
Efficient and High Quality Contouring of Isosurfaces on Uniform Grids

Leonardo A. Schmitz
laschmitz@gmail.com

Carlos A. Dietrich
cadietrich@gmail.com

Instituto de Informática - UFRGS, Brazil

João L.D. Comba
comba@inf.ufrgs.br

(a) (b) (c) (d)

Figure 1. GPU Marching Cubes (a) and (c) and higher quality GPU Macet (b) and Dual Contouring (d). Backpack dataset is used in (a) and (b), while
Pig dataset is used in (c) and (d). Triangle quality is measured as radii-ratio in (a) and (b), normalized between 0 and 1, and color-code using the scale on
the left (green = good, blue = bad). Fewer terracing artifacts and a better approximation of the polygonization are presented in (d) in comparison to (c).

Abstract—The interactive polygonization of isosurfaces has
become possible with the mapping of the Marching Cubes
(MC) and Marching Tetrahedra (MT) algorithms to GPUs.
Such mapping is not as straightforward in cases that the
algorithm generate meshes closer to the isosurface or result
in better polygon shapes, since they often require complex
computations for the vertex positioning of the polygons or
even do not have table-driven implementations. In this paper,
we revisit Dual Contouring (DC) and Macet algorithms and
propose, respectively: (i) a novel parallel efficient version on
uniform grids and (ii) novel GPU modules which extend the
original MC. Our DC algorithm is table-driven and positions
the vertices in a particle-based fashion, which is then used to
map into a GPU implementation. In addition, we enumerate
the current ways to implement efficient contouring algorithms
on the GPUs as orthogonal features, and present the tradeoff
of each approach. We validate the efficiency of our algorithms
with its comparison to interactive versions of MC algorithms.

Keywords-Isosurface extraction; Volumetric visualization;
Contouring;

I. INTRODUCTION

Several tasks in scientific processing have well-established
algorithms and techniques. However, the growing need for
faster methods and high accuracy results that we are ex-
periencing now may require the constant improvement of
these algorithms. For instance, isosurface extraction using
polygonization algorithms is still a challenging task, since
improvements in image scanners or advances in simulation
techniques result in very large volumetric images. Having
the ability to interactively change the isovalue while visu-

alizing the data would offer the scientist a better insight on
the data being processed, but this is not always possible for
large data.

The intrinsic parallel nature of the most common isosur-
facing algorithms such as Marching Cubes (MC) [1] makes
it amenable for parallel (and thus faster) implementations.
Even though there is an increasing parallel power on using
multi-core CPUs, the most promising approach today for this
task is to use the parallel power of GPUs. There are different
alternatives on how such algorithms can be mapped to GPUs
and they impact how efficient the polygonization will be.
The crucial step is related to the geometry specification, and
two proposals were described for MC. The first relies on
implementing the entire MC algorithm inside the geometry
shader (GS) feature of current GPUs. Such feature represents
a programmable stage added into the graphics pipeline
to allow limited control on the creation and deletion of
vertices (and consequently triangles). Results show a clear
performance improvement over the CPU implementation,
but several performance issues regarding the use of the
GS suggest that results could be even better. Acceleration
structures such as Span Space (SS) [2] can also be combined
with the GS for improved performance. A different approach
to the problem is to use a solution of multiple passes in
the fragment shader, called HistoPyramids (HP) [3]. Results
using this method are faster than using the single pass GS,
but it also has shortcomings, since it requires large GPU
memory allocation and may limit the size of input volumes.

Other contouring algorithms that address problems with
MC can also benefit from the computing power of GPUs.
For improvement of triangle quality, the Macet algorithm
[4], [5], [6] is a modification of MC and its implementation
on the GPU requires the same extra modules of the CPU.
For the detection of sharp features, an interesting choice is
the Dual Contouring (DC) algorithm [7], which generates
quads on the dual grid. However, mapping this algorithm
to the GPU is not straightforward. First, its adaptive nature
resulting from using an octree instead of a regular grid leads
to a more elaborate neighboring analysis while generating
the polygonal approximation. Also, the vertex positioning
on the dual grid is computed by solving a QR or SV de-
composition in order to minimize a Quadric Error Function
(QEF), which can be memory expensive since it requires
10 floats per QEF and is not easy to implement as a linear
interpolation of MC.

In this work, we describe a mapping of a modified version
of DC to the GPU. The first change in the algorithm is the
use of an uniform grid instead of an indexed octree. We
believe this is an acceptable trade-off, since the adaptive
version on the CPU has to compute a full octree (uniform
grid) before simplification while our version is much faster
processed on the GPU and can be simplified on the CPU in
a post process. The use of a regular grid allows rewriting the
algorithm into a table-driven version, which generates quads
for each cell from a fixed number of possibilities encoded in
a table, in a similar fashion to MC. The second change is the
replacement of the QEF approach to place intersection points
over the isosurface by a particle-based minimizer function
that is simpler to compute.

In order to evaluate the results, we revisit the MC im-
plementations on the GPU, and compare against an imple-
mentation of Macet and the table-driven DC on the GPU.
For each method, we evaluate different implementations on
the GPU using the GS, the GS with SS, and using HP.
We obtain results from isosurface extraction with speed-
ups to 1500 times in the implementation of both Macet and
Dual Contouring, thus enabling the interactive exploration
of isosurfaces.

In summary, the main contributions in this paper are:
1) The acceleration of high-quality polygonization of

isosurfaces.
a) The proposal of a table-driven approach for Dual

Contouring;
b) The acceleration of Macet [6] with the mapping

to the GPU;
2) The validation of the proposed approaches.

II. RELATED WORK

Isosurface polygonization is a well-studied problem, but
still a focus of interest nowadays. Since the pioneering work
of Udupa [8], several (and significantly different) approaches

for extracting polygon meshes from implicit surfaces were
proposed. Our work is focused on methods based on domain
subdivision, since its underlying approach usually leads to
high performance polygonizers. Such methods follow the
divide-and-conquer paradigm, that subdivides the domain
of the function f (f : Rn → R) into a set of cells, which
are processed independently. The isosurface inside each cell
is approximated by a set of triangles, in a way that when
combined for all cells, form a watertight mesh (C0). This
approach, the well-known Marching Cubes [1], is efficient
and robust. MC operates on two fundamental steps: (a)
detection of active cells (cells crossed by the isosurface)
and (b) generation of triangles inside each active cell. The
first step was the subject of works which attempt to improve
the efficiency of the algorithm [2], [9], [3], while many
work focus on improving the quality and correctness of the
triangles generated in the second step [10], [11], [12].

Triangular mesh quality was first improved with the help
of pseudo-physical smoothing algorithms like SurfaceNets
[13]. The SurfaceNets algorithm is based on the Cuberille
sampling technique, which places vertices at the center of
each active cell and connect them to vertices in adjacent
active cells. The resulting mesh, as a dual of MC base
mesh (in the absence of self-intersections), does not have as
many badly-shaped triangles as MC. The quality of the mesh
is further improved with a post-processing smoothing step,
which applies a Laplacian smoothing while constraining
each vertex to the active cells in that it was generated. The
Dual Contouring (DC) algorithm [7] combines the sampling
technique of SurfaceNets with the feature sensitive approach
of Extended Marching Cubes [14], which results in an even
more accurate polygonizer. Each vertex, instead of being
positioned in the center of the active cell, is pushed to the
corner of the sharp features (if they exist) in the interior
of the cell. This approach improves the accuracy of the
sampling technique, while standing in the efficiency of the
SurfaceNets. The Macet [6] algorithm was based on the
notion of edge transformations and edge groups. By allowing
the position of MC edges to be placed in more convenient
locations and creating a convenient table, their proposal
achieves much better triangle quality and requires minor
extensions in the original MC code.

Improving active cell detection is commonly done in pre-
processing stages, which organize the access to the domain
of function f according to a predefined isovalue. The Span
Space structure [2] is a spatial hashing with cells organized
in a 2D map, based on the minimum and maximum values
of f at cell vertices. The map is constructed in such way that
active cells corresponding to any isovalue are constrained to
a subset of the map, which are easily determined from the
isovalue used. GPU-based polygonizers were also proposed
to minimize detection costs by computing each cell in a
separate processor.

The early programmable modules allowed custom shading

on pixels and vertices, but lacked geometry generation
inside the GPU. The Marching Tetrahedra (MT) polygonizer
described by Pascucci [15] performed a significant part of
the extraction inside the graphics processor. A quadrilateral
was used as input for every tetrahedra, because it represents
the configuration case with the maximum number of output
primitives. If a configuration of a tetrahedra resulted in a
single triangle, then two points of the quad were collapsed
into one. If there was an empty cell, the quad was discarded
by collapsing its points into a single point. In the case of
a uniform grid, twenty or twenty four points were sent per
voxel, which became too costly for the CPU. Reck et al
[16] used Span Space to reduce the amount of geometry
sent to the GPU. Klein [17] used vertex arrays and shifted
computations to the fast pixel processors. Kipfer [18] further
improved this implementation by letting tetrahedra share ver-
tices. However, all the above algorithms perform tetrahedral
subdivision, which is still undesirable for accuracy purposes
[19] and for their excessive increase in number of triangles
in comparison with MC.

The MC polygonizers described by Goetz [20] and Jo-
hansson [21] discovered the number of primitives generated
by each cell on the CPU and culled empty cells with Span
Space. Thus, excessive computation was left for the CPU,
resulting in a bottleneck. On-the-fly MC only appeared
recently with the new shader pipeline.

Current GPUs have the geometry shader (GS) [22]. It
allows the creation and deletion of primitives, making ob-
solete previous workarounds to create geometry and taking
out excessive computations from CPU. MC and other sub-
division based polygonizers were fully implemented inside
the GPU [23]. However, an alternative data structure for
compaction/expansion of primitives, called Histogram Pyra-
mids (HP or HistoPyramids) [3], minimized CPU to GPU
communication. It uses multiple rendering passes to create
the geometry from a set of canonical indices (allocated as
triangles on the GPU memory).

In this work, we evaluate how the GS and the HP impact
the GPU implementations of Macet and DC. The GPU-based
Macet algorithm shows edge transformations that improve
the quality of the extracted mesh. The GPU-based DC shows
improvement in the approximation of the isosurface. Both
implementations explore GPU parallelism in detail and result
in the fastest (to our knowledge) high-quality polygonizers
available today.

III. DUAL CONTOURING

Dual Contouring is a method which refines the accuracy
of Marching Cubes and works for adaptive grid resolutions.
It is a hybrid method between Extended Marching Cubes
[14] and SurfaceNets. The first has the characteristic of
finding sharp edges based on the point normals of the active
edges. The latter has a dual space nature. This combination
leverages the good characteristics from both methods.

The algorithm consists on finding the active edge and
creating a quadrilateral around it, as in Surface Nets. After
that, it positions the vertex in the isosurface feature using
information of position pi of the cut points (as MC does)
and also their normals ni. This is similar to the way that
Extended Marching Cubes (EMC) sample features. Vertex
positioning is done by minimizing the QEF described in
equation 1 with QR or SV decompositions.

E[x] =
∑

i

(ni · (x− pi))2 (1)

The adaptivity of DC is an advantage over most polygo-
nizers. Since most isosurface extractors have a large memory
demand, DC is an interesting alternative. In addition, there
is an implicit feature identification. Both characteristics are
probably the most important features of DC. However, its
implementation is not as trivial as MC. Both SVD and QRD
often require complex computations for the vertex position-
ing of polygons and are useful for adaptive resolutions,
therefore we created a novel iterative particle and table-based
approach.

A. Particle-based minimizer function

This method replaces the QR factorization with a particle-
based approach, which iteratively moves the vertices of the
quad (referred and treated hereafter as particles) towards the
isosurface. The iteration is responsible for a good approxi-
mation of the isosurface, as well as finding sharp features.
We ensure the stability of the method by constraining the
particle inside the voxel.

The particles start at the mass point C̄ of the cell,
calculated from the arithmetic mean of the active edge
intersection points (Pi). This process reduces the number of
iterations of the particle and is a good hint of the isosurface
location [24]. The next step is to find the force ~F that
starts moving the particle from C̄ towards the isosurface
(Figure 2). Since the data used is Hermite, the normals of
cut points are necessary. We use the gradient of the volume
to approximate the normals (~ni = ∇f(Pi)).

The force ~F is generated by trilinear interpolation of the
forces ~F0 to ~F7 located at the grid points ~V0 to ~V7 driven
by the centroid C̄. These forces are calculated as the sum
of the vector distances to the planes defined by all pairs ~ni

and Pi (intersection points from the voxel):

~Fk =
n∑

i=1

(~ni, (Pi · ~ni)) · S ∗ ~ni (2)

in which S ≡ (L̂ · x = −p) represents a plane in the
Hessian normal form, the grid lattices L of the active edge
used as normal, w = 1 and the point p at origin of the
coordinate system.

Particle moves along the force ~F with a diminished
magnitude driven by a constant (c ∗ ~F). Best results were

obtained using 5% of ~F in all our volumes. This new
position (C̄ ′ = C̄ + (c ∗ ~F)) is used in the second iteration
as input to the trilinear interpolation (recalculate ~F). This
procedure is repeated for a fixed number of steps or until
the particle converges (threshold driven) to the isosurface.

B. Table-Driven Geometry Specification

There are three unique edges per voxel (x, y and z axis)
and the table is constructed based on them. We chose
three edges that share the same origin, resulting in only
four vertices to be analysed per voxel. We classify vertices
as inside or outside the isosurface (similarly to Marching
Cubes), mapping the combination into bits, as can be seen
on Figure 4. The resulting table is even simpler than the
one of Marching Tetrahedra, which uses a combination of
five vertices. The complete and literal table used for Dual
Contouring is described in Figure 3.

0000: none
0001: V ′4 , V ′0 , V ′1 , V ′5
0010: V ′4 , V ′7 , V ′3 , V ′0
0011: V ′4 , V ′0 , V ′1 , V ′5 & V ′4 , V ′7 , V ′3 , V ′0
0100: V ′4 , V ′0 , V ′3 , V ′2
0101: V ′4 , V ′0 , V ′1 , V ′5 & V ′0 , V ′3 , V ′2 , V ′1
0110: V ′4 , V ′7 , V ′3 , V ′0 & V ′0 , V ′3 , V ′2 , V ′1
0111: V ′4 , V ′0 , V ′1 , V ′5 & V ′4 , V ′7 , V ′3 , V ′0 & V ′0 , V ′3 , V ′2 , V ′1
Complement from cases 0 to 7:
1000: V ′4 , V ′0 , V ′1 , V ′5 & V ′4 , V ′7 , V ′3 , V ′0 & V ′0 , V ′3 , V ′2 , V ′1
1001: V ′4 , V ′7 , V ′3 , V ′0 & V ′0 , V ′3 , V ′2 , V ′1
1010: V ′4 , V ′0 , V ′1 , V ′5 & V ′0 , V ′3 , V ′2 , V ′1
1011: V ′4 , V ′0 , V ′3 , V ′2
1100: V ′4 , V ′0 , V ′1 , V ′5 & V ′4 , V ′7 , V ′3 , V ′0
1101: V ′4 , V ′7 , V ′3 , V ′0
1110: V ′4 , V ′0 , V ′1 , V ′5
1111: none

Figure 3. Indices for generating DC quads. The index is used to identify
in which voxel the dual vertex V ′

X is positioned. The dual vertices ordering
is described in figure 4.

The elements of the table are the neighboring voxel labels
for the vertices of that quad, instead of the edge labels in
MC. For instance, if the index v4v3x2x1 is 0001, the first
vertex is located in the voxel along its z direction (see Figure
4), the second is the current voxel, the third is in the upper
voxel y and the last one is in the in z plus y direction.

IV. GPU POLYGONIZATION OF ISOSURFACES

A. Geometry Shader

The Geometry Shader allows the deletion or creation
of a limited number of primitives after a vertex program.
Therefore, if points can be deleted or transformed into trian-
gles, subdivision-based polygonization can be implemented.
Each voxel that contains the isosurface is triangulated by
its corresponding point. The voxels in which the isosurface

does not cross are discarded. These empty voxels can be
avoided by Span Space on the CPU. This accelerates even
more the algorithm, but implies in no longer transparent
polygonization to the CPU.

B. HistoPyramids

HistoPyramids does not skip empty space, but leaves the
scalar function accesses to the very fast fragment processors.
It also creates vertices and discard them, not directly inside
the GPU, but with a multipass strategy. It compacts data
similarly to scan [25] and saves the compaction steps in
a pyramid that the CPU expands indirectly. The complete
implementation is more complex than the one of Geometry
Shader, thus more detail is necessary.

The HistoPyramids data structure is used for cre-
ation/deletion of primitives inside an uniform grid. Each
voxel has its information mapped into one texel in the
pyramid base. The deletion is achieved through data filtering
[26], [25], while the expansion is achieved by the indirect
communication from CPU to the GPU. There are three steps
needed to use this data structure: the base construction, the
base reduction and the pyramid traversal. Each of these steps
is mapped into one or more shader passes.

The pyramid base contains all the topology and vertex
information. Its construction is done in the first shader pass
and it stores all data in texture memory. A flat 3D method
[27] is used to map one texel to one 3D voxel, which is
basically tiling z 2D textures into a squared texture. Hence,
in this step the shader specifies the number of vertices, which
can be triangles or any other pre-specified type of primitives,
and their topology inside each voxel.

The base is then reduced with multiple shader passes into
only one pixel, which contains the sum of all primitives. This
step is analog to the deletion of primitives on the Geometry
Shader. The reduction is bottom-up and the textures follow
the proportions of MipMaps. Each four pixels in the lower
texture is mapped into one in the upper. The mapping
function corresponds to the sum of the primitives contained
in the base. Thus, at the top there is the number of primitives
required, which can be read back by the CPU to be expanded
into actual primitives.

At this point, with the pyramid data structure built and the
number of primitives available on the CPU, the traversal per
vertex happens. The single texel in the top, which contains
the sum of all vertices (n), is analog to a root of a tree
that points at four siblings with a hashing-like funtion. Each
texel (voxel) in the base texture is reached through unique
identifiers (k), from 0 to n (sum), which enumerate each
vertex. Hence, no direct communication from the CPU is
needed by the GPU besides emitting the sum of vertices
with predefined indices.

This index k trespasses all texture levels in a top-down
traversal. At each mipmap level, it is necessary to find out
what texel position Tx,y that k′ (k updated per level) points

P0

F 2,1

n0
P1 n1

V 1 V 2

V 3

F 2,0

F 1,1
F 1,0

F 0,0 F 0,1
F 3,0

F 3,1

F 2
F 3

F 1 F 0

(a) (b) (c)

(d) (e) (f)

V 0

Figure 2. Particle-based approximation of features in Dual Contouring (2D example). (a): hermite data. (b): vectors (green arrows) from the vertices of
the grid to the planes defined by the hermite data; (c): forces ~Fk = ~Fi + ~Fi+1 + ... in the vertices of the grid; (d): initial line positioning using the mass
point C̄; (e): moving the particle towards the feature. The red arrows show the path the particle took. (f) final polygonization.

to. There are four candidate siblings T−1,1 (upper-left), T1,1

(upper-right), T−1,−1 (lower-left) and T1,−1 (lower-right)
per level. They are chosen based on the intervals of their
values (Vx,y). Let

x = V−1,1,

y = V−1,1 + V1,1,

z = V−1,1 + V1,1 + V−1,−1,

w = V−1,1 + V1,1 + V−1,−1 + V1,−1

So,

T−1,1 = [0; x), (3)
T1,1 = [x; y), (4)

T−1,−1 = [y; z), (5)
T1,−1 = [z; w]. (6)

At the first level k′ = k. After that, k′ is updated by
subtracting the first interval endpoint. At the lower level
the same process is done, and it goes on until the base
texture is reached. For example, if k = 10 (first level index),
V−1,1 = 7, V1,1 = 3, V−1,−1 = 5 and V1,−1 = 0, then k
maps to the texel T−1,−1 = [y = 7 + 3; z = 7 + 3 + 5)
(lower-left pixel). After that, k′ = k − y, where y = 7 + 3.
When the pyramid base is reached, the stream expansion is
finished. The remainder of k′ represents the identifier from
0 to the sum of the voxel vertices. So k′ is used with pre-
specified topology, which in this case is a table (patterns of
Marching Cubes) that identifies where the vertex is located.

V. DISCUSSION AND RESULTS

We implemented our method with GLSL (OpenGL R©

Shading Language) running in a GeForce1 8800 GTX with
768 MB of memory and an AMD Athlon 64 Processor of
2.2 GHz and 2 GB of RAM (DDR1). The datasets used for
our tests were Backpack, Stent, Bonsai and Engine [28].

Figure 5 shows that even with help of Span Space
acceleration, all CPU-based polygonizers do not reach in-
teractive framerates in any dataset. The CPU hardware is
not adapted (yet) to take advantage of the independence
between active cells, and the inherent parallelism of domain
subdivision methods. Results regarding GPU approaches,
however, expose the graphic hardware high capabilities, once
the HistoPyramids-based implementation showed to be up
to 1500 times faster than CPU ones, even when applied on
relatively large datasets.

Such performance gain is reached in exchange for higher
memory consumption. Maintaining large datasets as the
backpack in GPU memory along with the data structure
and other GPU structures (vertex buffer objects to save the
polygons and to traverse the pyramid, for instance) is a
challenging task. It becomes even harder due to the squared
texture requirement, which increases quadratically and most
of the times needs padding. For example, if a texture has
dimensions 2563, it needs a 40962 base texture, which fits
perfectly. On the other hand, if one volume slice is included
2563 + 2562, the base increases to 81922, wasting lots of
memory with padding.

1Copyright c©2007 nVIDIA Corporation

-

v3
v1

v2

v0

Index = v0v1v2v3

V 4 '
V 0 '

V 1 ' V 2 '

V 3 '

V 5 '

V 7 '

Figure 4. Table cases of Dual Contouring on uniform grids. The cases are based on scalar information contained in four vertices of the cell, which
compose the highlighted edges of the figure. The scalar information indentifies the vertices as being inside (black) or outside (white) the isosurface, which
defines active edges and, consequently, geometry. The vertex condition is coded into a bitwise combination i = v3v2v1v0 (four vertices map into four
bits). This index is used to identify the topology of the quad by one of the table cases, similarly to MC, but extrapolating geometry into neighbor cells.

CPU CPU SS GPU GS GPU GS SS GPU HP

Silicium 1020,71 558 181 42 6

Engine 18332,9 15182,8 4488,51 767 79

Bonsai 33729,4 17382,2 5076,59 889 91

Stent 97436,3 65366,2 16040,2 3562,86 361

BackPack 131984 44453,7 14453 3823,85 311

0

20000

40000

60000

80000

100000

120000

140000

0

200

400

600

800

1.000

GPU GS SS GPU HP

Dual Contouring

(a)

CPU CPU SS GPU GS GPU GS SS GPU HP

Silicium 4002,68 1967 464 84 4

Engine 72708,6 38642,6 11214,1 1737,04 81

Bonsai 117000 43704,6 12648,3 2044,82 89

Stent 235492 191969 45743,5 8012,95 555

BackPack 325083 164852 37496,41 8440,68 315

0

50000

100000

150000

200000

250000

0
500

1.000
1.500
2.000
2.500
3.000

GPU GS SS GPU HP

MACET

(b)

CPU CPU SS GPU GS GPU GS SS GPU HP

Silicium 906,44 324 63 8 3

Engine 16273,1 6908,83 1348,07 154,7 36

Bonsai 31011,3 7899,57 1798,85 186 38

Stent 88501,1 35126,6 5141,87 729 155

BackPack 125037 29503,7 5464,77 769 141

0

5000

10000

15000

20000

25000

30000

35000

40000

0

200

400

600

800

GPU GS SS GPU HP

Marching Cubes

(c)

Figure 5. Extraction times (in miliseconds) from our GPU-based Dual Contouring and Macet compared to Marching Cubes.

It is interesting to observe in the Figure 5 and Table
I that the bottleneck of HistoPyramids is related to the
number of triangles, due to pyramids traversal, and not
to the volume size, similarly to Span Space. This does
not imply, however, that our implementation suffers with
a large number of triangles, as shown in the Table I. Sparse
isosurfaces, conversely, result in very fast polygonizations
even with large datasets.

VI. CONCLUSIONS AND FUTURE WORK

This paper discussed the contouring of high-quality iso-
surfaces at interactive framerates using GPU implementa-
tions of DC and Macet. Both approaches have different ob-
jectives, so each one has its own advantages and weaknesses.
If an user of this polygonizers needs featured polygonization,
the choice is Dual Contouring. If he needs to process the
mesh afterwards, he might choose Macet. We discussed how
to explore the parallel nature of graphics processors, while
avoiding some of its constraints.

Datasets
Backpack Bonsai Engine Stent

X x Y x Z 5122x256 2563 2563 5122x174
λ (Isovalue) 1000.5 49.5 49.5 500.5
Tri. (MC) 2338896 671296 599024 2823756
Tri. (DC) 2342608 673048 598920 2826208

Av.Qlty(MC) 0.700012 0.687802 0.70733 0.71089
Av.Qlty(DC) 0.766 0.75725 0.77274 0.77473

Av.Qlty(Macet) 0.81369 0.82694 0.81674 0.80432
Min.Qlty(MC) 1.525e-5 1.373e-3 4.232e-4 1.709e-5
Min.Qlty(DC) 1.785e-5 1.138e-4 6.55e-3 1.502e-3

Min.Qlty(Macet) 0.44475 0.47395 0.51064 0.45069

Table I
VOLUME AND ISOSURFACE EXTRACTION INFORMATION. THE

ISOVALUES AND NUMBER OF TRIANGLES ARE RELATED TO THE
EXTRACTION TIMES IN FIGURE 5. THE AVERAGE AND MINIMUM

TRIANGLE QUALITY IS GIVEN BY THE RADII RATIO.

One of the goals of the original Dual Contouring, the
mesh adaptivity by means of octree subdivision, was not
explored in our work. It is used for simplification on the

mesh regions with low curvature, which is an important tool
to store large meshes. However, this simplification can still
be done in the CPU and then transferred to GPU, by means
of stored GPU meshes (Vertex Buffer Objects). In addition,
there are limitations in the output size of Geometry Shader
program not addressed in this paper. Our GS single rendering
pass could be extended into multiple passes for efficiency
improvement, such as in the implementation of Geiss [29].

VII. ACKNOWLEDGEMENTS

The work of Leonardo A. Schmitz and João L. D.
Comba is sponsored by CNPq-Brazil grants (136569/2008-
0, 485853/2007-8 and 569239/2008-7) and CAPES.

REFERENCES

[1] W. E. Lorensen and H. E. Cline, “Marching cubes: A high
resolution 3d surface construction algorithm,” in ACM SIG-
GRAPH ’87, 1987, pp. 163–169.

[2] H.-W. Shen, C. D. Hansen, Y. Livnat, and C. R. Johnson,
“Isosurfacing in span space with utmost efficiency (issue),”
in VIS ’96, 1996, pp. 287–ff.

[3] C. Dyken, G. Ziegler, C. Theobalt, and H. P. Seidel, “High-
speed marching cubes using histopyramids,” in Computer
Graphics Forum, vol. 27, no. 8, Sep. 2008, pp. 2028–2039.

[4] C. A. Dietrich, L. P. Nedel, C. Scheidegger, J. Schreiner,
C. T. Silva, and J. L. D. Comba, “Edge transformations for
improving mesh quality of marching cubes,” IEEE Trans. on
Vis. and Comp. Graph., 2009.

[5] C. Dietrich, C. Scheidegger, J. L. D. Comba, L. P. Nedel, and
C. T. Silva, “Edge groups: An approach to understanding the
mesh quality of marching methods,” 14(6), vol. IEEE Trans.
on Vis. and Comp. Graph., pp. 1651–1658, 2008.

[6] C. A. Dietrich, C. E. Scheidegger, J. L. Comba, L. P. Nedel,
and C. T. Silva, “Marching cubes without skinny triangles,”
in Comp. in Sci. & Eng., vol. 11, no. 2, 2009, pp. 82–87.

[7] T. Ju, F. Losasso, S. Schaefer, and J. Warren, “Dual contour-
ing of hermite data,” ACM Trans. Graph., vol. 21, no. 3, pp.
339–346, 2002.

[8] G. T. Herman and J. K. Udupa, “Display of 3d digital im-
ages: Computational foundations and medical applications,”
in Medcomp ’82, 1982, pp. 308–314.

[9] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “Fast isocon-
touring for improved interactivity,” in VVS ’96: Proc. of the
1996 Symposium on Vol. Vis., 1996, pp. 39–ff.

[10] T.Lewiner, H.Lopes, A.W.Vieira, and G.Tavares, “Efficient
implementation of marching cubes’ cases with topological
guarantees,” Journal of Graph. Tools, vol. 8, no. 2, pp. 1–15,
2003.

[11] A. Lopes and K. Brodlie, “Improving the robustness and
accuracy of the marching cubes algorithm for isosurfacing,”
IEEE Trans. on Vis. and Comp. Graph., vol. 9, no. 1, pp.
16–29, 2003.

[12] G. M. Nielson, “On marching cubes,” IEEE Trans. on Vis.
and Comp. Graph., vol. 9, no. 3, pp. 283–297, 2003.

[13] S. F. F. Gibson, “Constrained elastic surface nets: Generating
smooth surfaces from binary segmented data,” in MICCAI’98,
vol. 1496, 1998, p. 888.

[14] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel,
“Feature sensitive surface extraction from volume data,” in
ACM SIGGRAPH ’01, 2001, pp. 57–66.

[15] V. Pascucci, “Isosurface computation made simple: Hardware
acceleration, adaptive refinement and tetrahedral stripping,” in
IEEE TVCG VisSym, 2004, pp. 293–300.

[16] F. Reck, C. Dachsbacher, R. Grosso, G. Greiner, and M. Stam-
minger, “Realtime isosurface extraction with graphics hard-
ware,” Eurographics Short Presentations, pp. 33–36, 2004.

[17] T. Klein, S. Stegmaier, and T. Ertl, “Hardware-accelerated
reconstruction of polygonal isosurface representations on un-
structured grids,” Comp. Graph. and Applications, 2004. PG
2004, pp. 186–195, Oct. 2004.

[18] P. Kipfer and R. Westermann, “Gpu construction and trans-
parent rendering of iso-surfaces,” in Proc. Vision, Modeling
and Visualization, 2005, pp. 241–248.

[19] J. Snoeyink, “Artifacts caused by simplicial subdivision,”
IEEE Trans. on Vis. and Comp. Graph., vol. 12, no. 2, pp.
231–242, 2006.

[20] F. Goetz, T. Junklewitz, and G. Domik, “Real-time marching
cubes on the vertex shader,” Eurographics Short Presenta-
tions, August 2005.

[21] G. Johansson and H. Carr, “Accelerating marching cubes with
graphics hardware,” in ACM CASCON ’06, 2006, p. 39.

[22] D. Blythe, “The direct3d 10 system,” ACM Trans. Graph.,
vol. 25, no. 3, pp. 724–734, 2006.

[23] N. Tatarchuk, J. Shopf, and C. DeCoro, “Real-time isosurface
extraction using the gpu programmable geometry pipeline,” in
ACM SIGGRAPH 2007 courses, 2007, pp. 122–137.

[24] S. Schaefer and J. Warren, “Dual contouring: The secret
sauce,” Dep. of Comp. Science, Rice University, Tech. Rep.
02-408, 2002.

[25] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum
(scan) with cuda,” in GPU Gems 3. Addison Wesley, 2007.

[26] D. Horn, “Stream reduction operations for gpgpu applica-
tions,” in GPU Gems 2. Addison Wesley, 2005, pp. 573–
589.

[27] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra,
“Simulation of cloud dynamics on graphics hardware,” in
HWWS ’03. Eurographics Association, 2003, pp. 92–101.

[28] Volvis. [Online]. Available: www.volvis.org

[29] R. Geiss, “Generating complex procedural terrains using the
gpu,” in GPU Gems 3. Addison Wesley, 2007.

Figure 6. Interactive navigation through isosurfaces results and radii ratio coloring (green = good, blue = bad) triangle vertices. Bonsai (row 1-2), Engine
(row 3-4) and Silicium (row 5-6) datasets. Marching Cubes (column 1), Dual Contouring (column 2) and Macet (column 3) polygonizations with two
different isovalues.

