
Act: an easy-to-use and dynamically extensible 3D graphics library

WALDEMAR CELES JONATHAN CORSON-RIKERT

Program of Computer Graphics, Cornell Universtity
{celes,jcr}@graphics.cornell.edu

Abstract. This paper presents Act, an object-oriented library for projects from specialized 3D
graphics applications to simple interactive educational programs. Act meets the needs of both occasional
and expert graphics programmers, offering a high-level access to the OpenGL library and additional
features including object creation, manipulation, and interaction. An interpreted language allows the Act
library to be extended easily and dynamically.

Keywords. 3D graphics library, object-oriented interactivity, educational programming, dynamic software extendibility

Introduction
The ability to create and manipulate 3D graphic objects
has become a highly desirable feature for computer
applications, from specialized 3D solid modelers and
animation systems to simple educational programs. The
very diverse domain of these applications creates the
need for a graphics library that can be learned and
productively used by occasional graphics programmers,
while also providing the flexibility and extensibility
needed by experts.

OpenGL™ has emerged as a leading cross-
platform graphics library [Thompson, 1996]. OpenGL
provides many specialized resources for 3D rendering
and can be implemented in hardware to accelerate
performance [Neider et al., 1993]. However, learning to
write applications that use the OpenGL library
effectively is not a trivial task. Working at a higher
abstraction level is desirable, even for programmers with
well-developed graphics programming skills.

This paper presents Act, a simple and small library
providing versatile tools to create and manage 3D
applications. Act serves as a layer of abstraction above
OpenGL, managing all graphics rendering while
providing many additional features such as object
creation and interaction. The library is independent of
any GUI (Graphical User Interface) library. Act is also
fully and dynamically extensible through the use of an
interpreted language. Our goal has been to provide both
expert and new programmers high-level access to
OpenGL functionality and speed in an environment
conducive to rapid prototyping.

Related work
The need for a high level 3D graphics API has been
evident for many years, and a number of commercial
toolkits already offer solutions for the professional
graphics programmer. We will discuss our own
approach in the context of two other toolkits which
seem to have been designed with similar goals to ours.

One is the Open Inventor toolkit [Wernecke, 1994a],
developed originally at Silicon Graphics, Inc. but now
available also on other platforms through other vendors.
The second is the ALICE application environment for
programming simulations in virtual worlds, developed
by the University of Virginia’s User Interface Group
[Pausch et al., 1995].

The developers of the Inventor graphics toolkit
sought to extend the power of earlier immediate-mode
and display-list graphics libraries by incorporating
support for direct interaction with objects in 3D [Strauss
and Carey, 1992]. The toolkit has matured into Open
Inventor, a sophisticated collection of 3D objects using
a hierarchical scene graph structure. Object types
include geometry, attributes, transforms, and groups, in
addition to behaviors. Subportions or the entire graph
can be written to or read from disk. Normal C++
facilities for extension through object inheritance are
supported [Wernecke, 1994b], and advanced
programmers can extend the scene graph concept by
adapting templates called node kits. The Inventor file
format serves with minor changes as the default file
format for VRML [VRML 2.0, 1996].

Inventor comes with a viewer offering a high level
of initial functionality, but integration into a full GUI
library for custom applications remains problematic
across platforms. Users who only wish to build a 3D
interface for a domain-specific application are likely to
find Inventor relatively complex. The extensions to the
scene graph structure offer powerful tools, but the scene
graph traversal mechanism can be confusing and
sometimes restrictive. For example, Inventor event
handlers must be integrated into the scene graph
structure itself, and functionality depends on correct
placement.

ALICE decouples simulation from rendering and
implements a more flexible scene graph structure to
avoid pitfalls that programmers experience with strictly
hierarchical scene traversal. ALICE makes use of an
interpreted language (Python) and offers a number of

features also targeted at new programmers, but appears
intended as an application framework for virtual reality
simulations rather than a more general 3D graphics API.

The Act library offers a simple but versatile toolkit
to create and manage 3D objects, using OpenGL.
Objects are active, in the sense that their behaviors can
be defined, and interactive, in the sense that their
behaviors can depend on other objects or on users’
actions. The library is also GUI independent, allowing
easy integration with the programmer’s GUI of choice.

Features
Act is an object-oriented library implemented in C++
that offers a high level access to the OpenGL graphics
library. Using Act, a client application creates,
manipulates, and renders structured graphics scenes. An
independent GUI system (or simply a window system)
must provide a drawable area where OpenGL renders
the images. For interaction, the GUI system sends Act
2D (raster precision) events, which Act converts into 3D
events. The client application in turn binds these 3D
events to object behaviors. Figure 1 illustrates the
structure of a typical Act application.

OpenGL

Act Lua

Lua client

Act GUI

C++ client

ActLua API 3D event

2D event

Act API 3D event

Screen

USER

Figure 1: Typical Act application.

Act implements several notable features for
graphics scene structure and interaction. Taken together,
these features allow any programmer to easily and
quickly create sophisticated 3D applications.

• Objects carry their own coordinate systems,
which can be directly manipulated;

• The client application can grab events in an
extensible way, powerful enough to handle any
interaction and program any dependency among objects;

• The library automatically manages and makes
available undo and redo resources;

• Through creating 3D logical canvases and
constraining the cursor, programming 3D interaction has
been simplified without being GUI-dependent;

• The library is accessible and fully extensible
through the interpreted language Lua [Ierusalimschy et
al., 1996], allowing a very high level of abstraction and
supporting rapid programming.

The following sections describe the library’s
features in greater detail and illustrate through examples
how Act may be used by both expert and occasional
graphics programmers.

Scene graph
Graphics scenes are naturally composed of sets of

objects arranged into a hierarchy to organize
dependencies as well as enhance performance by
seeking to minimize the amount of data passed between
CPU and frame buffer. These models can be traced at
least back to PHIGS [Foley et al., 1996], and Inventor,
ALICE, and the VRML Spec structure their scenes
hierarchically. Our Act library works in a similar way,
offering the programmer different objects which may be
combined to compose a hierarchical model of the scene.
Figure 2 illustrates the main branches of the C++ class
hierarchy used to implement the library.

,WHP

2EMHFW

6HWWLQJ

7UDQVIRUP�

&DOOEDFN

'LVS��/LVW

$WWULEXWH

0DWHULDO

6FHQH

3ULPLWLYH

/LQN

/LJKW

6FDOH

7H[WXUH&RORU

5RWDWLRQ

7UDQVO�

Figure 2: Main branches of class hierachy.

At the topmost level, the item represents the base
class of any other graphic object, representing anything
that can logically be part of a graphic scene. Setting,
transformation, object, attribute, and callback derive
directly from item. The setting class represents global
scene rendering settings, such as whether to include fog.
The transformation class represents geometrical
transformations establishing the initial positions of
renderable objects in the scene. Transformation objects
are cumulative and adopt the same convention of
specifying transformations to an object’s coordinate
system as OpenGL.

The object class represents objects having physical
meaning or serving as a container for other objects.
Each object has implicitly defined a local coordinate
system and therefore can be freely transformed without
affecting others. When specifying an object
transformation, the programmer may choose the most
appropriate system to specify the parameters. For
example, defining the movement of the hands of a watch

on the wrist of a moving robot may be easier if we
choose the watch (not the robot or the hands themselves)
as the reference system for our transformation
parameters.

The light and primitive classes have their natural
meanings and have their usual derived classes.

The scene class represents a container for other
items. It can also contain other scenes, which allows the
creation of hierarchical models. Except settings and
lights, which have global effect, no item in a scene
affects objects outside of that scene, and the previous
rendering state is restored after rendering a scene.

Instead of directly creating multiple instances of a
single object, the programmer uses the link class.
Defining a link creates a reference to the linked object,
but the link has its own coordinate system. Both the
original object and the link object can thereafter be
manipulated independently. The use of links (in the
place of direct multiple instances) simplifies both the
implementation and use of the library.

With links, the data structure needed to implement
the scene structure is therefore a conventional tree,
allowing backward traversal to obtain a specific
rendering state and minimizing the need for using paths
to identify an item in the scene. From the programmer’s
point of view, however, the scene is represented by a
graph since links allow multiple instances of items.
Following Inventor, we generally call the scene structure
a scene graph.

The display list class allows the user to gain
performance by combining non-volatile objects into a
display list (a concept implemented in OpenGL) as a
single unit.

The attribute class represents rendering attributes
assigned to the renderable objects in the scene.
Currently, it may be a simple color, a material, or a
texture. An attribute sets the current state value; thus, a
new attribute replaces the previous one within any scene
in the hierarchical scene graph.

Finally, the callback class allows a program to
attach a function at an appropriate point to the scene
graph to be invoked whenever the scene graph is
traversed. Therefore, callbacks introduce procedural
mechanisms to change the description of the scene.

Event handling
Act uses an event-driven approach to define object
behaviors. There are two kinds of events: editing events
and interaction events. As would be expected, editing
events are generated by editing operations, while
interaction events result from operations which do not
directly change the state of the scene graph.

The library itself generates editing events
corresponding to changes in the scene graph or changes

in the objects themselves. For instance, setting an object
field (e.g., the radius of a sphere), applying a
transformation to an object, and inserting an item in or
removing an item from a scene will each generate a
corresponding editing event. Any application built on
top of the Act library (a client) can then grab these
events to create and update dependencies among
objects. As an example, animating the movement of a
train may be achieved by initially programming each car
to follow its leader, and then animating only the lead
car.

Each editing event will also generate an entry into
the undo buffer, which is automatically managed by the
library and made available to client applications. To
extend the library, clients can also register additional
editing and interaction events and notify Act of their
occurrence. These events are then handled by Act’s
internal event dispatching mechanism. Clients may also
post events to the undo buffer if appropriate.

The ability to register new events not only allows
for extensibility but also helps to guarantee portability
across platforms. For example, the library itself does not
know about external interaction events (such as mouse
or keyboard events); it is the binding GUI’s
responsibility to register and notify such events. Once
bindings are established for a GUI library, the binding
becomes a reusable extension of that library. If the client
chooses the external events’ bindings with care, one can
easily interchange one GUI library with another one, as
long as the new GUI library is capable of generating the
same sort of events.

The client binds an event to a resulting action by
registering a callback function to be called whenever the
event occurs on an object. For editing events, this
callback has two purposes: validating the action and
creating dependency among objects. The library itself
does not have knowledge about the semantic meanings
invested in objects by the client; turning event validation
over to the client allows greater control and flexibility
for applications [Celes, 1995]. For instance, applying a
transformation to an object may be prohibited if the
client does not allow objects to interpenetrate.

The way the client creates an event binding
between an object and a resulting action adapts the Tk
approach [Ousterhout, 1994]. The object to which the
binding applies can be a single instance or a class name
such as sphere or primitive, in which case the binding
applies to all instances of that class. An instance-based
binding is more specific than a class-based binding, and
a derived class binding is more specific then a base class
binding. Whenever an event occurs, the most
specifically matched binding is triggered first. Then,
depending on the callback return value, the same event
is sent up the affected object’s class hierarchy to the
base class bindings. The client can choose whether all

matched bindings should be triggered. As recognized by
Tk developers, sending the same event upward may be
important for allowing clients to create instance-specific
behavior without interfering with general class behavior.

We also extend this concept of binding to deal with
our hierarchical model. If an object has no binding for
an interaction event, that event is transferred to its
parent object in the scene graph. A client program can
therefore manipulate complex objects by creating
bindings to their root scenes, instead of creating
bindings for that event on each of the different objects
that compose the scene.

Event bindings and undoable actions are stored in
buffers selectable by the client. The client application
can create separate event buffers for each of several
interactive modes. Each application mode defines the
event bindings it needs, and event bindings applicable to
other modes do not interfere when that mode is active.
While in a walkthrough mode, for example, there is no
need to know which events are bound by other modes.
Hence, interactive modes can be reused across
applications.

Being able to create multiple undo buffers also
allows the client to edit different scenes independently,
or to use the undo/redo resources to handle temporary
actions (such as interactive tasks) without interfering
with the main undo/redo resources. For example, to
provide feedback while moving or rotating an object
interactively, it may be useful to activate a temporary
undo buffer to transform the object, display it, and then
undo the transformation each time feedback is
requested.

Three-dimensional canvas
To be able to interact with the objects in the scene, the
Act library provides three-dimensional canvases, which
the client program binds to underlying two-dimensional
windows that support OpenGL. The Act three-
dimensional canvas transforms mouse positions from the
GUI into a three-dimensional cursor.

The three-dimensional cursor is defined by its 3D
position and orientation. When unconstrained, the 3D
cursor position “maps” to a point on the surface of the
closest object in the scene, with its orientation
corresponding to that surface normal. To automatically
find this point on an object surface, the library traces a
ray from the raster cursor position through the scene.
The tracing operation considers only objects in the scene
that can respond to the event being dispatched. For
instance, while moving the mouse, only objects bound to
the "moving mouse" event will be considered. This is
done automatically so that the client does not need to
enable/disable objects to gain efficiency in tracing rays
through the scene.

The 3D cursor may also be constrained, which
greatly facilitates programming interactive tasks. Using
the library core classes, the cursor can be constrained to
move on a virtual plane, in a virtual line, on a virtual
sphere, or along a virtual circumference. Constraints
may be created to apply to individual objects, and when
activated restrict cursor motion according to the
geometry defined with the constraint. For example, a
client may use constraints to restrict moving an object
on a plane, rotate it about a center point, or to create
specialized manipulators.

When the client specifies a 3D canvas, it must also
create a camera to view the scene. Each 3D canvas can
have only one camera attached, but a scene may be
displayed simultaneously in several canvases.

Interpreted language binding
The Act graphics library is a C++ library and any C++
application can access the library features described
above. For programmers comfortable in C++, any
extension can be implemented by creating new derived
classes conventionally. Direct calls to OpenGL functions
may also be integrated if necessary.

However, occasional graphics programmers need
easy access to (sometimes sophisticated) graphics
features to create front-end interfaces for their domain-
specific applications, or to illustrate concepts by
graphically simulating simple models (e.g., for
educational purposes). The vast range of applications
that such a library could benefit highlights the biggest
challenge of its design: how do we create a graphics
library that at the same time meets the needs of both
expert and occasional graphics programmers?

The Act library meets this challenge through the
use of Lua, an interpreted language that combines data
description facilities and conventional procedural
features, using a clear and simple syntax. Lua also
provides mechanisms to support object oriented
programming and to extend its own semantics, being
smoothly integrated with C++. As an example, the code
below represents a valid Lua construction that, with the
appropriate binding to the graphics library, creates a
scene and stores it in the variable myScene. Then, any
scene method may be called through myScene.

myScene = Scene {
 PositionalLight {position={0,10,0}},
 Material {ambient={1,1,1},
 diffuse={1,0,0}
 },
 Sphere {radius=2.5}
}
...
myScene:realize()

In addition, Lua supports all the conventional
control structures, including expressions, loops,

conditional statements, and function calls, and all of
them can be combined in defining the scene graph.

Even more important is the ability to easily create
auxiliary data structures, besides the scene graph itself.
The scene graph with its hierarchical structure is
adequate to describe the scene and support rendering.
There may be clearer and more efficient ways to traverse
a data structure for other purposes, however. For
example, suppose we are creating and animating a
model of the solar system, with its planets and
corresponding moons. We create a scene graph to
represent the model, but, instead of traversing the entire
scene graph looking for objects that should be animated,
it is much easier to create an auxiliary data structure to
manage when, how, and which objects should be
animated. For each time step (perhaps triggered by a
separate simulation process), we traverse the auxiliary
data structure to position the planets and moons, and
then issue a single “redraw canvas” command to the Act
library, which renders the scene in its current state.

Lua provides associative arrays that can be used to
implement not only ordinary arrays but also symbol
tables, sets, records, etc. This makes the creation of
auxiliary data structures very natural, even for
occasional programmers. In fact, any graphic object in
Lua is represented by an associative array (a table in
Lua) and thus can store any other field, besides those
used by the graphics library.

From Lua, one can access any feature of the C++
library. We have also bound almost all OpenGL
functions to Lua. Expert programmers can combine
direct calls to OpenGL with calls to the graphics library,
as in C++. One can also fully dynamically extend the
library. Using Lua, programmers can create a derived
class from any class in the C++ library and access its
base methods or redefine them. Because these
extensions are done using an interpreted code, they can
be dynamically loaded by any other client.

We clarify Act’s features for novice, intermediate
and expert programmers by describing alternative
implementations for a chess game using the interpreted
language. In the following code fragments, we illustrate
different ways to represent pawns, which for the sake of
simplicity we build from a cone with a sphere on the top
(Figure 3).

A novice could collect a cone and a translated
sphere into a scene named “pawn”, and then create 8
instances of each color piece via links to the original.

-- Create one original pre-defined scene
pawn = Scene {
 Cone {radius = RADIUS, height = HEIGHT},
 Translation {0,HEIGHT,0},
 Sphere {radius = RADIUS/2}
}

-- Instances are created using links
one_instance = Link{pawn}

Figure 3: Chess game interface.

This approach works fine for rendering the pieces
and can support interactive movement, but more
advanced game features such as movement validation
would have to be created and managed for each instance
of each game piece.

A more experienced programmer would gain
several advantages by creating a new class for each type
of piece. A new pawn class could be derived from the
scene class, with a cone and a translated sphere
automatically inserted into it by the constructor.

-- Create a pawn class deriving from scene
classPawn = ActClass {name = “Pawn”}

-- Class constructor
function Pawn (self)
 -- create corresponding C++ object
 local obj = LuaActScene:new(classPawn)
 -- automatically add children
 Cone {radius=obj.radius,
 height=obj.height,
 scene=obj
 }
 Translation {0,obj.height,0; scene=obj}
 Sphere {radius=obj.radius/2, scene=obj}
 -- add any additional initialization
 ...
 return obj
end

-- Instances are created using the new class
one_instance = Pawn {radius=0.4, height=1.0}

Therefore, because the pawn has its own class,
pawn behavior (for example, movement validation) can
be defined through class-based event bindings,
promoting modularity and allowing reuse.

To gain performance and minimize storage, an
expert programmer could take one further step and
create a new primitive class, directly calling OpenGL
functions, instead of using the existing cone and sphere
primitives. At this point, after prototyping each piece, it
may also be worth converting to C++ for improved
performance, although the interpreted language will
support all three approaches.

Applications and extensions
To illustrate the versatility and applicability of the
library, we will now describe some of the current
research and education projects using Act. The
applications presented here access conventional widgets
such as menus using TkLua, a library to access the Tk
toolkit from Lua [Figueiredo et al., 1996]. Some of the
applications are C++ programs accessing the C++
graphics library. Others are purely Lua code, accessing
the Act graphics library through an interpreter that
simply initializes the library and executes the interpreted
code.

Medical visualization application

The first example is a C++ application that only
accesses the C++ Act library and does not use the Lua
extension. The application reconstructs a 3D model of
human arteries based on x-ray images (Figure 4). The
3D artery model is reconstructed using data from x-ray
images, which must first be correctly positioned in 3D
space.

Figure 4: Application to reconstruct a 3D artery model.

Once fixed in 3D space, x-ray (raster) values are
mapped to a global 3D coordinate system using an
appropriate hierarchical model to represent the scene. In
addition to providing objects and event handling for a
3D interface, the Act graphics library makes it very easy
to deal with different coordinate systems using the
library resources, freeing the application itself from
algebraic transformations.

Animated solar system model

We have developed an animated model of the solar
system with its planets and major moons for educational
purposes, written entirely in Lua so as to be accessible
for modification and extension by high school teachers.
Act’s hierarchical model for describing a scene is very
useful for this application, which gains simplicity from
dependency among planets and their corresponding

moons. The following code illustrates the definition of
the scene graph to represent the earth and its moon.

sun = Scene {
 ...,
 Scene { -- Earth and its moon subscene
 Texture {image=Image{“earth.bmp”}},
 Sphere {radius=1.0, name="globe"},
 Scene { -- moon
 Texture {image=Image{“moon.bmp”}},
 Sphere {radius=0.2725};
 name = "moon",
 eccen = 0.055, smAxis = 385/AU,
 inclination = 5.0, period = 27.322
 };
 name = "earth",
 eccen = 0.017, smAxis = 1,
 inclination = 0, period = 365.256
 },
 ...
}

With Act’s hierarchical model, we animate each
moon in relation to its planet in the same way that we
animate each planet in relation to the sun. From the
moon we can consider the earth as a fixed reference, so
when animating the earth’s orbit about the sun, the moon
(hierarchically below the earth) will automatically
follow the earth movement. This dependency does not
preclude us from revolving the earth sphere (rather than
the whole earth scene) independently about its own axis
without affecting the moon.

Note that we can store any desired field in an
object in addition to the library’s graphics attributes. For
the solar system model we store data to compute the
position of the object (period, orbit major axis,
eccentricity, and orbit inclination). As discussed earlier,
we constructed an auxiliary data structure storing a list
of all planets and moons for purposes of animation.

A simple 3D modeler

We created a simple 3D modeler entirely written in Lua
to demonstrate the use of the library and allow scenes to
be created for educational projects (Figure 5).

Figure 5: A simple 3D modeler.

The program allows the user to interactively create
primitive shapes (cuboid, sphere, cylinder, cone, and
torus) with a color or pre-defined texture, translate and
rotate shapes, and undo or redo any action. Including all
Tk widgets, the modeler requires only 1100 lines of Lua
code.

The following code illustrates how the modeler
implements the interactive mode to rotate objects about
their origins. Whenever the mouse button is pressed on
an object, the cursor is constrained to move on a virtual
sphere centered at the object’s local system origin.
When the user moves the mouse, the program provides
feedback displaying the object at its new position.
However, the rotation is only really performed when the
user releases the button. The main code calls the
function to create the event buffer and turns it active
whenever required. Note that this code can be loaded
and used by any other applicacation to provide the same
interactive mode.

-- Creates constraint and temporary undo
rot_constr = OnSphere{center=Triple{0,0,0}}
rot_tmpUndo = Undo {10}

-- Press button
-- Constrains the cursor.
function rot_bpress (obj,data,cv)
 rot_constr:constrainer(obj)
 rot_constr:point(data:point())
 cv:constraint(rot_constr)
 return Act.OK
end

-- Button motion
-- Rotates object, redraws scene for
-- feedback, and undoes the rotation.
function rot_bmotion (obj,data,cv)
 local prev = ActUndo:current(rot_tmpUndo)
 obj:rotate(data:angle(),data:normal())
 cv:redraw()
 rot_tmpUndo:undo()
 ActUndo:current(prev)
 return Act.OK
end

-- Button release
-- Really rotates the object and redraws the
-- scene. Then it removes the constraint.
function rot_brelease (obj,data,cv)
 obj:rotate(data:angle(),data:normal())
 cv:redraw()
 cv:constraint(nil)
 return Act.OK
end

-- Creates and sets event buffer
-- The given canvas is passed as an extra
-- parameter to the callbacks.
function rot_createMode (cv)
 local event = Event {}
 event:bindInteraction(
 "ButtonPress1","Object",rot_bpress,cv)
 event:bindInteraction(
 "ButtonMotion1","Object",rot_bmotion,cv)
 event:bindInteraction(
 “ButtonRelease1","Object",rot_brelease,cv)
 return event
end

Act supports saving screen images to a file and
saving and reloading scenes; the metafile used to store a
saved scene is simply Lua code describing the scene.
For the program to support reloading stored scenes, it is
enough to include a command to execute the saved
metafile. This is the same approach already used by the
EDG system [Celes et al., 1995].

Collision detection

We have demonstrated Act’s support for handling
external events through an extension for collision
detection using the RAPID library [Gottschalk et al.,
1996]. We first register a new ‘collision’ event with Act.
Each time a new primitive is inserted in the scene, we
then grab the resulting event, build a corresponding
collision detection structure (an OBB-Tree with the
RAPID library), and associate it with the primitive.
Whenever a primitive is later edited or transformed, we
grab the event and check if performing such operations
would result in object inter-penetrations. If our
extension library detects a collision, we notify Act of
this ‘collision’ event, which Act makes available to the
client application. The application can then determine
whether to allow object inter-penetration, using the
event’s returned value to report its validation in the
same way any other editing event can be handled.

Rigid body physical simulation

We are currently integrating the Act graphics library
with a rigid body physical simulation library. The goal is
to create a simple virtual laboratory where teachers and
students can experiment with physical concepts. Aside
from improving the accuracy and efficiency of the
physical simulation itself, the challenge here is to obtain
an easy-to-use interface so that teachers and students can
build their own models for simulations.

While a 3D interactive environment described in
Lua or created using our simple modeler will appeal to
both teachers and students, the ability to establish
appropriate constraints to focus interactivity may be the
most critical factor for successful educational
applications. To introduce the concept of trajectory, for
example, a teacher can construct an experimental game
where students try to score a basket. Because Act
supports controls constraining the students to change
only the direction of the shot, not the starting point or
initial velocity, the game can focus on the effect of the
initial angle on the ball trajectory. Without low-level
library support for constraints, it would be a very
challenging task to program appropriate interactivity.

Conclusion
Developers of 3D graphics applications face several
programming challenges, and 3D interfaces are often
omitted because of the skill and effort required to build
them. A tool at a high abstraction level is necessary to
provide the appropriate framework for 3D graphics
application development.

The Act library is very small when compared to
Inventor or VRML applications, yet is quite versatile.
Using Inventor, achieving the level of extensibility we
have described would require an expertise in C++ as
well as “a serious commitment and a reasonable effort to
master” [Shekhar and McGinley, 1994].

ALICE and several VRML modelers provide
another way to develop interactive 3D environments at a
good level of abstraction for non-experts, and offer
better support for creating virtual reality applications.
However, as they are not general graphics libraries,
programmers cannot easily use or extend these tools to
create a 3D interface to embed within their own existing
applications.

The Act library combines power and versatility. It
is a useful tool for anyone with a minimum of
programming knowledge who wants to create 3D
interactive applications, while offering rapid prototyping
in an interpreted language and the capability for
extensions to meet any domain-specific need. Act can
serve as a toolkit for introductory computer graphics
programming, facilitate the development of interactive
3D educational applications, and to meet a range of
needs for developing OpenGL applications.

Future work

We still have much to do in improving the efficiency
with which scenes are rendered, and in adding features
to fully cover the OpenGL library. We also plan to use
the Act framework and Lua to implement a visual
programming environment to create 3D applications.

Acknowledgments
During the development of this research, the first author
held a post-doctoral fellowship from the Brazilian
Council for Scientific and Technological Development
(CNPq). Support for both authors was provided at the
Cornell Program of Computer Graphics through the
National Science Foundation Directorate of Educational
Human Resources and the Science and Technology
Center for Computer Graphics and Scientific
Visualization (ASC-8920219). Much of the research
was performed on computers generously provided by the
Hewlett Packard Corporation.

References
W. Celes, L. H. de Figueiredo, and M. Gattass, "EDG: a
tool to easily create interactive graphic interface" (in
Portuguese), VIII SIBGRAPI, 1995.

W. Celes, "Customizable modeling of hierarchical
planar subdivision", Ph. D. Thesis (in Portuguese),
Computer Science Dept., PUC-Rio, 1995.

L. H. de Figueiredo, R. Ierusalimschy, and W. Celes,
“Lua: an Extensible Embedded Language”, Dr. Dobb’s
Journal, #254, pp. 26-33, December, 1996.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes,
Computer Graphics, principles and practice, 2nd
edition in C, Addison-Wesley, 1996.

S. Gottschalk, M. C. Lin, and D. Manocha, "OBBTree:
A Hierachical Structure for Rapid Interference
Detection", Computer Graphics, ACM SIGGRAPH,
pp. 171-180, 1996.

R. Ierusalimschy, L. H. de Figueiredo, and W. Celes,
"Lua: an extensible extension language", Software:
Practice & Experience, 26 (6), pp. 635-652, 1996.

J. Neider, T. Davis, and M. Woo, OpenGL
Programming Guide, Addison-Wesley, 1993.

J. K. Ousterhout, Tcl and the Tk toolkit, Addison-
Wesley, 1994.

R. Pausch, T. Burnette, A.C. Capeheart,M. Conway, D.
Cosgrove, R. DeLine, J. Durbin, R. Gossweiler, S.
Koga, J. White, “Alice: Rapid Prototyping System for
Virtual Reality”, IEEE Computer Graphics and
Applications, May 1995.

R. Shekhar and B. McGinley, "Open Inventor 2.0",
Computer, v. 27, July, pp. 100-102, 1994.

P. Strauss and R. Carey, “An Object-Oriented 3D
Graphics Toolkit”, Computer Graphics, ACM
SIGGRAPH, 26 (2), July 1992.

T. Thompson, “An inside look at the most popular 3D
environments: OpenGL, QuickDraw 3D, and
Direct3D”, Byte, June 1996.

VRML 2.0, The Virtual Reality Modeling Language
Specification, Version 2.0, ISO/IEC CD 14772, 1996.

J. Wernecke, The Inventor Mentor, Addison-Wesley,
1994.

J. Wernecke, The Inventor Toolmaker, Addison-Wesley,
1994.

