plus printer at600 dpi.

In the Plate1, we have a polygonal self-intersecting
list. It shows the ability of the new method to captures
details, such as the small interior regions.

Plate2 explores an example of a curve composed by
100 cubic Bézier segments and1 line segment. Note that
there is a variety of thicknesses of the interior region. and
the small exterior region is also preserved.

Table 2 compares the efficiency (in seconds) of the
examples.

Plate Initial Quadtrees New Method
1 105 29 15
2 605 40 10

Table 2: Computational time on the plates

7 Conclusions and further work

In this paper we have presented an efficient way to per-
form the filling operation for non-simple closed curves
using the Corthout–Pol Point Containment test with co-
herence. The coherence approach enables the develop-
ment of a simple algorithm, whose main characteristics

are: resolution-independent complexity, simple struc-
tures and suitable to hardware implementation.

The research done in this paper can be further ex-
tended in both theoretical and practical directions.

Current work is going to investigate the optimal-
ity of our method and to perform other raster operations
such as stroking. By doing this we would be provid-
ing a framework to support the efficient production of
antialiased two-dimensional images using Point Contain-
ment based techniques [6, 7].

References

[1] F.P. Brooks. Springing into Fifth Decade of Com-
puter Graphics – Where We’ve Been and Where
We’re Going! InComputer Graphics (SIGGRAPH
’96 Proceedings), volume 29, page 513, August
1996.

[2] M.E.A. Corthout and H.B.M. Jonkers. A new point
containment algorithm for B-regions in the dis-
crete plane. In R.A. Earnshaw, editor,Theoreti-
cal Foundations of Computer Graphics and CAD,
NATO Advanced Study Institute Series, Series F,
F40, pages 297–306. Springer-Verlag, 1988.

[3] M.E.A. Corthout and H.B.M. Jonkers. A point con-
tainment algorithm for regions in the discrete plane
outlined by rational b´ezier curves. In J. Andr´e and
R.D. Hersch, editors,Raster Imaging and Digital
Typography, pages 169–179. Cambridge University
Press, 1989.

[4] M.E.A. Corthout and E.-J.D. Pol. Supporting out-
line font rendering in dedicated silicon: the pharos
chip. InRaster Imaging and Digital Typography II,
pages 177–189. Cambridge University Press, 1991.

[5] M.E.A. Corthout and E.-J.D. Pol.Point Contain-
ment and the PHAROS Chip. PhD thesis, University
of Leiden, Leiden, March 1992.

[6] A.E. Fabris. Robust Antialiasing of Curves. PhD
thesis, University of East Anglia, Norwich, Novem-
ber 1995.

[7] A.E. Fabris and A.R. Forrest. Antialiasing of curves
by discrete pre-filtering. InComputer Graphics
(SIGGRAPH ’97 Proceedings), August 1997.

[8] A.R. Forrest. Computational geometry in prac-
tice. In R.A. Earnshaw, editor,Fundamental Al-
gorithms for Computer Graphics, NATO Advanced
Study Institute Series, Series F, F17, pages 707–
724. Springer-Verlag, 1985.

[9] A.R. Forrest.Presentation at the Panel Session on
Fundamental Algorithms: Retrospect and Prospect.
ACM SIGRAPH 1985, San Francisco, July 1985.

[10] L.J. Guibas, L.H. Ramshaw, and J. Stolfi. A ki-
netic framework for computational geometry. In
Proceedings of 24th IEEE Symposium on the Foun-
dations of Computer Science, pages 100–111, 1983.

[11] G.M. Hunter and K. Steiglitz. Operations on im-
ages using quadtrees.IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 145–153,
1979.

[12] R.V. Klassen. Drawing antialiased cubic spline
curves.ACM Transactions on Graphics, 10(1):92–
108, January 1991.

[13] S.-L. Lien, M. Shantz, and V.R. Pratt. Adaptive for-
ward differencing for rendering curves and surfaces.
In Computer Graphics (SIGGRAPH ’87 Proceed-
ings), volume 21, pages 111–118, July 1987.

[14] W. Newman and R. Sproull.Principles of Inter-
active Computer Graphics. McGraw–Hill, second
edition, 1983.

[15] A. Rosenfeld and J.L. Pfaltz. Distance functions
on digital pictures.Pattern Recognition, 1:33–61,
1968.

[16] J. Serra. Image Analysis and Mathematical Mor-
phology. Academic Press, 1982.

[17] C.J. Van Wyk. Clipping on the boundary of a
circular-arc polygon.Computer Vision, Graphics,
and Image Processing, 25:383–392, 1984.

Plate 1: Polygonal curve

Plate 2: Cubic Bézier segments

