
A Semi-Automatic Method for Segmentation of the
Coronary Artery Tree from Angiography

Daniel S.D. Lara and Alexandre W.C. Faria and Arnaldo A. de Albuquerque
Computer Science Departament

UFMG - Belo Horizonte (MG) - Brazil
Email: {daniels,awcfaria,arnaldo}@dcc.ufmg.br

David Menotti
Computer Science Department

UFOP - Ouro Preto (MG) - Brazil
Email: menottid@gmail.com

Abstract—Nowadays, medical diagnostics using images has
a considerable importance in many areas of medicine. It
promotes and makes easier the acquisition, transmission and
analysis of medical images. The use of digital images for
diseases evaluations or diagnostics is still growing up and
new application modalities are always appearing. This paper
presents a methodology for a semi-automatic segmentation of
the coronary artery tree in 2D X-Ray angiographies. It com-
bines a region growing algorithm and a differential geometry
approach. The proposed segmentation method identifies about
90% of the main coronary artery tree.
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I. INTRODUCTION

Blood vessels detection is an important step in many
medical application tasks, such as automatic detection of
vessel malformations, quantitative coronary analysis (QCA),
vessel centerline extractions, etc. Vessel detection is a
recognition problem that is challenging due to the complex
nature of vascular trees and to imaging imperfections [1].
Blood vessel segmentation algorithms are the key com-
ponents of automated radiological diagnostic systems [2].
A wide variety of automatic blood vessel segmentation
methods have been proposed in the last two decades.
These methods used approaches that varied from Pattern
Recognition techniques [3]–[11], Model-based Approaches
[12]–[18], Tracking-Based Approaches [19]–[22], Artificial
Intelligence Approaches [23]–[26] until Neural Network-
based approaches [27]–[29]. In [2], Kirbas and Queek pre-
sented a well referenced survey of some of those vessel
segmentations methods.

Even with all these efforts, only few of these methods
achieved enough results to be applied in a system allowing
the user to give a minimum input. The major part of them
has too many parameters to be adjusted depending on the
image quality. Once these parameters are all set, the user
does not need to change anything for similar quality images.
However, the nature of X-Ray angiograms leads to a pos-
sible low or high contrast images depending on the patient
weight. It means that even if all the segmentation algorithm
parameters, X-Ray Generator dose, Camera adjustments and

image intensifier fields are the same, the image quality can
vary depending on the patient weight.

O’Brien and N. Ezquerra [30] proposed a region growing
method for coronary (cardiac arteries) segmentation that did
not need successive user refinements. This method took a
rectangular local region around the coronary intending to
realize local searches in order to detect the vessel. The
process was performed in many temporal acquired frames
(Cine frames) to avoid problems caused by intodisjoint
segments. Intodisjoint segments could be caused by noise,
image artifacts, structural defects (e.g., a stenosis), etc. The
main disadvantage of this approach resides on the fact
that it needs to search vessels in other sequential frames
to eliminate any other user-supplied seed points. It makes
the final result dependent on the possibility of next frames
appearing without the same discontinuities identified before.
Supposing, for example, the discontinuity is a stenosis, it
will be present in many sequential frames stopping the
region to grow anyways.

Schrijver [7] proposed a multi-scale coronary tree seg-
mentation based on a differential geometry approach. Basi-
cally, it processes the angiogram with a multi-scale vessel
detector, applies a vessel resemblance function, allows the
user to change some parameters to reach the best results and
traces the arteries. As explained before, this method also
requires a lot of parameters to automatically obtain great
results for each angiogram. However the vessel resemblance
function proposed by [7] could be an excellent seed gener-
ator for a region growing method.

In this paper, we present a hybrid region growing method
with a differential geometry vessel detector for coronary
segmentation. It intends to reach the advantages from both
and tries to avoid at most the user parameter adjustments.
Figure 1 shows an overview of the method.

This paper is organized as follows. Section II describes the
segmentation method, where Section II-A explains in details
the region growing step, Sections II-B and II-C explain the
Hessian and vessel resemblance function, and Section II-D
presents the algorithm for the whole segmentation process.
Analysis of results of our method is presented in Section III,
whilst conclusions and future works are pointed out in



Figure 1. Method overview

Section IV.

II. OUR SEGMENTATION METHOD

A common problem in methods based in only region
growing is their difficulty to continue growing up the seg-
mented area if any artifact or vessel blockage (e.g., stenosis)
drives the region to a minimum area to be segmented
(discontinuities). Usually these methods must find a way to
overpass this challenge. Aiming to avoid these non desired
characteristics, this proposal starts with a region growing
followed by a differential geometry vessel detector. The last
is not intended to segment the vessels at all, it is suggested
to generate new seeds for those possible vessels branches
which were not identified by the first. The next subsections
will explain each step in details.

A. Region Growing

Although human beings can easily segment angiograms,
this is not an easy task to be implemented in a computational
environment. Some image artifacts as bones or muscle
tissues can be presented in X-Ray angiograms as vessel like
structures (Tubular). These structures can be misunderstood
by a global coronary segmentation search as being a vessel.
It means that a local search could be a good starting option
for coronary segmentations. Furthermore, more sophisticated
solutions (which can include global searches) can be in-
corporated to the initial local search to refine the results.
Therefore, the region growing step proposed here starts with
a first vessel point given by a user mouse click. O’Brien
and N. Ezquerra [30] formalized part of this idea as the
following:

Once an initial point, S0 = (x, y) which lies somewhere
on the vessel structure is available, a search will be per-
formed. Thus, the following assumptions are used:

1) The area which is part of the vessels is required to be
“slightly darker” than the background;

2) For some sample area in the image, such as a circle
window, if the area is large enough, the ratio of vessel

area to background area, say av/ab, will be less than
some constant C and greater than other constant D
for each image;

3) The vessel segments are “elongated” structures;
4) The width of a healthy (non-stenotic) blood vessel

changes ”slow”;
5) The pixel values change “slowly” along with the

length of the connected vessels except where some
object may intersect or occlude the blood vessel (e.g.,
overlapping bifurcations).

In this way, starting with an initial seed S0(x, y), the
method defines a circle centered in S0 with radius r0.
Niblack thresholding [31, pages 115-116] is used to identify
two classes of pixels in the circle. Let t be the Niblack
threshold for a circle c. Those pixels in c darker than t are
supposed to be vessel points. Pixels in c brighter than t
constitute the background. Then, the vessel diameter d0 at
the circle extremity can be identified. Once d0 is found, its
mean point becomes a new seed S1. A new circle with radius
d0 centered in S1 is traced and the segmentation process
starts again. This recursive step is then repeated until the
diameter dn reaches a minimum value m. Figure 2 shows
the above idea.

Figure 2. Region growing algorithm

B. Vessel Resemblance Function
The step followed by the region growing is the Vessel

Resemblance Function computation. This function proposed
by [7] assigns vessel resemblance values for each pixel of
the angiography. In order to define this Vessel Resemblance
Function, let the angiography g(u, v) be seen as a three-
dimensional surface as:

G = {(u, v, z)|z = g(u, v)}, (1)

where u and v extends over the support of g(u, v). Then, for
all grid point x = (u, v), the surface curvature is described
by the Hessian matrix H(x):

H(x) =
[
guu(x) guv(x)
gvu(x) gvv(x)

]
, (2)



Figure 3. Vessel resemblance function results

where guu(x), guv(x) = gvu(x), and gvv(x) are the second-
order spatial derivatives of g(x). These derivatives can
be calculated by a convolution of a second order spatial
derivatives of a Gaussian filter at a scale σ with g(x) ( [7],
[32], [33] and [34]):

gab(x;σ) = σ2hab(x;σ) ∗ g(x). (3)

From an analysis of the eigenvalues and eigenvectors of
the Hessian matrix, it is noticeable that the Hessian matrix
strongest eigenvalue and its corresponding eigenvector in
a point (u, v) give the 3D-surface strongest curvature and
its direction. The eigenvector corresponding to the weaker
eigenvalue represents the surface direction perpendicular to
the strongest curvature.

As the Hessian matrix is a function of scale σ then the
eigenvalues are also. Furthermore λi could be written as
λi(x;σ). However, supposing we are working with only
one scale, and for simplicity, it will be abbreviated by λi
and its corresponding eigenvector by vi. For the subsequent
analysis, it is supposed the eigenvalues are ordered according
to:

|λ1| ≥ |λ2|. (4)

In this way, assuming an angiography point x = (u, v)

being part of a vessel, the eigenvector v1 is perpendicular to
the vessel in x. It happens because the vessels are considered
to be a darker region against a brighter background. It means
the strongest Hessian eigenvalue is positive in x and the
strongest surface curvature is perpendicular to the vessel in
x. Furthermore, v2 will be parallel to the vessel in x. Also,
the assumption 3 proposed by [30] allows us to conclude
that the weaker Hessian eigenvalue should be small in x. In
other words, the surface G has a little curvature on the vessel
direction. The following summarizes these characteristics for
the vessel point x = (u, v):

λ1 > 0 and λ2 ≈ 0. (5)

Based on all these considerations, the following vessel
resemblance function V (x;σ), is defined ( [32]):

V (x;σ) =

{
0 if λ1 < 0 ,

exp
(
R2

B

2β2
1

) [
1− exp

(
−S2

2β2
2

)]
otherwise ,

(6)
where RB is a measure of how |λ1| is bigger than |λ2|, i.e.,

RB =
|λ2|
|λ1|

, (7)



and S is a measure of the strength of the overall curvature:

S =
√
λ2

1 + λ2
2. (8)

The parameters β1 > 0 and β2 > 0 are scaling factors
influencing the sensitivity to RB and S respectively.

Images in Figure 3 shows an angiography processed by
applying the vessel resemblance function. The ones in the
first column have resolution of 512× 512, whilst the others
have 1024×1024 pixels. The parameters used for the image
in both rows are the same: σ = 2, 2β2

1 = 16 and 2β2
2 =

128, and they were chosen based on upper and lower bound
determinations from [33] apud [35].

Next subsection explains how to use these results to obtain
region growing seeds automatically.

C. Identifying the Seeds

The Vessel Resemblance Function returns a value for
each pixel in the angiography. It determines if this pixel
constitutes part of the vessel or not. In images in Figure 3,
most part of the non zero pixels belongs to the vessels. All
those ones greater than zero are new possible growing seeds.
However, some noise or image artifacts can contribute for a
small part of background being misunderstood as vessels. In
order to eliminate these cases, some statistics are used. Let
n and sd be the mean and standard deviation pixel intensity
in the area of the circle defined in Section 2.1, respectively.
Then defining t as

t =
n− sd
n

, (9)

allows us to distinguish homogeneous from heterogeneous
regions. From the assumption 2 [30] proposed in Section 2.1,
it is supposed that the circle centered in any artery region
will have part of its area being background and another
part being vessel. Also, from the assumption 1 proposed in
2.1, the set of pixels intensities in that circle will be more
heterogeneous than if it was centered in a background region
only. In other words, for circles centered in background
regions only the standard deviation sd will be smaller
than for circles centered in arteries. It happens because
background regions only will not have the “slightly darker”
presence of any blood vessel. Therefore t will be closer to
the value 1 when the circle area is more homogeneous and
further from 1 otherwise.

After the Vessel Detector Phase, a filtering on the possible
seed candidates is done to identify points in the background
area. This filtering scans all the pixels greater than zero,
traces a circle with radius r0 centered in each candidate and
computes t. Those cases where t is greater than a threshold
mean the region is homogeneous (background) and these
seeds are discarded.

This process results in a final image with all pixels greater
than zero in vessels region. This enhanced image with some
vessels points detected will be used for a new region growing
step explained in the next subsection.

D. The Segmentation Process

The method was implemented in MatLab and the segmen-
tation process is explained by the following algorithm.

1) The user gives the first vessel point s0.
2) The step described in Section II-A starts.
3) The step described in Section II-B starts.
4) The filtering stage described in Section II-C is per-

formed.
5) For each seed not discarded in Section II-C, perform

the region growing described in Section II-A again.
Since it is a recursive algorithm, its complexity will

depend on the coronary diameter as well the the number
of coronary branches segmented. For instance, taking an
angiography A with dimensions N = m×n, it is possible to
say that this algortithm execution time will be O(N) for A.
It is understood this way because once a pixel is determined
to be part of a vessel or not, it will not be processed again.

E. Connected Elements Identification

By supposing that the segmented coronary will represent
the major area of the segmented portion, connected com-
ponents theory is used to identify the component with the
greatest area.

In some exceptional cases, it is possible that in II-C some
pixels that do not belong to the artery area become a seed.
For those cases, small isolated segmented parts can appear.
However it will generate portions of segmented regions
disconnected from the main coronary artery tree. Aiming
to elimminate these small possible segmented blobs, all
connected components are identified, labeled and the one
presenting the greatest area is showed as the final coronary
artery tree segmented.

III. EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we sampled five
Left Coronary Artery (LCA) angiographies and five Right
Coronary Artery (RCA) angiographies. Images in Figure 5
are three experimental results. All images are 1024× 1024
pixels, 8 bits gray-scale, and they were recorded using a
SISMED Digitstar 600N system.

The evaluation of our method is performed as follows. For
each image, we manually produce two reference images.
The first one with primary arteries (which includes main
coronary and first order derivations), and the second with
secondary arteries (second order derivations). These arteries
are represented by their center lines. Figure 4 illustrates
a typical image of a coronary and a representation of its
reference images joined. Note that the artery center lines
are surrounded by green and purple contours, primary and
secondary arteries, respectively. These representations are
used for illustrations reasons. From these reference images,
it is possible to compute the method accuracy by intersecting
the portions between the artery center lines and the resultant
segmented arteries.



(a) Original Image

(b) Reference Image

Figure 4. A typical angiography and a union of its reference images

This evaluation in two artery classes is motivated by the
nature of the coronary analysis. For instance, in applications
where the artery segmentation tree is used, such as quanti-
tative coronary analysis, the task is basically done in main
and first order coronaries.

Table I presents the evaluation results for all 10 processed
images.

Our method segments the primary coronaries with ac-
curacy of 88.79% ± 10, 42% (µ ± σ), where the accu-
racy is defined as described above (the intersection por-
tions between the artery center lines and the resultant
segmented arteries). It also segments secondary coronaries
with 22.04%± 10.18%.

Figure 5 illustrates three samples of our database, where

Table I
IDENTIFICATION OF THE CORONARY ARTERY TREE

Image Type Primary Secondary
01 RCA 96.46% 16.67%
02 RCA 100.00% 35.14%
03 LCA 98.75% 34.01%
04 LCA 63.28% 0.00%
05 RCA 89.60% 24.04%
06 RCA 89.17% 20.97%
07 RCA 83.74% 18.97%
08 LCA 92.01% 28.86%
09 LCA 88.60% 16.40%
10 LCA 86.28% 25.39%

Mean 88.79% 22.04%
Std 10.42% 10.18%

angiographies in the first row are the original images, and
its respective segmented coronary artery tree in the second
row. Also, for each image in the second row, the arteries are
identified by a set of colors. The colors are used to enhance
the different regions of the segmented images. The green
and red portions represent the non- and segmented primary
arteries by the method, respectively. In contrast, the non-
and segmented secondary arteries are represented by the
purple and blue parts, respectively. It is important to notice
that the colored regions only highlight the artery center line
identification. In fact, the real thickness (or diameter) of the
arteries is unknown.

By observing the images in Figure 5, we can also state that
the primary arteries are well segmented, while the secondary
artery segmentations still need improvements. This statement
agrees with the data presented in Table I.

In spite of the resulting images were not evaluated regard-
ing the segmentation, by observing the images in Figure 5
one can note that, in average, the segmentation is well
performed.

IV. CONCLUSION AND FUTURE WORK

A new method for coronary segmentation was presented.
Differently from the major part of the methods proposed in
literature, this does not need lots of parameter adjustments
by the user. Simple ideas were used to contemplate the
region growing stage. The results showed that it can be used
on a system where the user will have a minimum a priori
knowledge about the algorithm.

For future works we propose to apply this method in order
to automatically detect stenosis by using a hundred more
extended database. Also, it was verified that areas of the
angiography with a poor contrast make the region difficult
to grow. Therefore an interesting characteristic to be added
in a pre-processing step is a local vessel contrast enhance-
ment. Furthermore, we propose to evaluate the segmentation
accuracy of the proposed method in terms of artery tree
area percentage by using reference image, i.e., ground truth
image.



Figure 5. Segmentation results and coronary artery tree identification
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