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Figure 1. Iterations of smoothing of a union of balls on a meta-ball model of an octopus, at every 8 iterations: the proposed scale space (top), compared
to a gaussian filtering along the medial axis (middle) and spatial gaussian filtering (bottom) : our smoothing achieves progressive detail remotion.

Abstract—Shape discretization through union of weighted
points or balls appears as a common representation in dif-
ferent fields of computer graphics and geometric modeling.
Among others, it has been very successful for implicit surface
reconstruction with radial basis functions, molecular atomic
models, fluid simulation from particle systems and deforma-
tion tracking with particle filters. These representations are
commonly generated from real measurements or numerical
computations, which may require filtering and smoothing op-
erations.This work proposes a smoothing mechanism for union
of balls that tries to inherit from the scale-space properties
of bi-dimensional curvature motion: it avoids disconnecting
the shape, prevents self-intersection, regularly decreases the
area and convexifies the shape. The smoothing is computed
iteratively by moving each ball of the union according to a
combination of projected planar curvature motions. Experi-
ments exhibits nice properties of this scale-space.
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I. INTRODUCTION

Although in Computer Graphics shapes are predominantly
represented by triangulated surfaces, volumetric representa-
tions are spreading quickly for a wide range of applications.
For example, particle-based fluid simulations offer excellent

trade-offs for games and animation [26], and point sets
models are easily acquired by 3d scanning processes [7],
and their approximations can be implicitly defined with
radial basis functions [9], [22], [14]. In particular, the shape
model of union of balls is a natural representation for
specific applications such as molecular simulation [24], low-
density fluids [25] and shape skeletons [1], [17], [20]. In
such applications however, the union of balls models com-
monly contain noise and redundancies. There is thus a need
for tools like simplification, smoothing or multi-resolution
adapted to the union of balls model. In particular, scale-
spaces generated by successive smoothing are powerful tools
for shape analysis.

In this work, we propose a smoothing scheme for union
of balls inspired by curvature motions. The planar curvature
motion smoothes curves with very desirable scale-space
properties: it does not create intersection or self-intersections
nor does it cut the curve, the curve becomes convex in finite
time and at the end the region becomes close to a disk [4].
Those scale-space properties are not achieved in space by
gaussian filters, while the proposed method exhibits better
properties (see Figure 1).



Related work: To our knowledge, very few works have
proposed geometric tools for generating scale-spaces of
union of balls, although topological schemes based on α-
shapes and persistence have been well studied [16], [13].
For the particular case of radial basis function (RBF), more
concise generations have been proposed [14], placing the
poles of the RBF on the Voronoı̈ centers of the shape.
Proper simplification algorithms were devised mainly for
point cloud representations instead of balls [6]. In particular,
curvature motion is used for point set surface simplifica-
tions [23], while we work directly on the union of balls.

The most related approaches are medial-axis based sim-
plification. On one side, geometric approaches adaptively
prunes the medial axis [27] to remove spurious branches.
This process is highly non-continuous and limited to very
high frequencies smoothing. On the other side, topological
approaches [8] progressively reduce all the branches of the
medial axis. The smoothing effect is continuous but low
frequencies may disappear before high ones. Our approach is
based on bi-dimensional curvature motions, which naturally
generates a well-behaved scale-space, i.e. removes high
frequencies in a progressive and smooth order.

Curvature motion smoothly evolves each point p of a
curve along the normal at p proportionally to the curva-
ture at that point. It is widely used for multi-resolution
representations of plane regions [19], [18]. For surfaces, the
mechanism is similar, although many curvatures co-exist,
in particular mean, minimal and maximal curvatures. Very
few properties of three-dimensional curvature motions are
known, and in particular no formulation has been devised
as differential equations on the medial axis. While counter-
examples exist for mean curvature motion [2], experiments
suggest good properties of the minimal curvature mo-
tion [10]. However in two dimensions, many properties have
been stated and efficient formulations have been adapted.
In particular, this work is based on the discretization of
curvature motion for union of disks [15].

Contributions: We propose a smoothing scheme for union
of balls that practically generates a well-behaved scale-
space: it avoids intersections and disconnections and pro-
gressively removes details of the shape. We use a heuristic
inspired by curvature motion: Since curvature motion for
union of balls is well understood in the plane but not in
space, we propose to approximate three-dimensional mo-
tions from their planar projections. At a given ball B, we
intersect the union of balls with some equatorial planes of
B and apply planar curvature motion on the intersected
disks [15]. The movement of B is then computed as the
mean, minimal or maximal planar motion, which should
approximate three-dimensional mean, minimal or maximal
curvature motion. To avoid computing the movement for
all planes, we use the adjacencies of a medial ball B to
define significant local planes. We further propose a simple
sampling correction scheme that ensures numerical stability

and avoids disconnecting the shape. This work is an exten-
sion of the M.Sc dissertation of Cynthia Ferreira [5] and
Betina Vath [28], advised respectively by Marcos Craizer
and Thomas Lewiner at PUC-Rio.

II. PRELIMINARIES

In this section, we will review the definition of medial
axis and how to compute it for union of balls, following
the work of Amenta and Kolluri [17]. Then, we review the
formulation of Teixeira [10], [11], [12] for the curvature
motion on the medial axis for the bi-dimensional case. We
then quickly expose how to implement these equations for
union of balls, as done by Lewiner et al. [15].

A. Union of balls

In this work, we use the notation for union of balls of
the work of Amenta and Kolluri [17]. This notation denotes
identically a ball B of center pB and radius rB , as the
geometric set of points {p s.t. ‖pBp‖ ≤ rB}, or as the
point pB weighted by rB . This identification allows to write
indifferently U for the geometric union of the balls, which
is suitable for describing shapes and medial axis, or for the
set of weighted points, which gives support for constructing
α–shape or Voronoı̈ diagrams. When the context makes it
clear, we denote pB by B.

(a) α-shape and the external intersections.

(b) Voronoı̈ diagram of the intersections.

(c) Medial axis: singular part from the α-shape and
regular part from the Voronoı̈ diagram.

Figure 2. Main steps for computing the medial axis of a union of balls.



B. Medial axis

A union of balls can be concisely described in terms of its
medial axis. The medial axis of a shape is the locus of the
centers of balls that are tangent to the shape in two or more
points, where all such balls are contained in the shape (see
Figure 2). The distance r from a point M of the medial axis
to the boundary of the shape is called the radius function.
For smooth curves, r is a smooth function of the medial axis
point. Generically, the medial axis of a discrete shape is a
finite simplicial complex, i.e. a collection of vertices, open
edges and triangles that do not intersect.

Following Amenta and Kolluri [17], the medial axis of a
union of balls U can be computed from the α–shape of U and
the Voronoı̈ diagram of the external intersection point (see
Figure 2c). The external intersections are computed from
the α-shape of U with α = 0. More precisely, a triangle of
the α-shape links three balls that intersect transversally. The
intersections are external if the triangle is singular (without
adjacent tetrahedron), and only one intersection is external if
the edge is on the boundary of the α-shape (see Figure 2a).
Then, the medial axis of U is the intersection of the α-
shape with the Voronoı̈ diagram of the obtained external
intersections (see Figure 2b), together with the singular part
of the α-shape.

C. 2D curvature motion on the medial axis

The curvature motion of a curve is obtained by moving
each point p of a smooth curve along its normal N(p). The
magnitude of the movement is proportional to the curvature
K(p) at point p. This can be translated into the following
differential equation: pt = K(p) · N(p), where pt = ∂p

∂t
denotes the time derivative.

This motion deforms the curve, and thus changes the
medial axis of its interior and the associated radius function
r. The differential equation of this medial axis evolution
has been stated by Teixeira [10]. In particular, for a regular
point M of the medial axis (i.e. neither an end point nor a
bifurcation), it can be written [11]: Mt =

K(1−rv
2)

(1−rv
2−rrvv)2−r2K2(1−rv

2)
N

rt =
rK2(1−rv

2)+rv(1−rv
2−rrvv)

(1−rv
2−rrvv)2−r2K2(1−rv

2)

where the medial axis M(v) and the radius function r(v)
are parameterized by the arc–length v, and N and K
are the normal and the curvature at the regular point M ,
respectively.

For an end point M of the medial axis, the equation can
be written in terms of the arc length s, the derivative of the
curvature K and the normal N of the boundary curve at the
tangent point with the ball centered at M [12], [15]:{

Mt = −KssN
rt = −Kss −K

Figure 3. The 2D curvature motion for union of disk deforms bifurcation
balls as means of regular motions (green lines).

D. 2D curvature motion for union of disks
The above equations can be implemented for union of

balls [15], following a classification of the disks based on
their adjacency in the medial axis (see Figure 3). The easy
parts of union of balls is that their medial axis can be exactly
computed, as described at the beginning of this section, and
that the radius function r is simply the radius of the balls that
are part of the medial axis. The estimates for the curvature of
the medial axis, the second derivatives of the radius function
naturally follow. The second derivative of the boundary
curvature can be obtained by ellipse approximations at an
end ball, when considering the neighboring balls in the α-
shape [15]. The hard part remains numerical issues, such as
noisy vs. clean end ball detection, sampling conditions and
the handling of topological changes and bifurcation cases.

This last case is interesting for the present 3D extension.
According to Teixeira’s formulation for bifurcations [12],
the movement at the intersection of three branches of the
medial axis can be approximated as the weighted mean
of the movement of each branch. This strategy is at the
base of our approach for approximate 3D curvature motion
introduced in the next section.

III. SCALE-SPACE FROM CURVATURE MOTION

We aim at smoothing union of balls, mimicking curvature
motion (see Figure 4). One option would be to devise
formulas of the induced motion onto the medial axis, like
stated by Teixeira [10] in 2D (see Section II-C). However,
such calculus would be extremely heavy due to the many
singularities of 3D medial axis. We thus propose to build
our smoothing filter directly on top of 2D curvature motion,
which is much more studied.

Observing the nature of the equations of Section II-C, the
curvature motion deforms a point of the medial axis along
the normal at the medial axis. For the 3D case, we will use
a similar approach, moving the medial axis in a direction
perpendicular to the medial curve. Moreover, similarly to
the bifurcations in 2D, we compute our scale-space by
combinations of simpler curvature-based deformations. In
particular at vertices of the medial axis, where only a normal
cone can be defined, we smooth the surrounding shape
from the motion in planes containing a normal of the cone.
The different combinations of these planar motions lead to
approximations of different motions, e.g. mean, minimal,
maximal curvature motions.



Figure 4. Our scale-space smoothing on a spirally shaped, after 1, 20, 40, 60 and 80 iterations: the movement avoids self-intersection, even in delicate
cases. The lines show the medial axis edges along the defomartion.

A. Algorithm overview

This leads to the following algorithm: starting from a
union of balls U , we compute its medial axis M, and in
particular the adjacency relations of the balls inside this
medial axis (see Figure 5). For each ball B of U , we select
a set of equatorial planes {Pi} for B containing a normal
of the normal cone of M at pB (see Section III-B). For
each plane Pi, we intersect U with Pi, generating a set
of disks (see Figure 6), and we apply the 2D curvature
motion on this set, as described in Section II-D. This moves
the center pB of B inside Pi and changes its radius,
leading to a new ball Bi. We then combine these planar
movements from B to Bi to obtain the new position and
radius of B in 3D (see Section III-C). Similarly to the
2D case, we can optionally impose a sampling condition
on the movement (see Section III-D). To avoid testing for
each single equatorial plane Pi, we select sample planes as
described next.

Figure 5. Classification of the balls according to their adjacency in the
medial axis.

B. Ball classification and planes selection

From the adjacency relations in the medial axis M, we
can classify each ball B as follows (see Figure 5):
• isolated when B has no neighbor in M. This occurs

for example when a ball is in the interior of the shape,
but it does not belong to the medial axis, or when the

Figure 6. The motion of the central ball is a combination of its motion
in planar cuts.

shape is reduced to that ball. In that case, the radius of
B is decreased proportionally to the time step and no
plane is needed.

• end-ball when B has only one neighbor B′. This
implies that B is on the singular part of M, either B
is on a symmetric part of the shape (end of a branch)
or it can be interpreted as a noisy geometry on the
boundary of the shape [8]. The planes Pi must then
contain the singular edge pBpB′ . Since the shape is
locally isotropic near pB , we choose planes to regularly
sample all rotations, for example at 0, 45◦, 90◦ and
135◦ with respect to a fixed direction.

• elbow when B is on the singular part of M and has
two adjacent neighbors B′ and B′′, i.e., in the middle
of a branch. If pB , pB′ and pB′′ are colinear, then we
consider the same planes as the end-ball case. If they
are not colinear, we essentially have a planar case, and
we choose two planes, one passing through pB , pB′

and pB′′ and a perpendicular one: the bisector plane of
the angle pB′pBpB′′ .

• regular when B is on the interior of M. In that
case, all adjacent edges belong to two triangles of the
medial axis. This case is similar to 2D bifurcation,
and we can average the separate computation of each
branch. We thus compute, for each adjacent triangle
pBpB′pB′′ , two planes Pi passing through pB and
perpendicular to the triangle, one containing pB′ and
the other containing pB′′ .



Figure 7. Gaussian filters in space (top) and along the medial axis (bottom) on the same example as Figure 4 fail in avoiding self-intersection.

• border when B is adjacent to some triangles and
eventually to boundary triangles and singular edges. In
that case, the planes are computed considering all pairs
of adjacent balls (including triangles) as in the elbow
case. For each adjacent triangle, we also compute the
planes described in the regular case.

C. Averaging of planar motions

For each ball B of U and for each plane Pi computed
above, except for the isolated case, we compute the intersec-
tion of U with Pi, generating a union of disk Ui. Applying
the 2D curvature motion on Ui results in a new ball Bi

whose center belongs to plane Pi or in the removal of the
projection of B if it is considered noisy or spurious in Ui.
If B is removed in all the planes, it is removed from U . If
not, the new position of B is computed from the Bi’s as
follows.

For the mean curvature-like smoothing, the new ball B1

is the barycenter of the Bi’s. For the minimal (respectively
maximal) curvature-like smoothing, B1 will be the closest
(respectively farthest) ball Bi from B. Other motions can
be devised, for example a sort of median curvature motion
taking for B1 the ball Bi such that ‖pBpBi‖ is the median
of the distances ‖pBpBj‖, using the difference of ball radius
in case of ties (see Figure 11).

Finally, to optimize the process, we do not use the whole
intersection Ui for the 2D motion, since it would lead to
a cubic complexity (considering the 2D Voronoı̈ diagram
linear and the 3D medial axis quadratic [21]). Instead, for
each ball B in M and each of its planes Pi, we compute
the intersections of U with only balls k-adjacent to B in M
(i.e. adjacent to a ball (k−1)-adjacent).

D. Re-sampling

It is well known that, in the differential case, three-
dimensional mean curvature motions can cut the original
shape [2]. This can be undesirable for smoothing and we
can avoid it by imposing a sampling condition on the union
of balls, similarly to the 2D case [15]. To do so, we remove
two adjacent balls on the medial axis when they are closer
than a factor ε = 0.05 of their minimal radius. Similarly,
when two adjacent balls in M may disconnect, we insert a
new ball at the middle of them, with radius the average of
their radius (see Figure 8). To ensure that the shape does
not disconnect and to avoid computing the medial axis once
more, we use the medial axis from before the movement to
the positions of the balls after the movement.

Figure 8. Sampling condition on the dumbbell shape after 3 and 50
iterations.

IV. EXPERIMENTAL RESULTS

The above algorithm has been implemented using the
CGAL library for the α-shape and the Voronoı̈ diagram [3].

The proposed smoothing of union of balls intends to
generate a well-behaved scale space. Actually, the main
properties of our approach are inherited from the pla-
nar curvature motion: the movement does not create self-
intersections (see Figures 4 and 7) ; it smoothly convexifies
the shapes (see Figure 1) ; and the shape tends to a ball
(see Figure 10). However, similarly to the three-dimensional



Figure 9. The averaging of local bi-dimensional movements is robust even in completely degenerated cases.

mean curvature motion, the movement can cut the shape.
This is a well-known behavior, evidenced on the classical
dumbbell shape (see Figure 11(middle)). As experimented
in Teixeira’s thesis [10], the minimal curvature motion
avoids this problem on the dumbbell (see Figure 11(left)).
Finally, the maximal curvature motion is much more sen-
sitive to small asymmetries, such as the initial shape (see
Figure 11(right)). Cuts can also be avoided by the resampling
proposed at Section III-D, which also smoothens the shape
contour and turns it more symmetric (see Figure 8).

Degenerate cases may occur for perfectly symmetric
shapes, since the medial axis becomes singular, i.e. M is
made only of edges, and colinear centers for the elbow case.
Even in this case, the proposed method robustly smoothens
the union of balls (see Figure 9).

We tested the smoothing on real examples, such as meta-
balls models for an octopus (see Figure 1) and an RBF model
of a fish (see Figure 10), generated from the interior poles
of a sparse surface reconstruction [22].

The main limitation of our method is the execution time
(see Table I), where the bottleneck is the initial α-shape
computation and the actual implementation that re-computes
all the structure for each iteration. However, simpler ap-
proaches fail to generate a correct scale-space. To exemplify
this, we compared with two gaussian filters: a direct filtering
in space, moving balls from position B to λB̄ + (1− λ)B,
where B̄ is the average position of the neighboring balls.
This average is weighted by a gaussian function of the
distance, and the radius is updated in the same way. The
second filter performs the same operation, but computing
the distance along the medial axis. This last strategy mainly
differs from ours in the movement magnitude of each ball,
but the balls generally displace along the normal of the
medial axis. We tested those filters on the octopus meta-
ball model (see Figure 1), with λ = 0.05 and the gaussian
function parameter σ set to 10% of the bounding box of

Table I
SIZES (NUMBER OF BALLS) AND TIMING RESULTS OF SMOOTHING THE

MODELS ILLUSTRATED IN THIS PAPER.

Figures Model Size Time per iteration
Figure 1 octopus 103 0.3 s/it
Figure 4 spiral 101 0.7 s/it

Figure 8, Figure 11 dumbbell 21 0.1 s/it
Figure 9 ellipse 20 0.1 s/it

Figure 10 fish 204 1.1 s/it
sibgrapi 193 0.2 s/it

the model. We also tested those filters on the spiral model
(see Figure 7) with λ = 0.3 and σ = 30%. As compared
to our proposal, those simpler movements are much faster
(10% of our execution time), but create self-intersections
and disconnect the shape.

V. CONCLUSION

In this work, we propose a smoothing of union of
balls by a heuristic based on the medial axis and inspired
by bi-dimensional curvature motion. The proposed scheme
achieves some of the nice scale-space properties of curvature
motion. Moreover, it is robust to degeneracies, and can be
easily completed to ensure regular sampling.

As in the bi-dimensional case the averaging at bifurcation
points must be weighted, we believe that such results may
be improved by a correct evaluation of the weight of each
plane. However, this will not influence the smoothing based
on the minimal and maximal curvature motions. Another
direction for future works would be affine curvature motions
for anisotropic smoothing.
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