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Abstract—This paper proposes an improved version for the
JSEG color image segmentation algorithm, combining the
classical JSEG algorithm and a local fractal operator that
measures the fractal dimension of each pixel, thus improv-
ing the boundary detection in the J-map. Experiments with
natural color images of the Berkeley Segmentation Dataset
and Benchmark are presented, which show improved results
in comparison with the classical JSEG algorithm.
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I. INTRODUCTION

Image segmentation is one of the most important tasks
in computer vision. Its objective is to separate one image
into disjoint homogeneous regions compatible with human
perception. As a matter of fact, high level procedures, like
object recognition, strongly rely on the quality of image
segmentation. Image segmentation has been investigated for
the last thirty years, still remaining as a hard problem.

Several methods have been proposed in the literature of
image segmentation. One of the most popular is the one
proposed by Deng and Manjunath [1], [2], the JSEG algo-
rithm. It is a very powerful method to test the homogeneity
of a given color-texture pattern, and is quite efficient in
computation terms. However, in some cases it does not
perform a high-quality segmentation.

Several improvements on the JSEG algorithm have been
proposed. Chang et al. [3] proposed an improved contrast
method (IC-JSEG) that considers the color information of
the original pixels instead of its class-map. Experiments
with natural images show that such method is robust and
produces better results than the JSEG one. Yu and colleagues
[4] worked on a similar idea to improve results. Wang et
al. [5] presented an extension to the JSEG algorithm that
integrates directional operators to improve the measurement
of the texture structure.

We believe that JSEG can mitigate segmentation problems
by adopting a better way to distinguish inter-regions and
intra-regions. Edge detection operators are not suitable to
describe the textural homogeneity, while fractals are. Indeed,
natural images are well-represented by statistical fractals [6].

The statistical self similarity of the fractals refers to the
fact that the statistical measurement of a signal is invariant
to scale transformation. In this sense, a fractal surface is
one that can be precisely approximated by a simple fractal
function, over a range of scales. They also incorporate high-
order statistical information in the texture representation,
through the spatial frequency indirectly inserted in the
fractal dimension. This is in agreement with Gagalowicz
(according to a citation by Pratt [7]), who has shown that
high-order statistics is necessary to classify textures. Thus,
fractals represent very well natural images, since they do not
change their characteristics over different scales and also do
incorporate high-order statistics.

Visual perception of textures can be addressed by ana-
lyzing the statistical behavior of the image in a window of
limited dimension [8]. This can be perceived through using
statistical filters that maps the image values in a certain
neighborhood in a subspace of perceptibility, thus reducing
the size of the representation while preserving the structural
information. The JSEG algorithm already implements the
idea of a local window to compute its own homogeneity
criterion. In this paper, we follow this concept, computing
a local fractal operator that can measure the fractal dimen-
sion (FD) of a single pixel, considering a small window
surrounding it [9].

The fractal dimension in the border regions of a texture
is always lower than the fractal dimension of the texture as
a whole. Thus, using the FD it is possible to determine the
border lines separating regions of different textures, as it is
shown in [10], [11], [12]. Côco, Salles and Sarcinelli-Filho
[10], [11] adopted a fractal dimension to describe texture
in a TICA model applied to image segmentation with good
results. Conci and Nunes [13] also used this method as the
base for an efficient computational algorithm.

In this paper, we propose a new idea by embedding the
local fractal dimension in a JSEG algorithm, enhancing
the detection of boundary regions, and, as a consequence,
the image segmentation results. Moreover, we enhance the
sensitivity of color variation working with the original value
of color, instead of a class of this color. The new method
thus generated is hereinafter called Fractal-JSEG.



The rest of this paper is organized as follows: Section II
reviews the JSEG method and makes clear why to use the
real color instead of class-map, while Section III describes
the local fractal operator used to estimate the fractal dimen-
sion of each pixel in each scale. In the sequel, Section IV
presents the proposed architecture mixing the original JSEG
algorithm and the fractal dimension. Following, Section
V presents experimental results that demonstrate that our
approach improves the original method. Finally, Section VI
highlights our conclusions and some future works.

II. THE JSEG METHOD

The essence of the JSEG method is to separate the seg-
mentation process into two independently processed stages,
which are color quantization and spatial segmentation, ac-
cording to the schematic shown in Fig. 1. These stages are
described as:

1. Color Quantization
Colors in the image are reduced through peer group filtering
(PGF) [14] and vector quantization. PGF is a nonlinear algo-
rithm for image smoothing and impulsive noise removal. The
result of color quantization is a class-map which associates
a color class label to each pixel belonging to the class.

2. Spatial Segmentation
J measure is the criterion to measure the distribution of
color classes and is defined as follows: let Z be the set of
all N data points in the class map, z = (x, y), z ∈ Z, and
m be the mean. Suppose that Z is classified into C classes,
Zi, i = 1, ..., C. To Ni data points of class Zi, we can write

mi =
1
Ni

∑
z∈Zi

z. (1)

Let us denote ST as the total variance of data points in
Z, which is given by

ST =
∑
z∈Z

‖z −m‖2 , (2)

and SW as the total variance of the points belonging to the
same class, which is defined as

SW =
C∑

i=1

Si =
C∑

i=1

∑
z∈Z

‖z −mi‖2 . (3)

Then, the J value is defined as

J = SB/SW = (ST − SW )/SW . (4)

Essentially, (4) measures the distances between different
classes, SB , divided by the distances between the members
within each class SW , an idea similar to the Fisher’s multi-
class linear discriminant [15]. A higher value of J indicates
that the classes are more separated one from each other and

Figure 1. Schematic of the JSEG algorithm [2]
.

the members within each class are closer one to each other,
and vice versa.

The J value can be calculated by using a local area of
the class-map, and can indicate if that area is in an interior
region or in a boundary region. Thus, a J-image whose
pixel values correspond to the J values calculated over local
windows centered at the pixels is built, the size of the local
window determining the size of the image regions that can
be detected. Multi-scale J-images are calculated changing
the local window size.

In the J-image, the higher the local J value is, the
more likely the pixel is nearby a boundary region. The
J-image is like a 3-D terrain map containing valleys and
mountains that actually represent the center regions and
boundary regions. The characteristics of J-image allow to
use a region growing method to segment the image. The
algorithm starts with a coarse initial scale, and repeats the
same processing with the next scale (a smaller window) until
the minimum specified scale is reached. Finally, to overcome
the oversegmentation problem, regions are merged based on
their color similarities.

The results produced by the JSEG method are mainly
based on the class-map produced in the first step. The
class-map is formed by numbers from 1 to the number of
classes. For example, if quantization reduces to 10 colors,
then the class-map has numbers between 1 to 10, instead
of the average color value of each class. The measure J is
defined on the variance of this class-map, which describes
the texture information, not considering color information
about the pixels. As an example, assume that the class color



Figure 2. Schematic of the Fractal-JSEG algorithm.

1 is light blue, the class color 2 is dark blue and the class
color 3 is red. The variance based on true color will be
higher between red and blue than between light and dark
blues. However, when using the classical JSEG method the
J values of classes color 1 and 2 or 2 and 3 are basically the
same. So, to obtain more sensitivity to colors, our approach
works with the original image color. The drawback of such
method is that it tends to generate oversegmentation [3].

III. THE LOCAL FRACTAL MEASURE

There are several approaches to estimate the FD in an
image. In this work we will use the box-counting method
proposed by Sarkar and Chaudhuri [16]. Vuduc [9] applies
three different local FD operator techniques - threshold,
Sarkar’s and Beaver’s methods - to a series of images. He
discovered that the Sarkar method is surprisingly effective on
a number of different kinds of images. Vuduc also introduces
the notion of a local fractal operator that can “measure” the
fractal dimension of a single pixel, which is used in this
work.

The method proposed by Chadhouri and Sarkar is based
on the differential box-counting (DBC) algorithm. Instead of
directly measuring an image surface, the measure is obtained
by means of counting the minimum number of boxes of

different sizes, which can entirely cover the whole surface.
The process is detailed as follows: for a given scale ε, an
M×M image is partitioned into grids of size ε×ε. On each
grid, there is a column of boxes, where ε´ = [ε × G/M ] and
G is the maximum gray level. The image is viewed as a 3-D
surface, where (i, j) denotes the 2-D position and the third
coordinate, z, denotes the gray level of the corresponding
pixel. Given the maximum and minimum gray levels in the
(i, j)th grid that fall in the vth and uth boxes, respectively,
the number of boxes, ηε, needed to cover the image surface
on that grid is calculated as

ηε(i, j) = υ − u+ 1, (5)

and the total number of boxes, Ñε, needed to cover the whole
surface can then be estimated as

Ñε =
∑
i,j

ηε(i, j). (6)

In order to describe the distribution of different subfrac-
tals, a measure µε(i, j) is defined on the grid as

µε(i, j) =
ηε(i, j)
Ñε

. (7)
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Figure 3. (a) Original image (b) Human benchmark (c) Results of the JSEG method (d) Results of the fractal-dimension-only method.
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Figure 4. (a) Original image (b) Human benchmark (c) Results of the JSEG method (d) Results of the fractal-dimension-only method.

The partition and estimation are performed for different
scales, and the multifractal dimension of order q can be
estimated for each pixel, which is given by

Dq(i, j) =
1

1− q
lim
ε→0

ln [µε(i, j)q]
ln
(

1
r

) , (8)

where r = ε/M .
The box number counted is an approximation of the

optimal one, but very simple and efficient.

IV. THE PROPOSED METHOD

We propose a new color image segmentation approach
based on the conclusion presented in [11], [10] (fractal
dimension models texture quite well) and in [3] (color
information of original pixels is better than the class-map
values).

During this research, we implemented and tested two
approaches. The first one computes the 3D terrain map using
only the local fractal operator on color-map in Luv format.
The second one mixes the first attempt and the original J-
image. Fig. 2 describes these two software architectures. The
first one was designed as the sequence defined by the solid-
line arrows, while the sequence correspondent to the second
one includes all the arrows. The new method, called Fractal-
JSEG method, corresponds to the second one. Notice that
the Fractal-JSEG proposal keeps the color quantization and
region growing processes of the classical JSEG method.

The “DBC approach” task in Fig. 2 refers to the local

fractal measure. The Fractal-JSEG image is also a 3D
terrain map, where each pixel represents the FD of the local
window. Each FD is converted to be higher in boundary
regions and to have the same limits applied to a J-image.
The local window used to compute FD has the same size as
the local window used to compute the J-image.

The Fractal-JSEG images compute each Luv component
separately. All 3D terrain maps are combined in the max
function. This final terrain map is higher than or equal to
any one of the three original components in each pixel. If
the fractal dimension of one pixel in the component u is
higher than the fractal dimensions of the same pixel in the
component L, as an example, it means that this pixel is a
boundary pixel more perceivable in a color component than
in the gray component. Taking the maximum value of each
pixel, we obtain more definition of mountains and smaller
valleys. The decreased size of the valleys decreases the
number of seeds used in the region growing, thus decrease
the number of regions.

Since in the JSEG method the Luv color space is adopted,
the perceptually uniform Luv color space is used to keep
consistence. Moreover, preliminary tests with RGB color
space presented worse results in comparison with Luv seg-
mentations.

The segmentation results with only the three Fractal-JSEG
images shows good improvements compared to the JSEG
method. The best results can be seen in Fig. 3, where image
(a) shows the original image, image (b) shows the human
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Figure 5. (a) Original image (b) Human benchmark (c) Results of the JSEG method (d) Results of the Fractal-JSEG method.



ground truth that best matches our final result, image (c)
is the segmentation result of the original JSEG and image
(d) is the segmentation result considering only the fractal
dimension (the first software architecture represented in Fig.
2). One can verify that this approach generates less regions,
compared to the original JSEG. Images with different col-
ored regions, specially foreground and background colors,
presented the best results.

However, as one can see in the results of Fig. 4, some
results were worse than the results of the original JSEG
method. In particular, the image with a snake and the
image with a goat illustrate such remark. That approach
(fractal dimension only) was not able to segment neither
the snake nor the goat. In the first case, even a single region
was segmented. This is the worst case, because when the
segmentation output is inputted to a higher level process
(e. g., object recognition), it is necessary to have at least
a single segmented region (oversegmentation, although not
desirable, is better than no segmentation at all). We analyzed
all segmentations with results worse than original JSEG
results, and noticed that the common characteristic is that
the colors of the image elements are almost the same. An
important remark here is that we have not used any criteria
to choose the human benchmark in Fig. 4.

Quattrochi and Goodchild [17] states that most real-
world surfaces are not perfect fractals. In addition, Pratt
and Faugeras [7] show that the human vision system is
also sensitive to the correlation between pairs of textures,
besides being sensitive to differences in the mean and in the
variance. The J-image concept follows this idea of mean
and variance. According to the results of our tests, only the
fractal dimension does not model the segmentation problem
perfectly, and the J-image is very important to identify
different textures with similar colors.

Combining both measures, the local fractal dimension of
each component of Luv color space and the homogeneity
measure of texture-color, we obtained a better classifier (the
Fractal-JSEG one), which is more stable and more generic.
The results of our tests with such method are presented in
the sequel.

V. EXPERIMENTAL RESULTS

We tested our Fractal-JSEG method with natural col-
ored images provided by Berkeley Segmentation Database
[18], where human segmented images provide ground truth
boundaries.

To test the generalization, our experiments do not in-
clude any parameter-tuning for individual images: the color
quantization threshold and the number of scales are chosen
automatically as in the original JSEG algorithm, and the
region merging threshold is the default value (0.4). Other
works set the quantization parameter to specific values, (it
is set to 200 in [4] and to 150 in [5]). Finally, the order q
is set to 2 in the FD computation.

(a) (b)

(c) (d)

Figure 6. (a) original image (b) quantized image (c) segmented image (d)
human segmentation.

The results are compared with the segmentation results
of the original JSEG algorithm. Fig. 5 shows the best
segmentation results obtained by the Fractal-JSEG method
when compared to human segmentation. There (a) shows
the original image, (b) shows the human ground truth that
best matches our result, (c) shows the segmentation result of
the original JSEG algorithm and (d) shows the segmentation
result of the Fractal-JSEG algorithm. One can see that the
results obtained with the Fractal-JSEG algorithm are closer
to the human ground truth than the results associated to the
original JSEG algorithm.

The original JSEG algorithm tends to oversegment im-
ages, splitting objects into several small regions. This results
does not match human perception. For example, in the image
with three statues, one human can perceive each statue as
a whole and do not segment it. The same concept can be
applied to the feline on a tree: a human being understands
the animal contour and not several textures in the animal. As
a matter of fact, all the images segmented using the Fractal-
JSEG algorithm exhibited less segments when compared
with the same image segmented using the original JSEG
algorithm. This is a clue that oversegmentation is not a
problem for the proposed Fractal-JSEG method.

For sure, any color quantization method causes loosing
color information. Nevertheless, in some images such losses
become a problem when segmenting the image. These
difficulties are still bigger when color varies smoothly in
certain image regions. As an example, see Fig. 6, where
there is a color circle in the quantized image, inducing the
idea of a boundary, while the benchmark, i.e., the human
segmentation, does not perceive this as a different region.



VI. CONCLUSION AND FUTURE WORK

We propose an improved version for the classical JSEG
algorithm. Our technique integrates the classical JSEG algo-
rithm and the local fractal operator that measures the fractal
dimension of each pixel, thus improving boundary detection
in the J-map.

Even when the human beings who generated the ground
truth for the database used agree in terms of edges, they
often disagree in terms of precisely which pixels in an
image correspond to such edges. To account for this, in the
future we intend to work on soft edge maps, which will
be evaluated using precision-recall graphics. The Fractal-
JSEG results presented here are the so called hard edge
map because every pixel is determined to belong or not a
boundary.

Segmentation is a hard problem and the comparison with
other methods is even harder. Using precision-recall curve, it
will be possible to translate the performance of an algorithm
into a single number: the maximum F-measure. F-measure
will provide a quantitative comparison with other methods.

Some improvement in the color quantization step is also
necessary to resolve the drawback showed on Fig. 6, and
will be addressed in the sequence of this research.

Another future work is to elaborate a more intelligent
heuristic to combine the values of the two different measure-
ments (FD and J value), instead of using the max function.
As a more intelligent predicate, we could use, for instance,
a weighted sum to combine the fractal dimension and the J
value.

In spite of such possible improvements, the conclusion is
that the proposal here presented improves the sensitivity to
boundary regions, thus providing segmentation results that
match the human perception better than the segmentation
results associated to the original JSEG algorithm.
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