Perspective Contouring in Illustrative Visualization

Jonatas Medeiros Mario Sousa Luiz Velho Carla Freitas
Institute of Informatics Department of Computer Science IMPA Institute of Informatics
UFRGS University of Calgary Rio de Janeiro, Brazil UFRGS
Porto Alegre, Brazil Calgary, Canada lvelho @impa.br Porto Alegre, Brazil

Jjemedeiros @inf.ufrgs.br smcosta@ucalgary.ca carla@inf.ufrgs.br

Figure 1. On a 3D model (left), the user defines axes that are used to extract cross sections from the geometry (center). After, the sections are used to
render contour lines that create emphasis in a user-defined portion of the model (right). Silhoutte edges improve the shape perception.

Abstract—Although traditional line illustrations are very
abstract representations, they can communicate the form of an
object effectively. This is only possible by the use of perceptual
cues, mastered by professional artists. To create effective line
illustrations from 3D models, it is important to use these
perceptual cues to avoid visual dissonance and ambiguity, and
also to create visual effects like shading, emphasis and depth
perception. In this paper, we propose the adaptation of a
technique called Perspective Contouring, used by illustrators to
create emphasis in contour line drawings. The technique uses
perceptual principles to manipulate line attributes, like width,
spacing and length, around regions of interest determined
by the user, creating the illusion that those regions advance
towards the observer. The whole process is controlled through
an intuitive sketch-based interface.

Keywords-illustrative visualization; focus of attention; line
illustration; hatching; non-photorealistic rendering

I. INTRODUCTION

Illustrations are abstractions created by artists for repre-
senting the world in a simple and comprehensible manner.
Illustration techniques are very useful to create focus of
attention, to prevent visual overload, to provide context
information, and even guarantee the visibility of important
information. These factors are especially important in several
areas like medical education for example, where realistic
images like photographs can be overwhelming and difficult
to understand.

To create these abstractions, artists often use very simple
elements like dots (stippling) and lines (hatching). To use
these elements in an effective manner, they need to rely
on perceptual principles to compose them, bringing unity,
balance and emphasis to the illustrations. These principles
are what make us see a 3D form or a textured surface out of
many, apparently unorganized, lines, and if not used properly
can lead to visual artifacts and misinterpretation. These
principles often involve: contrast, constancy, color, shapes,
patterns and visual attention, among others [1]. When these
elements are contradictory they generate visual dissonance
that reduces the effectiveness of communication.

To create convincing images of the real world using only
lines, the illustrators apply their knowledge about the human
visual system. The artists take advantage of how we perceive
shapes, tones, contrast, etc., to manipulate the lines and to
create effects and illusions so we do not see the lines any
more, but the whole that results from the their composition.

Since the illustrative techniques used by artists are so
effective in communicating information about structures,
they were adopted in computer graphics for the visualization
of scientific data, bringing together new applications for this
“Illustrative Visualization” [2]. Many works in this area try
to simulate the rendering styles used by artists, like hatching,
to visualize 3D objects. Line-based illustrations are a very
good way to depict the shape of an object and are also very

simple and clean but, due to the high level of abstraction,
are very difficult to use effectively.

Although many techniques try to replicate the style of
line illustrations (related work is presented in Section II),
the issue of how to provide emphasis in the illustration has
not been well explored. Emphasis, or focus of attention,
is used to highlight the most important regions in a scene
and catch the observers attention. Without this quality, the
drawing looses expressiveness and become inefficient, even
ambiguous.

Creating good illustrations from 3D data can greatly
improve the work of professional illustrators by automating
the more tiring tasks. However, artists can not loose the
freedom they are used to and such techniques should support
the correct use of perceptual principles.

This work presents the core techniques of an environment
that allows the creation of illustrations from 3D datasets
through contour lines. As main characteristics we can cite:

o The use of perceptual principles to emphasize important
regions;

o The use of conceptual marking, a concept familiar to
the illustrator;

o The freedom given to the illustrator to easily control
the illustration construction.

To emphasize important regions we adapt a traditional
illustration technique called Perspective Contouring [3],
which creates focus of attention through the manipulation
of the length, width and density of the lines (Section III
presents a brief description of this technique). The entire
process is controlled by the user through a sketch-based
interface.

In section IV we present an overview of the algorithm,
which is described in details in Sections V and VI. The
results are shown in Section VII, and Section VIII brings
the conclusions and future work.

II. RELATED WORK

Early works like the one from Appel et al. [4] already used
lines with halos to create depth effects, using the perceptual
principle of overlapping [3] to improve the visualization
of mathematical structures. Kamada and Kawai [5] apply
stylization in hidden lines, allowing a better visualization of
the structure of geometric objects from a single viewpoint.
This subject was explored again by Dooley and Cohen [6],
which used illustration rules to render silhouette and hidden
lines.

These works, though use line illustration techniques, do
not explore the power of combining multiple lines to achieve
a hatching effect. Hatching can be used to shade the surface
of an object, giving texture and lighting cues, and enhance
the visualization of an object.

To create hatching, many works in Non-photorealistic
Rendering (NPR) use some measurement on the surface of
the model to define the lines. Girshick et al. [7] define a

potential field on an image using the principal curvature of
the model. The lines are created distributing points through
the surface of the models that are integrated in the direction
defined by the potential field. Similar approaches are used
in [8], [9], [10] and [11].

Some other works, like [12] and [13], use pre-defined tex-
tures with different tones and line styles that are mapped to
the model’s surface. Winkenbach and Salesin [14] describe
a method to create line illustrations from smooth surfaces
using NURBS patches on the surface to guide the hatching.

Rossl and Kobbelt [15] use the principal curvature fields
to create parallel lines in image space. The user must
perform a segmentation of the model in image space and, for
each segment, parallel lines are parameterized following the
maximum curvature direction. The line width is controlled
by a tone mapping using a pre-rendered shaded image of
the model.

Deussen et al. [16] use a hybrid approach to model
the lines. They are defined by the intersection of a set of
parallel planes with the model geometry. The orientation of
each plane is determined by the user through a spline, and
the intersection calculations are performed by the graphics
pipeline through clipping planes. Although the calculation is
performed in object space, the lines are generated in image
space.

A recent work by Ritter ef al. [17] uses contour lines in
the visualization of vascular structures. The lines’ width is
used to indicate the depth of different parts of the structure.
Regions that are closer to the viewer have thicker lines while
thinner lines indicate a more distant region. Lines are also
used to model shadows when two segments overlap, the size
of the shadows indicating the distance between the segments.

As pointed out earlier, although the previous mentioned
techniques are devoted to build line illustrations, none of
them are explicitly based on perceptual principles to provide
focus of attention.

III. PERSPECTIVE CONTOURING

Being one of the most difficult techniques to master, line
illustration demands knowledge about how the human visual
perception works to create effects and illusions that allow
us to understand abstract drawings.

Line illustrations are very abstract but artists can still man-
age to create drawings with very few lines and that are very
comprehensible. This is possible because of perceptual cues
used in such illustrations. These cues often involve contrast,
line direction, focus and recognition of shapes, patterns and
edges. When these perceptual cues are contradictory, they
generate visual dissonance that may cause confusion and
reduce the effectiveness of communication. Some examples
of dissonance are zebra stripes, when line width and spacing
are out of balance, and Moire patterns.

One important perceptual cue is emphasis or focus of
attention. To create focus of attention in contour line il-

Figure 2. Use of Perspective Contouring to enhance perception of shape
(illustration by Bill Andrews).

lustrations, artists often use a technique called Perspective
Contouring. This technique is a particular case of perspective
that is very used when representing tubular structures in
medical illustrations. The emphasis is achieved by creating
regions that seem to advance towards the observer (see
Figure 2).

When employing this method, the illustrator, instead of
using a universal horizon line for the scene, defines an
internal horizon line usually perpendicular to the long axis
of the object being depicted. The internal horizon line is
defined across the region to be emphasized and construction
rules are applied to the line drawings based on the distance
to this line (see Figure 3). These rules are [3]:

o Lines near the internal horizon line are thicker, shorter
and more distant from each other;

e Lines far from the internal horizon line are thinner,
longer and closer to each other;

¢ The silhouette near the internal horizon line is thinner;

e The silhouette far from the internal horizon line is
thicker;

This technique facilitates the understanding of the shape
of the object as well as directs the attention of the viewer to
important regions of the scene. It is clear that the adaptation
of this method to Illustrative Visualization techniques can
improve the results obtained in several applications.

IV. OVERVIEW

Our method allows the user to construct line illustrations
from 3D models using Perspective Contouring to create
emphasis. The illustrations can be created using two kinds
of lines: contour lines, which depict the surface of an object
through hatching, and silhouette lines. Both groups of lines
are manipulated according to the Perspective Contouring
rules to create the illusion of emphasis.

The contour lines are modeled by sections extracted from
the geometry of the object. This alternative is more expen-
sive than image-space based approaches, but it generates a
more exact representation of the contour of the object, allows

Sections used as reference to the contour lines

Figure 3. Perspective Contouring. The internal horizon line and some
sections used to compose the illustration (adapted from original authored
by Gerald Hodge).

more control over line attributes, and does not introduce
consistency problems in animations. Since the cross sections
only need to be extracted once, the object-space modeling
for the lines is preferable.

The cross sections are obtained by the intersection of a
set of planes with the geometry of the object. To orient the
planes, a parametric curve, sketched by the user on the model
is used as axis (a pre-calculated model skeleton can also be
used; see the work of Cornea et al. [18] for some approaches
for extracting skeletons). The planes are perpendicularly and
uniformly distributed along this axis and the user can define
one or more axis for the same object, each one having its
own set of planes.

To model the silhouette lines, we use a special structure
called silhouette mesh that keeps all the possible silhouette
edges. In each edge of this mesh there is a patch of two
triangles that can be rendered to form a silhouette line. The
silhouette mesh is created as a preprocessing step based on
the object mesh.

With the silhouette mesh created and the cross sections
extracted, the user can define the regions of interest (ROIs),
where emphasis will be applied. This selection is made
through a sketch-based interface, which is also used to
determine the form of the highlight used in the ROI. With
the ROIs defined, line attributes (spacing and width of the
contour lines and width of the silhouette lines) are calculated
using the construction rules described in Section III.

Outside the ROIs, line attributes can be controlled by
the user through a special sketch-based interface, where the
curves sketched determine the behavior of the variables.

Table I resumes the whole process of creating an illustra-
tion.

Table I
ILLUSTRATION PROCESS OVERVIEW

Algorithm steps

1. Silhouette mesh creation (preprocessing step)

2. Definition of axes for cross section extraction (by the user
through sketching)

3. Cross section extraction

4. Definition of the ROIs (by the user through sketching)

5. Line attributes calculation (Perspective Contouring rules)
6. Definition of line attributes outside of the ROIs (by the
user through sketching)

Figure 4. Sketching capture process. Original stroke (left), stroke after
Chaikin subdivision with control points (right)

V. GEOMETRIC STRUCTURES

In this section, we detail the structures used to represent
the geometric elements of the illustration creation process.

A. Sketched Curves

When creating an illustration the user draws curves
through a sketch-based interface to define axes for planes
used in the extraction of cross sections from the model, the
ROIs and the highlights’ shape, and also the behavior of line
attributes outside the ROIs.

To handle these curves, we first capture all the points from
the input device, a mouse for example, in the image plane.
These points cannot be used directly to define the parametric
curve that we need because [19]: the points are very noisy
due to natural jittering in the handling of the input device;
the points are irregularly distributed along the curve due to
variations in speed of the sketch; there can be a very large
amount of points because the input device sends information
many times per second. So, to avoid these problems we find
a b-spline that can fit in this set of points.

We use Chaikin reverse subdivision [20] to find a noiseless
b-spline with a small number of regularly distributed points
[21]. Using a reverse subdivision scheme, we can decompose
a fine set of points in a sparser approximation. As the
Chaikin subdivision is based on a quadratic b-spline, we
can assume the sparser information as control points of a
quadratic b-spline curve (Figure 4).

If we define the fine points as pg, p1, ..., Pn and the sparse
points as qo, g1, ..., ¢m, then, the general case of the Chaikin
reverse subdivision has the form:

N

Tk

§
I

———

I‘
i

Figure 5. Some of the sections extracted from a lungs dataset. The sketched
axes are shown vertically. Control points depicted only for the left lung.

1 3 1
qj = —=Di—1 + 7Pi + 7Pit1 — TDi+2, (1
4 4 4

where the step size of ¢ is two. The cardinality of the
sparse points is almost half of the fine points. Each time the
subdivision is applied the curve becomes smoother, but it
deviates more from the original curve. In our experiments,
we concluded that performing the operation three times is
enough to eliminate the noise without deviating too much
from the original curve.

=W

B. Cross sections

To model the contour lines, we extract sections from the
object’s geometry and represent them as parametric curves.
The sections are defined by the intersection of a set of planes
and the objects’ triangle mesh (Figure 5). We uniformly
distribute the planes along each axis defined by the user
through the sketch-based interface. The planes are oriented
perpendicularly to the axis’ tangent vector. The number of
planes used in each axis varies with the complexity of the
object.

Assuming a triangle mesh with a set of axes curves, the
extraction is performed as follows for each axis curve:

« First, we sample points (one for each plane) equally
spaced along the axis curve; for each point, we calculate
the curve tangent and, so, define a plane perpendicular
to the curve;

o For each plane, we calculate the intersection with the
mesh edges; each section is modeled as a parametric
curve from the intersection points calculated;

When the hatching is composed (see Section VI) and the
position of each contour line is calculated using the Perspec-
tive Contouring rules, the sections extracted will serve as a
reference model for the final lines used in the rendering
process. If a contour line lies between two consecutive
sections, interpolation is used to find the appropriate curve.

o

Triangle strip >
Binormal

vector

Section curve

Figure 6. Triangle strip created to represent a contour line. The triangles’
vertices are created from points in the (central) section curve.

C. Contour lines

The contour lines are used to represent the surface of the
object being depicted. The hatching made from these lines
can be used to model shading in the illustration.

Each contour line is rendered as a triangle strip cre-
ated along the correspondent section curve (Figure 6). To
create the triangles, a set of uniformly distributed points
are sampled from the section curve, and for each point
two vertices are created. These vertices are displaced in
opposite directions along the binormal vector of the point.
The magnitude of the displacement is defined by the line
width value calculated in the hatching composition step (see
Section VI).

To avoid patterns, we avoid the regularity of the lines by
applying small random variations to their width. This kind
of noise also gives a more natural look to the illustration.

D. Silhouette lines

To model the silhouette lines, we use an adaptation of
the method proposed by McGuire and Hughes[22]. In a
preprocessing step, we create a structure called silhouette
mesh that maintains all possible silhouette edges that can be
rendered.

To create the silhouette mesh, we go through every edge
from the original mesh, and for each one, we create four
vertices in the silhouette mesh (Figure 7). These vertices
(V{, V{’, V4 and V') have (two by two) the positions of the
original vertices (V7 and V2) and keep the normal vectors
from the two faces that share the edge in the original mesh
(INy1 and Nyo). We also keep the normal vectors of the
original vertices (N7 for V{ and V" and N; for VJ and
V3"). The new vertices are used to form two triangles that
can be rendered as a silhouette line segment.

To determine the relation of each silhouette mesh vertex
with the ROIs defined by the user, and thus, be able to
calculate the line width for each of them, we save, for each
vertex in the silhouette mesh, the closest point in the axes
curves.

Figure 7. Silhouette edge. For one edge in the original mesh (V71-V2) we
create four vertices in the silhouette mesh (rectangular patch).

VI. HATCHING COMPOSITION

We are concerned with finding out a simple and intuitive
manner to let the user determine the ROIs, which correspond
to the regions where the internal horizon lines are placed
in Perspective Contouring. In traditional illustration, the
illustrator often uses lines called ”‘conceptual markings™
that usually are not part of the final drawing, but are used
to help in the creation process. These markings can be used
to indicate the basic structure of the object or to help in the
construction techniques.

Inspired by this concept, we use a sketch-based interface
to allow the user to draw on the model and define the ROIs.
The definition of the ROI is combined with the definition
of the highlight shape. The highlight is a result from the
construction rules of the perspective contouring, since the
length of the lines must be smaller when near the internal
horizon line.

With ROIs and highlights defined, the construction rules
of the Perspective Contouring are used to define the width
and spacing of the contour lines around each ROL, as well as
the width of the silhouette. The user can control the behavior
of line attributes outside the ROIs through the sketching of
function curves.

A. ROI definition

To define a ROI, the user draws a closed curve on the
surface of the object. Internally, the ROI is defined by the
set of cross sections extracted from the object (see Section
V.B) that are covered by the curve (Figure 8). Within the
RO, the position of the internal horizon line is defined as
the position of the central cross section.

The curve drawn for the selection of the ROI is also used
to determine the shape of the highlight effect caused by
the smaller length of the contour lines around the internal
horizon line. To determine the length of the contour lines,
the intersection points of the curve of highlight and the
sections within the ROI are calculated and stored to serve as
endpoints to the triangle strips created to render the contour
lines (see Section V.C).

Internal
horizon
line

Sections _
inside
ROI

Figure 8. ROI defined in left lung. Some of the sections are shown (the
purple sections are intersect by the highlight curve and, thus, belong to the
ROL

B. Line creation

The line attributes within the ROIs (width and spacing for
contour lines and width for silhouette lines) are set to achieve
emphasis according to the Perspective Contouring rules.
Outside the ROIs, the line attributes can be manipulated
directly by the user to compose the desired illustration.

1) Inside the ROIs: The positions of the contour lines
are calculated from the internal horizon line (position of
the ROI’s central section) towards its boundaries (first and
last section of the ROI). To model the construction rules
of the Perspective Contouring, we use linear functions that
have as input the distance from the current section’s position
(represented by the point in the axis curve that generated the
plane used to extract the section) to the internal horizon line
and as output, values of width and spacing between two
consecutive lines.

To calculate the width for the silhouette lines, the input
for the function is the distance from the closest point in the
axis curve, which holds the sections in the current ROI, to
the internal horizon line.

The functions have the form:

value = sd + b,)

where, d is the distance to the ROI center, s is a scale
factor and b a displacement factor. The width and spacing
functions for the contour lines have a negative s, while the
silhouette width function requires a positive s.

From the ROI center, the contour lines are iteratively
created with the distance d being updated. In each step, this
distance is also used to find the previously extracted section
that match the desired position for the new line. If there is no
section defined in a certain distance, the two closest sections
are interpolated. The intersection points with the highlight
curve are also interpolated.

For each contour line to be calculated the steps below are
followed (Figure 9):

o Calculate new width;

half of the .
internal
. new width

section (s,) \ / hOII'IZOI'l
ine

(sectlon)

half of the
calculated
width for s,

contour line

new spacing

Figure 9. Calculation of a new contour line. From a previous calculated
section (s1), half the width is added to the distance to the internal horizon
line (green). With a new spacing calculated and added to the total distance,
the new width is calculated and also added. Finally, the new section (s2)
can be found among the extracted sections, and the whole process repeats.

« Update distance to ROI center by half the calculated
width;

« Find section using current distance to ROI center;

« Update distance to ROI center by half the calculated
width;

o Calculate new spacing;

« Update distance to ROI center by the new spacing;

The steps above are repeated for both sides of the internal
horizon line until the extremes of the ROI are reached.

As the silhouette constantly changes due to the user
interaction with the visualization, it is necessary to set the
width of all edges of the silhouette mesh. Which edges must
be rendered is calculated by a vertex shader in the graphics
processing unit (GPU).

In the vertex shader, we test each vertex of the silhouette
mesh to see if it is part of the current silhouette. The test
consists in verifying if the dot products of the two normal
vectors from the faces that share the edge to which the vertex
belongs in the original mesh (in Figure 7, Ny; and Nyo) with
the eye vector have different signs.

The difference in signs shows that the vertex is part of the
silhouette and, hence, should be drawn. For that to happen,
we displace the vertex in the direction of the normal from
the original vertex of the model’s mesh (in Figure 7, N1 and
N3). Doing this, the triangles formed from these vertices will
become visible.

If the test fails, we do not displace the vertex and avoid
its rendering by modifying the alpha value of its color.

2) Outside the ROIs: Outside the ROI, the construction
of the contour and silhouette is the same, but with different
functions. In the contour line creation process, the lines are
created from the borders of the ROIs following a direction
away from the ROI center until the end of the axis curve or
until half the distance to a neighbor ROI.

The functions used to configure these lines are defined by
the user, through a curve sketched in a special panel (Figure

ROl center

/

Value in

the border
/ of the ROI
Right sketch
curve

Left sketch
curve

Minimum
value allowed

Figure 10. Sketch-based interface used to control the line attributes outside
the ROIs.

10) in the user interface. The panel consists in two parts, one
for each side of the ROI (left and right), the user being able
to draw one curve in each side. The curves act as usual
function curves, where the horizontal axis represents the
extension of the axis curve from the borders of the ROI to an
extreme or to a mid-point between two neighbor ROIs, and
the vertical axis represents the value being considered (width
or spacing for contour lines and width for silhouette lines).
The user can change which attribute is being represented
in the panel at any time, and panels belonging to neighbor
ROI can be visualized side by side to allow continuity when
drawing the curves.

VII. RESULTS

The algorithm was implemented in C++ and OpenGL us-
ing GLSL for the shaders. The models used are represented
as triangle meshes.

The interface consists in a main window where the user
can see a shaded rendering of the model as well as interact
with it (through translations and rotations) and sketch the
axes for section extraction and the highlight curves for ROI
definition, and a secondary window, inside the main window
where the user can sketch the function curves to control
the line attributes outside each ROI. The main window also
has some menus to help in the organization of the creation
process.

Figure 11 shows an illustration created from the lung
dataset. Figure 12 shows our technique applied to a torus.

VIII. CONCLUSION

This work presented a new approach in the creation of
digital line illustration through the utilization of perceptual
principles to allow the user to emphasize regions of interest
and create focus of attention in the visualization.

Our technique allows the creation of contour line illustra-
tions and the application of emphasis as the user wishes to
improve the interpretation of the image. The user has also
the power to control how the lines outside the regions of

Figure 11. Illustration from the lungs dataset. Emphasis applied on both
lungs and silhouette lines used to give context information.

Figure 12. TIllustration created from a torus.

interest behave to create a smoother and more harmonious
image.

We developed a sketch-based interface so the user can
accomplish the main tasks of the process of creating an
illustration, like defining axis curves used to orient the
contour lines, regions of interest, highlights and function
curves to control the line attributes, in an intuitive manner.

The images generated show how focus of attention can
be created through line attribute manipulation, like width,
spacing and length. The perspective contouring technique
can create the illusion that a determined region advance

towards the observer.

The concepts involved in the technique developed herein
are vastly used by traditional illustrators and we have shown
that they can be adapted to the digital visualization of data.
The work developed is a step in this direction, where the
artistic knowledge, already consolidated for many centuries,
can contribute even more to the visualization research.

As future work, we intend to make a full evaluation
of the algorithm with a group of professional illustrators.
Some improvements in the algorithm can be achieved as
the inclusion of an automatic skeleton extraction procedure
to orient the contour lines, which can complement the axis
curves defined by the user and can be modified by him. The
interactive edition of the curves is also something that can
greatly help the creation process, allowing the user to refine
the curves or correct minor details without having to redraw
the entire curve.

REFERENCES

[1] C. Ware, Information visualization: perception for design.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2000.

[2] I. Viola, M. E. Grller, K. Bhler, M. Hadwiger, B. Preim,
D. Ebert, M. C. Sousa, and D. Stredney, “Illustrative visu-
alization,” IEEE Visualization 2005 Tutorial, 2005.

[3] I. Viola, M. C. Sousa, D. Ebert, B. Andrews, B. Gooch,
and C. Tietjen, “Illustrative visualization for medicine and
science,” Eurographics 2006 Tutorial, 2006.

[4] A. Appel, E. J. Rohlf, and A. J. Stein, “The haloed line effect
for hidden line elimination.” in SIGGRAPH ’79: Proceedings
of the 6th annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1979,
pp. 151-157.

[5] T. Kamada and S. Kawai, “An enhanced treatment of hidden
lines,” ACM Trans. Graph., vol. 6, no. 4, pp. 308-323, 1987.

[6] D. Dooley and M. F. Cohen, “Automatic illustration of 3d
geometric models: lines,” in SI3D ’90: Proceedings of the
1990 symposium on Interactive 3D graphics. New York,
NY, USA: ACM, 1990, pp. 77-82.

[7] A. Girshick, V. Interrante, S. Haker, and T. Lemoine, “Line
direction matters: an argument for the use of principal direc-
tions in 3d line drawings,” in NPAR ’00: Proceedings of the
1st international symposium on Non-photorealistic animation
and rendering. New York, NY, USA: ACM, 2000, pp. 43-52.

[8] V. Interrante, “Illustrating surface shape in volume data via
principal direction-driven 3d line integral convolution,” in
SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997,
pp. 109-116.

[9] G. Elber, “Line art illustrations of parametric and implicit
forms,” IEEE Transactions on Visualization and Computer
Graphics, vol. 4, no. 1, pp. 71-81, 1998.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

G. Elber, “Interactive line art rendering of freeform surfaces,”
Proceedings of EuroGraphics’99 (Milano, Italy, sep 1999),
vol. 18, no. 3, pp. 1-12, sep 1999.

A. Hertzmann and D. Zorin, “Illustrating smooth surfaces,” in
SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques. New York,
NY, USA: ACM Press/Addison-Wesley Publishing Co., 2000,
pp. 517-526.

M. P. Salisbury, S. E. Anderson, R. Barzel, and D. H.
Salesin, “Interactive pen-and-ink illustration,” in SIGGRAPH
’94: Proceedings of the 21st annual conference on Computer
graphics and interactive techniques. New York, NY, USA:
ACM, 1994, pp. 101-108.

G. Winkenbach and D. H. Salesin, “Computer-generated pen-
and-ink illustration,” in SIGGRAPH ’94: Proceedings of the
21st annual conference on Computer graphics and interactive

techniques. New York, NY, USA: ACM, 1994, pp. 91-100.

G. Winkenbach and D. H. Salesin, “Rendering parametric
surfaces in pen and ink,” in SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques. New York, NY, USA: ACM, 1996,
pp. 469-476.

C. Rossl and L. Kobbelt, “Line-art rendering of 3D models,”
in Proceedings of Pacific Graphics 2000., 2000. [Online].
Available: citeseer.ist.psu.edu/rosslO0lineart.html

O. Deussen, J. Hamel, A. Raab, S. Schlechtweg, and
T. Strothotte, “An illustration technique using hardware-based
intersections and skeletons,” in Proceedings of the 1999
conference on Graphics interface '99. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999, pp. 175-182.

F. Ritter, C. Hansen, V. Dicken, O. Konrad, B. Preim, and
H.-O. Peitgen, “Real-time illustration of vascular structures,”
1IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 877-884, 2006.

N. D. Cornea, D. Silver, and P. Min, “Curve-skeleton prop-
erties, applications, and algorithms,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 3, pp. 530—
548, 2007.

J. J. Cherlin, F. Samavati, M. C. Sousa, and J. A. Jorge,
“Sketch-based modeling with few strokes,” in SCCG ’05:
Proceedings of the 21st spring conference on Computer
graphics. New York, NY, USA: ACM, 2005, pp. 137-145.

G. Chaikin, “An algorithm for high speed curve generation,”
in Computer Graphics and Image Processing, vol. 3, 1974,
pp. 346-349.

R. H. Bartels and F. F. Samavati, “Reversing subdivision
rules: Local linear conditions and observations on inner prod-
ucts,” Journal of Computational and Applied Mathematics,
vol. 119, pp. 29-67, 2000.

M. McGuire and J. F. Hughes, “Hardware-determined feature
edges,” in NPAR ’04: Proceedings of the 3rd international
symposium on Non-photorealistic animation and rendering.

New York, NY, USA: ACM, 2004, pp. 35-47.

