
Semi-Automated Dendrogram Generation for Neural Shape Analysis

ROBERTO MARCONDES CESAR JUNIOR

LUCIANO DA FONTOURA COSTA

Cybernetic Vision Research Group
GII - IFSC - University of São Paulo - São Carlos, SP

Caixa Postal 369, 13560-970, Brazil
e-mails: {pinda,luciano}@ifqsc.sc.usp.br http://www.ifqsc.sc.usp.br/visao

Abstract. This work introduces a new framework for shape characterization of neural cells by semi-
automated generation of dendrograms, which are abstract structures describing different aspects associated
to the branching structure of dendrites in neurons. Particularly, the dendrograms generated by the proposed
method includes the length of each dendritic segment. The new method, which is based on multiscale
curvature contour segmentation and syntactic shape analysis, is robust and greatly improve the tiresome task
of dendrogram extraction, traditionally performed by human operators. Results corroborating the
effectiveness of the technique are also presented.

Keywords: shape analysis; multiscale curvature; neuromorphometry; syntactic methods; dendrograms

1 Introduction

The analysis of the shape of neurons and neural
structures has received growing attention as a
consequence of the recent advances in computer vision
techniques as well as substantial performance
enhancements in off-the-shelf microprocessor systems.
Largely overlooked by neuroscientists until the recent
past, neuromorphometric studies of neural cells are
essential for the proper characterization of constraints
imposed by the physical boundaries of cell membrane
over the functional properties of the respective neuron
[Costa (1995)]. Among the many measures that have
been considered for neural shape characterization
[Costa (1997)], the dendrogram [Poznanski (1992);
Schutter & Bower (1994); Turner et al. (1995); Velte &
Miller (1995)] presents special importance because of
the comprehensiveness it allows for the representation
of the features of neural cells. Basically, dendrograms
are binary trees representing the pattern of dendritic
arborization of neurons, with their nodes corresponding
to the branches in such arborizations. It should be
observed that binary trees are indeed enough to
represent such arborizations, since it is statistically
impossible to have a triple branch, no mattering how
close the departing segments may be (the triple
branches eventually appearing in spatially sampled
images can be split into two binary branches). Such a
basic structure has often been extended to include
additional information about the neural cells, such as
the length and diameter of the dendritic segments,
which are represented by the arches of the tree, the
density of ion channels and average value of the

electrical parameters along the segment, and even the
axonal structure. Indeed, by including the angles
between dendritic segments, dendrograms can be
extended in order to express almost the totality of the
large scale information contained in the 3D shape of
most diverse neural cells. Of course, the full
representation of the microscopic features of neurons,
such as the exact position and type of channels not to
mention the precise shape and position of every spine
characterizing most excitatory cells, would be largely
incompatible with the overall data structure and
philosophy underlying dendrograms.

Frequently obtained from measures made
painstakingly by human operators, dendrograms tend to
present a certain degree of subjectiveness, not to
mention the long time implied by such a process, which
has been traditionally performed by human operators.
The principal objective of the present paper consists
precisely in developing a semi-automated technique for
facilitating the generation of dendrograms from images
of neurons obtained through optical microscopy. In
addition to the branching structure, the considered
dendrograms should also incorporate the length of
every dendritic segment. Contrary to initial
expectations, the problem of dendrogram extraction is
complicated by ambiguities, as it will be discussed later
in the present paper. Furthermore, the very process of
determining the branch points is rather critical because
of the variety of angles and curvatures in which such
derivations can appear. Actually, the approach
described here has only been possible as a consequence
of recent developments in multi-scale contour analysis
[Cesar & Costa (1996); Cesar & Costa (1997)] allowing

the accurate determination of the branch points and
extremities along the dendritic arborization, which is
done by considering the curvature along such structures.
Yet, in spite of its versatility and accuracy, some points
may still be overlooked, thus implying the interactive
involvment of an operator in order to validate the
automatically extracted representation. A reasonably
versatile graphic-interactive interface has been
especially developed in order to assist this process.
Preliminary assessments have indicated that operator
intervention is required only in order to alter less than
20% of the obtained branch points and extremities. The
problem of ambiguity has been addressed in terms of a
grammatical approach where the branches are parsed
according to decreasing distance between their
respective extremities.

The present article begins by discussing the
problems involved in dendrogram generation and
proceeds by describing the curvature-based contour
analysis used for the determination of the branch points
and extremities, the graphic-interactive interface, and
the parsing strategy used to solve the ambiguities during

the dendrogram extraction. Once the dendrogram has
been extracted, its is possible to straightforwardly
obtain the skeleton of the respective cell, which is also
described and commented upon. Experimental results
corroborating the effectiveness of the overall approach
are presented and discussed, and the prospects for
further developments identified.

2 The Problem of Dendrogram Generation

The method introduced in this paper is based on contour
analysis of neural cells. In order to gain insight into the
different steps involved in the method, a dendritic
whole branch will be used as example throughout the
paper. Figure 1(a) presents the shape of a (synthetic)
neural cell, while Figure 1(b) presents its respective
outline. The right-most dendritic whole branch, which
is shown in Figure 2, will be used as an example in the
introduction and discussion of the algorithms.

Although the binary trees underlying dendrograms
can be straightforwardly extracted from the one-pixel
wide skeletons of the respective cells, such skeletons
are often difficult to be determined because the cell
body is irregular and thick (especially near the soma).
The main problem is that thinning algorithms are
broadly known to be relatively complex and do not
guarantee optimal performance. Instead of relying on
skeletons, the present approach has considered the
analysis of the dendritic branches directly in terms of
the outer boundaries of the cell, as illustrated in Figure
1(b) and 2.

Two special kind of critical or dominant points
along such contours have been considered in the present
article: the extremities, identified by the prefix e, and
the branch points, identified by b, which are
characterized as belonging to convex and concave
portions of the contour (the concavity can be inferred

(a) (b)

Figure (1): (a) Artificial neural cell; (b) Its
respective contour.

e0

ef

e
e

e

e

b

b

b

INDICATION OF

ARC b∩E INDICATION OF

ARC E∩b

Figure (2): The outer boundaries of a dendritic whole branch. Extremities correspond to the symbol “e” and are
indicated by “+” in the Figure; branch points to the symbol “b” and are indicated by “*”; and secondary branch
points are indicated by “°”.

from the sign of the curvature at the contour points).
Assuming that such points have been correctly
identified, it is possible to think of the problem of
dendrogram extraction in terms of a grammatical
approach, more specifically through the parsing of a
basic sequence defining the underlying structural atoms
in dendrograms, namely the sequence extremity/branch-
point/extremity. However, this parsing can not be
performed directly, since there are ambiguities in such
grammatical representations of dendritic whole
branches. For instance, the same sequence as that
describing the ramifications in Figure 2, namely
e0ebebebeef, may have different parsing trees, which
would imply different binary structures, as illustrated
in Figure 3. The solution to such problems are
described in the following sections.

3 Contour Segmentation

The methods presented in this section are based on the
multiscale curvature methods (derived from the
curvegram) introduced in [Cesar & Costa (1996); Cesar
& Costa (1997)]. The framework presented in this work
starts by representing the neural cell in terms of its
outline contour, which is defined by a parametric curve
C(t) = (x(t), y(t)), where the parameter t usually stands
for the arc length parametrization of C. A complex
representation of the contour is obtained through the
definition of a complex signal u(t), i.e. u(t) = x(t) +
i y(t). The Fourier transform pair of u(t) is given in (1)
and (2).

U f F u t u t dti f t() { ()} ()= =
−∞

∞
−∫ e 2π (1)

u t F U f U f dtf t() { ()} ()= =−

−∞

∞

∫1 2 e i π (2)

As it is well known, the Fourier transform presents
the interesting derivative property (3).

d u

dt
t i f U f

n

n
n

()

()
() () ()⇔ 2π (3)

In particular, the first and the second derivatives of
u(t) can be defined in terms of U(f) as expressed by
equations (4) and (5).

{ } { }�() � () ()u t U f i f U f= =F F -1 -1 2π (4)

{ } { }��() ��() (()u t U f f U f= = −F F)-1 -1 2 2π (5)

The differentiation process defined by Equations 4
e 5 acts like high-pass filters, which can increase the
high-frequencies noise commonly encountered in
digital contours. In order to cope with such a problem,
the differentiated spectra should be filtered with a low-
pass filter to control the noise. By taking the gaussian
Ga(f) as low-pass filter, where Ga(f) = exp(-(af)2/2), the
differentiated signals �(,)u t a and ��(,)u t a filtered at scale
a can be given by (6) and (7).

() (){ }�(,) �u t a U f G fa= −F 1 (6)

() (){ }��(,) ��u t a U f G fa= −F 1 (7)

The multiscale curvature description of C(t),
namely the curvegram [Cesar & Costa (1997)], is given
by equation (8).

{ }
k t a

u t a u t a

u t a
(,)

Im �(,) �� (,)

�(,)
=

− ∗

3
 (8)

The curvegram k(t,a) describes the curvature of
C(t) analyzed at scale a. The segmentation of the neural
contour is carried out by choosing an appropriate scale
a0, followed by two threshold operations, one for the
detection of the extremities of the neurons (defined by
negative minima of curvature, which characterize
convexities, assuming that the contour is traversed
clockwise), and other for the detection of the branch
points (defined by positive maxima of curvature
characterizing concavities, assuming that the contour is
traversed clockwise). It is important to note that, if the

e0 e b e b e b e ef

E E E E

E

E

E

E0

e0 e b e b e b e ef

E E E E

E

E

E

E0

e0 e b e b e b e ef

E E E E

E

E

E

E0

(a) (b) (c)

Figure (3): Three different parsing trees for the same string.

contour is traversed counterclockwise, it suffices to
define the extremities as positive maxima and the
branch points as negative minima. Furthermore, it is
assumed that there is a minimum neighborhood around
each dominant point (be it an extremity or a branch
point) inside which there must be only one dominant
point. This assumption implies a post-processing step in
order to verify the minimum neighborhood around each
dominant point. In the case that there is more than one
of such points, the algorithm should choose only one. In
our implementation, the algorithm chooses the more
central dominant point among the points inside a
common minimum neighborhood. The algorithm for
dominant point detection can be summarized as
follows:

1. Algorithm 1: dominant point detection

2. Calculate k(t,a0), as defined by Equation 8, where
a0 is a constant;

3. Find all branch points defined as % = {u(t) |
k(t,a0) > T%� and k(t,a0) is a local positive
maximum};

4. Find all extremities defined as (� = {u(t) | k(t,a0) <
T(� and k(t,a0) is a local negative minimum};

5. Filter (� and %� so that the minimum
neighborhood around each extremity (or branch
point) contain only one extremity (or branch point);

6. End.

Algorithm 1 requires the specification of four
parameters, the analyzing scale a0, the thresholds T(�and
T% and the size of the minimum neighborhood for
dominant points. In all experiments, the minimum
neighborhood for the digitized version of the contour
has been set as three points on each side of the
dominant point. The other three parameters are set by a
semi-automated procedure, as explained in the
following section.

4 GUI’s and the Semi-Automated Approach

As it was explained at the end of Section 10, the
segmentation algorithm for dominant point detection
requires the specification of three parameters, the
analyzing scale and the thresholds for the detection of
extremities and branch points. These parameters are set
by three semi-automated procedures that may require
operator interventions. A fourth semi-automated
procedure is also carried out, which asks the operator
for final adjustments in the contour partitioning, both
for the inclusion of missing and exclusion of false
dominant points detected by Algorithm 1 . The four
procedures use the MatLab GUI resources (“Graphical

User Interfaces”), and work as described in the
following.

Procedure 1 (scale setting): A graphical window
presents the original and the gaussian low-pass filtered
contours to the user, which controls the amount of
smoothness of the contour by a sliding control bar.
There is a trade-off in this process since the filtered
contour should be as smooth as possible but without
rough distortions compared to the original shape. This
procedure has a memory in the sense that the initial
degree of smoothness is set up equal to the mean value
scales of the two last executions of the program. It has
been verified that such an approach is quite robust in
the sense that the operator is seldom required to make
adjustments. The same strategy is adopted by the
procedures 2 and 3. The analyzing scale a0 (algorithm
1) is taken to be the standard deviation of the gaussian
filter corresponding to the smoothed contour;

Procedure 2 (extremity threshold setting): This
procedure is analogous to Procedure 1, in the sense that
a graphical window presents the contour with the
extremities that are initially found indicated along the
contour. The user is also prompted with a sliding
control bar that allows him (or her) to control the
threshold value. As the operator changes the threshold
values, extremities are created and/or deleted, a process
that is shown on-line in the graphical window. These
extremities are found by step 4 of algorithm 1, where a
initial value of T(is set a priori. Again, this initial value
is the average threshold that was the best choice in the
last two executions of the program, i.e. the threshold
that the program learned. Similar robust results are
obtained by this strategy, and the operator rarely has to
work hard in order to find a nice threshold.

Procedure 3 (branch point threshold setting):
This procedure is the same as Procedure 4, except that
step 3 of algorithm 1 is used in order to define the
branch points.

Procedure 4 (final adjustment of dominant
points): Although the contour partitioning is generally
robust, false and missing dominant points are likely to
result. Procedure 4 allows the operator to check the
segmented contour in order to correct such possible
mistaken dominant points. The segmented contour is
presented to the user in a graphical window, and two
different symbols are used in order to distinguish
extremities from branch points. The user is presented to
a menu window that allows him (her) to perform any of
the following 4 operations: include an extremity,
include a branch point, delete an extremity, and delete a
branch point. The operator executes the final adjustment
by selecting the operation in the menu and pointing the
desired point on the segmented contour. Finally,

procedure 4 allows the operator to define each dendritic
whole branch, each of which generally starting at the
soma, by marking the initial and the final points of the
whole branch. Each of the selected whole branches is
analyzed in order to generate its respective dendrogram.

5 Parsing

The goal behind the parsing step is to derive a parsing
tree that reflects the structure of the neural dendritic
whole branch. The parsing step starts by labeling the
dominant points obtained by the contour partitioning
algorithm described in Sections 10 and 11, so that the
initial and final points of the whole are labeled with the
symbols “e0” and “ef”, respectively; each extremity
point is labeled by the symbol “e” and each branch
point by the symbol “b”. Therefore, we define a
grammar G = (VN, VT, P, S), where VN = {E}, V T = {
e0, ef, e, b}, S = {E0} and P consists of the following
productions:

1. E0 → e0 E ef

2. E → E b E

3. E → e

As an illustration, the corresponding symbols have
been indicated in the segmented whole branch shown in
Figure 2. As it can be seen, the string representing that
sub-tree is: “e0ebebebeef”. The bottom-up parsing
procedure is (seemingly) very simple, due to the
simplicity of the grammar. A preliminary version of
such an algorithm is:

1. Algorithm 2: Parsing (Version 1)

2. Change all the occurrences of “e” by “E” , through
the application of rule 3;

3. Change the occurrences of “E b E” by “E” ,
through the application of rule 2;

4. Change the occurrence of “e0 E ef” by “E0”,
through the application of rule 1;

5. End.

Nevertheless, there is an important problem
associated with step 3 of algorithm 2 because of the
fact that different derivations may lead to the same
string, which means that the order of application of rule
2 defines different parsing trees (e.g. see Figure 3). As a
means of circumventing this ambiguity, a heuristic is
applied in step 3 of algorithm 2. In order to understand

how this works, imagine that each application of rule 2
of the grammar during the parsing procedure is
equivalent to cut out a sub-branch corresponding to the
respective “EbE” that is being substituted by “E” .
Then, the key idea underlying the heuristics is to
construct the parsing tree by cutting the smaller, which
are also the last, sub-branches first. Therefore, a simple
analysis of the dendritic whole branch of Figure 2
indicates that the correct order of application of rule 2 is
that presented in Figure 4. The parsing algorithm must
decide whether or not to make the substitution EbE ⇒
E once an “EbE” sub-string is found during the parsing.
This decision, which is based on a comparison between
the arc length of segments of the current sub-branch
and the arc length of segments of its neighbor sub-
branches, is taken as follows. First, once an “EbE” sub-
string is found, which will be called the current “EbE”
and denoted by “EbE” , the algorithm tests whether
there is another “EbE” sub-string to the right of “EbE”,
where the second “E” of the first sub-string is the first
“E” of the second, i.e. the union of the two sub-strings
actually forms a sub-string “EbEbE”. In this case, the
arc length between the first “b” 1 and the middle “E”
(indicated as “arc b∩E” in Figure 2) is compared to the
arc length between this same middle “E” and the second
“b” (indicated as “arc E∩b” in Figure 2). In a similar
manner, the algorithm checks whether there is another
“EbE” sub-string to the left of “EbE”, where the union
of these two sub-strings forms the sub-string “EbEbE”.
In this case the arc length of b∩E is compared to the arc
length of E∩b; if (length(b∩E) < length(E∩b)) and
(length(E∩b) < length(b∩E)), then the sub-string “EbE”
is replaced by “E”. Otherwise, the algorithm skips the
first sub-string and tries to substitute the second “EbE”
sub-string, repeating the same test. These two
comparisons are made assuming the existence of
“EbEbE” and “EbEbE”. In the case when one (or both)
of them are not present, the respective(s) test is just
ignored, which occurs when the sub-branch does not
have neighboring sub-branches to the right or to the left
(or both). This heuristic, based on an information-
crossing between symbolic and geometrical
representations, induces the algorithm to attempt
making substitutions corresponding to the smaller sub-
branches first, as desired. Therefore, algorithm 2
should be updated to version 2, which will be called
algorithm 3:

1. Algorithm 3: Parsing (Version 2)

1 The contour branch point corresponding to the “b”, or any other

symbol in a string, will be henceforth referred as “first “b” point” and

so on, for simplicity’s sake.

e0 e b e b e b e ef

1st
2nd

3rd

Figure (4): Correct derivation.

2. Change all the occurrences of “e” by “E” , through
the application of rule 3;

3. While there are remaining “EbE” sub-strings do:

4. If a “EbEbE” sub-string is found then

5. If (length(b∩E) < length(E∩b)) then

6. Substitution_flag = true;

7. Else

8. Substitution_flag = false;

9. Else

10. Substitution_flag = true;

11. If a “EbEbE” sub-string is found then

12. If (length(E∩b) < length(b∩E)) then

13. Substitution_flag = true;

14. Else

15. Substitution_flag = false;

16. Else

17. Substitution_flag = true;

18. If (Substitution_flag = true) then

19. Change “EbE” by “E” , through the
application of rule 2;

20. Change the occurrence of “e0 E ef” by “E0” ,
through the application of rule 1;

21. End.

It is important to note that during its bottom-up
execution, the algorithm should bookkeep, e.g. by using
a string (or an equivalent data structure) to store the
“upper” tree nodes, i.e. those nodes which do not have
any parent node. This string, which is called control
string, plays a central role in the parsing process, as
well as in the determination of the lateral branch points,
as it will be seen.

An additional important feature of the parsing
procedure is that it allows the region-based
segmentation of the neural cell in terms of its parts, i.e.
each of its dendritic segments. Figure 5 presents a
schematic illustration of the concepts involved in this
segmentation process. First, note that each dendritic
segment is defined in terms of its branch point, which is

located by the (contour) segmentation algorithm
introduced in Sections 10 and 11., and an other point,
located “on the other side” of the dendritic segment,
which will be called henceforth lateral branch point.
The lateral branch points of the experiments of this
work are denoted by “°”, as illustrated in Figure 5. Each
branch point is associated to two lateral branch points,
since two dendritic segments appear from a branch
point, and there is always an extremity or a dendritic
sub-tree between the branch point and its respective
lateral branch point. However, lateral branch points may
not be easy to locate, since usually they do not present
special features (such as being a curvature maxima).
Nevertheless, the control string provides a
straightforward heuristics that can be applied to define
and locate the lateral branch point. Recall that the
dominant points found by the segmentation algorithm
define a contour partitioning in terms of segments
between each pair “eb” (extremity-branch point) or “be”
(branch point-extremity), and that the initial control
string of the dendritic whole branch of Figure 2 and 5 is
e0ebebebeef . Therefore, the left lateral branch point of
the first branch point of this dendritic whole branch (i.e.
e0ebebebeef) is defined as the nearest point belonging to
the segment comprised between the next two symbols
to the left of b, i.e. between e0 and e. Both the branch
point b and its left lateral branch point are indicated in
Figure 5. All other lateral branch points can be located
during the parsing procedure in a similar manner, by
searching for the nearest point (to the current branch
point) belonging to the segment defined between the
next two symbols to the left (or to the right) of the
control string.

Finally, it is important to observe that each
dendritic segment is defined by a pair of matched
contour segments or arcs, each of them defined in terms
of a branch point and a lateral branch point, which
establish the beginning of the dendritic segment, and an
extremity or a dendritic sub-tree, which identifies the
end of the dendritic segment. An example of such
construction can be found in Figure 5.

6 The Dendrogram

The dendrogram is obtained from the parsing tree in a
straightforward manner. Recall that the dendrogram
describes the distance between the successive branch
points and extremities. It is also fortunate that the
parsing procedure explained in the last section generates
a parsing tree that respects the smaller-to-larger
branches in a dendritic whole branch. Furthermore, the
branch points and the extremities can be retrieved in an
ordered manner from the dendritic whole branch, once
each node of a symbol “E” is the father of either a node

SEGMENTATION POINTS

DEFINING A REGION-BASED

SEGMENTATION

A DENDRITIC SEGMENT
PAIR OF MATCHED

CONTOUR SEGMENTS

A LATERAL BRANCH

POINT

b

Figure (5): Parts of the dendritic whole branch.

“b” (i.e. a branch point) or of a node “e”. Therefore, the
dendrogram can be obtained by traversing the parsing
tree, starting from the initial parent node, and
calculating the arc length distance between the current
node and its children, i.e. the length of each branch. It is
equally important to note that each branch is composed
by a pair of matched contour segments (see last
section). Hence, the length of each branch is defined as
the mean between the arc lengths of the pair of matched
segments. In order to understand this process, refer to
Figures 6(a) and (b), which present, respectively, the
parsing tree automatically generated by the algorithm
and the corresponding dendrogram of the dendritic
main branch of Figure 2. The first dendritic segment is
that beginning at the first and the last points of the
dendritic whole branch and finishing at the lateral
branch points associated to the branch point for t=114
(see Figure 2). The algorithm then draws a horizontal
straight line with length proportional to the length of
this first branch, as it is shown in Figure 6(b). Two new
branches appear at this first branch point and the
dendrogram is ramified. The branch to the left of the

parsing tree finishes at the extremity for t=78, defining
a new pair of matched segments, and the algorithm a
draws a new horizontal straight line with length
proportional to the length of this branch. The algorithm
continues recursively until all branches have been
analyzed.

7 Obtaining the Skeleton

A welcomed byproduct of the parsing scheme defined
in the present work is the skeleton [Ballard & Brown,
1982] of the neural cell, which can be obtained in a
straightforward manner. As it was highlighted, each
branch is composed by a pair of matched contour
segments. Therefore, the skeleton of each branch may
be defined as the curve whose points are equidistant to
each segment that composes the branch. In other words,
let ul(t) and ur(t) be the pair of (reparametrized)
matched segments of a generic branch, where “ul” and
“ur” stands for the left and the right segment,
respectively. Then the skeleton ξ(t) of this branch is:

ξ()
() ()

t
u t u tl r=

+
2

The respective skeleton of the dendritic whole
branch is also presented in Figure 2 or 6(c).

8 Experimental Results

Figure 7 and 8 present additional experimental results
obtained for a more complex cell, whose contours are
depicted in Figure 7(b). This cell has 4 major dendritic
whole branches, which are referred to as left tree, upper
tree, right tree and lower tree, as indicated in Figure
7(a). The dendrograms of each of these trees are shown
in Figure 8. As it can be readily inferred from the
complexity of this cell, the problem of manually
dendrogram generation may become a tiresome and
lingering task, which can be thankfully speeded up by
the semi-automated method introduced in this work.

(a)

(b)

(c)

Figure (6): (a) Parsing tree; (b) Dendrogram; (c)
Skeleton. All for the whole branch of Figure 2.

RIGHT

UPPER

LEFT

LOWER

(a) (b)

Figure (7): A more complex artificial neural cell.

9 Conclusions
This work has presented a new approach to shape
analysis of neural cells based on the semi-automated
generation of dendrograms. The proposed framework,
which relies on a multiscale curvature-based
segmentation of the neural contour followed by
syntactic analysis of the partitioned shape, has proved to
be robust and to greatly improve the dendrogram
generation process. Further refinements on the method
will include the introduction of more intelligent
mechanisms to help the operator in procedure 4, as well
as automatically checking for valid strings generated by
the segmentation algorithm. Other applications, such as
characterization of plants and trees, are also being
considered.

References
[Ballard & Brown, 1982] D.H. Ballard and C.M.
Brown, Computer Vision, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

 [Cesar & Costa (1996)] R.M. Cesar Jr. e L. da F. Costa,
Towards Effective Planar Shape Representation with
Multiscale Digital Curvature Analysis based on Signal
Processing Techniques, Pattern Recognition, 29 (1996),
1559-1569.
[Cesar & Costa (1997)] R.M. Cesar Jr. and L. da F.
Costa, The Application and Assessment of Multiscale
Bending Energy for Morphometric Characterization of
Neural Cells, Review of Scientific Instruments, 68
(1997), 2177-2186.

 [Costa (1995)] L. da F. Costa, Computer Vision based
Morphometric Characterization of Neural Cells,
Review of Scientific Instruments, 66 (1995), 3770-3773.
 [Costa (1997)] L. da F. Costa, Novas perspectivas em
neuromorfometria e neuromodelagem. IFSC,
Universidade de São Paulo, jan. 1997.
[Poznanski (1992)] Roman R. Poznanski, Modelling the
Electronic Structure of Starburst Amacrine Cells in the
Rabbit Retina: Functional Interpretation of Dendritic
Morphology, Bulletin of Mathematical Biology, 54
(1992), 905-928.
 [Schutter & Bower (1994)] E. De Schutter and J. M.
Bower, An Active Membrane Model of the Cerebellar
Purkinje Cell I. Simulation of Current Clamps in Slice,
Journal of Neurophysiology, 71 (1994), 375-400.
[Turner et al. (1995)] D.A. Turner, X.-G. Li, G.K.
Pyapali, A. Ylinen and G. Buzsaki, Morphometric and
Electrical Properties of Reconstructed Hippocampal
CA3 Neurons Recorded In Vivo, The Journal of
Comparative Neurology, 356 (1995), 556-580.
[Velte & Miller (1995)] T.J. Velte and R.F. Miller,
Dendritic Integration in Ganglion Cells of the

Mudpuppy Retina, Visual Neuroscience, 12 (1995),
165-175.

Acknowledgements: Luciano da F. Costa is grateful to
FAPESP (94/3536-6 and 94/4691-5) and CNPq
(301422/92-3) for financial help. The authors are
indebted to Regina C. Coelho for supplying of the
images of artificial neurons. Roberto M. Cesar Jr. in
grateful to J.-P. Antoine (FYMA-UCL-Belgium) for the
partial computational support and to CAPES.

LEFT

UPPER

RIGHT

LOWER

Figure (8): Dendrogram of the neuron in Figure 7.

