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Figure 1. Reconstruction of a real 3D velocity field captured by a PIV device with sparse, irregular sampling: magnitude (left) and phase (right).

Abstract—Sampled vector fields generally appear as mea-
surements of real phenomena. They can be obtained by the
use of a Particle Image Velocimetry acquisition device, or
as the result of a physical simulation, such as a fluid flow
simulation, among many examples. This paper proposes to
formulate the unstructured vector field reconstruction and
approximation through Machine-Learning. The machine learns
from the samples a global vector field estimation function
that could be evaluated at arbitrary points from the whole
domain. Using an adaptation of the Support Vector Regression
method for multi-scale analysis, the proposed method provides
a global, analytical expression for the reconstructed vector field
through an efficient non-linear optimization. Experiments on
artificial and real data show a statistically robust behavior of
the proposed technique.
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I. INTRODUCTION

In the last few years, lot of attention has been paid to the
problem of object reconstruction from sparse samples [1].
However, there are still very few reconstruction methods for
vector fields, which is the fundamental object in classical
Physics and Engineering (velocity fields, force fields, etc.).
Moreover, most of existing methods restrict the samples to
be structured on a regular grid.

Sampled vector fields generally appear as measurements
of real phenomena, for example using a Particle Image Ve-
locimetry acquisition device. They also appear as the result
of physical simulations, such as fluid dynamics simulations.
In those context, the vector field reconstruction problem
consists in inferring a differentiable vector field on the whole
region of experimentation from only a finite, set of samples.

Learning Vector Field: Reconstructing a sampled field
is a helpful step to analyze it identifying the existence
of vortices and singularities, to improve simulations incor-
porating global information in local computations and to
interpretation of the measured or simulated field returning
numerical and visual information (see Figure 1).

Contrarily to the curve or surface reconstruction appli-
cation problems, vector fields usually characterize local
behaviors and thus require only consistency based on local
pattern. We therefore argue that the vector field reconstruc-
tion problem should be solved in the Machine-Learning
context. Kernel-based methods are considered the state of
the art in machine-learning. Amid them, the Support Vector
Machines (SVM) proposed by Vapnik et al. [2] is one of
the most robust in terms of statistical learning, since they
provide a deterministic and analytical result from an efficient
non-linear optimization. Starting from a cost function that
is insensitive to small errors, it reduces the learning process
to a linearly constrained quadratic programming problem,
guaranteeing a unique and globally optimal solution. More-
over, the solution is a combination of a reduced set of the
input, the support vectors, which turns the SVM evaluation
particularly efficient.

Related work: Unlike surface reconstruction from un-
organized points, vector field reconstruction of unstructured
data does not appear frequently in the literature. Schaback
and Wendland [3] introduced the radial-based interpolants
and other approximation methods for multivariate functions.
Mussa-Ivaldi [4] presents a method for 2D vector field
reconstruction using least squares schemes. In this strategy,
the reconstruction is done in two steps. The first step



reconstructs the rotational-free part of the velocity field, and
the second one reconstructs from the residual vector field
the divergence-free part. Another work for 2D vector field
reconstruction from sparse samples was done by Lage et
al. [5]. In their method the vector field is reconstructed by
adjusting locally a polynomial for each coordinate and then
the global approximation is obtained by the use of a partition
of unity. In fact, their work is a generalization of the Multi-
level Partition of Unity for surface reconstruction [6].

Two important reconstruction methods for surface re-
construction based on Support Vector Machines have been
proposed in the last years. Schölkopf et al. [7] introduces
a surface reconstruction scheme using the so–called single
class Support Vector Machine method. Steinke et al. [8]
present a multi-scale method for surface reconstruction
based on a Support Vector Regression. The Support Vector
Regression has also been recently used for optical flow
reconstruction [9] in the work of [10]. This paper proposes
methods that extend these learning techniques for scalar
fields to vector fields reconstruction.

Contributions: This paper presents a method for vector
field reconstruction from sparse points/vectors pairs, intro-
ducing a learning formulation to such problems. It uses the
Support Vector Machine for function estimation technique,
called the Support Vector Regression (SVR), as the basic tool
for the learning part (see Section II). The learning machine is
trained on the samples and evaluated over the whole domain,
introducing an adaptation of SVR for multi-scale analysis
(see Section III). This method provides a single analytical
expression for the reconstructed vector field on the whole
domain. Experiments on artificial and real data in two and
three dimensions show a statistically robust behavior of the
proposed technique (see Section IV).

II. SUPPORT VECTOR REGRESSION

The Support Vector Regression (SVR) is a universal
learning machine for solving multidimensional scalar value
prediction and estimation problems. It has received a lot
of attention in the machine-learning community since it is
very well grounded on a statistical learning theory, called the
VC-Theory [11]. Its consistency conditions, its convergence,
its generalization abilities and its implementation efficiency
have been studied by several authors from the last four
decades (see [11] and [12]). This section describes the ε-
SVR. A complete introduction can be found in [13].

A. ε-SVR learning problem

Consider the training set S = {(x1, y1), . . . , (xl, yl)},
where xi ∈ Rn are the explicative data and yi ∈ R are the
target values. The SVR method first maps the data x ∈ Rn
into some chosen Hilbert space F , called the feature space,
via a nonlinear function φ : Rn → F . In this feature
space, the prediction function f is formulated by the affine
equation:

f(x) = 〈w, φ(x)〉+ b (1)

where 〈·, ·〉 denotes the inner product in F , with x ∈ Rn,
and w ∈ F and b ∈ R are the variables to be determined.

B. ε-SVR optimization problem

In the ε-SVR learning method, the values of w and b are
determined by the following optimization problem [11]:

Minimizew,b
1
2‖w‖

2 + P ·
∑l
i=1(ξi + ξ̂i)

subject to:


yi − (〈w, φ(xi)〉 − b) ≤ ε+ ξi
(〈w, φ(xi)〉+ b)− yi ≤ ε+ ξ̂i

ξi, ξ̂i ≥ 0

where P > 0 determines the trade-off between the flatness
of f (small ||w||) and the amount up to which deviations of
the estimation is larger than ε are tolerated. The variables
ξi and ξ̂i represent the deviation at sample i when f(xi) is
above or below yi, respectively.

One can rewrite this optimization problem in its dual
form, using Lagrange multipliers αi, α̂i:

Maximizeαi,α̂i

l∑
i=1

(α̂i − αi)yi − ε
l∑
i=1

(α̂i + αi) −

1
2

l∑
i=1

l∑
j=1

(α̂i−αi)(α̂j−αj)〈φ(xi), φ(xj)〉

subject to:
∑l
i=1(α̂i − αi) = 0, 0 ≤ αi, α̂i ≤ P

w −
∑l
i=1(α̂∗i − α∗i )φ(xi) = 0

α∗i (〈w, φ(xi)〉+ b− yi − ε− ξi) = 0
α̂∗i (yi − 〈w, φ(xi)〉 − b− ε− ξ̂i) = 0
α̂∗i · α∗i = 0, ξ̂i · ξi = 0
(α̂∗i − P )ξ̂i = 0, (α∗i − P )ξi = 0

This dual problem is a convex quadratic programming
problem, thus it has an unique global solution. Such optimal
solution will be denoted by w?, b?, α̂?, α?.

Support Vectors: The second restriction of this problem
means that at the optimal solution w? for the primal problem
is a linear combination of the explicative points mapped to
the feature space: w? =

∑l
i=1(α̂?i −α?i )φ(xi), equation (1)

can be rewritten as:

f(x) =
l∑
i=1

(α̂?i − α?i )〈φ(xi), φ(x)〉+ b?. (2)

where b∗ is chosen so that f(xi)− yi = −ε for any i such
that α?i ∈ (0, P ).

The other set of restrictions says that when α?i and α̂?i
are both equal to zero the scalar function prediction for the
explicative point xi distances from the target value yi less
than ε. The explicative points xi whose one of the associated
α?i or α̂?i does not vanish are called the support vectors.

C. Kernel functions

Kernel functions have been recognized as an important
tool in several numerical analysis applications, including
approximation, interpolation, meshless method for solving
differential equations and also in Machine Learning [3].



Figure 2. 3600 vectors of an synthetic vector field sampled randomly in the unit square (magnitude and cosine of the phase on the left), reconstructed
by learning in polar coordinates (magnitude and cosine of the phase on the right). The color scale from blue to red.

In the ε-SVR problem, the non-linear function φ, which
maps the explicative point to the feature space, appears
in two equations: one in the objective function of the ε-
SVR dual optimization problem as 〈φ(xi), φ(xj)〉, and the
other in the prediction function f as 〈φ(xi), φ(x)〉 (Equation
(2)). Notice that in both cases it is sufficient to know how
to compute the inner-product 〈φ(y), φ(z)〉 of two points
mapped to feature space by φ.

This operation is directly modeled by the use of Kernel
functions. A kernel function K : Rn×Rn→R is defined by:

K(y, z) = 〈φ(y), φ(z)〉.

In fact, kernel functions represent implicitly the mapping φ
to the feature space F . For example, consider that y and z
are in R2. Also consider the non-linear mapping φ : R2 →
R3 as φ(y) = (y2

1 , y
2
2 ,
√

2y1y2). Then,
〈φ(y), φ(z)〉 = y2

1z
2
1 + y2

2z
2
2 + 2y1y2z1z2 = (〈y, z〉)2.

In this case computing the inner-product using φ, requires
the evaluation of the non–linear mapping at each 2D point
and, after that, the computation of their inner-product in
R3. A more efficient way to evaluate it uses the kernel
function K(y, z) = (〈y, z〉)2, which computes firstly the
inner-product in R2 and then takes the square of it.

In the general case, it is more efficient and more suit-
able to choose kernels rather than non-linear mappings φ.
However, not all functions K represent an inner-product
in the feature space. The Mercer’s theorem characterizes
these functions [11]. Some examples of kernel functions that
satisfy the Mercer’s conditions are:
• Polynomial kernel: [2]: K(y, z) = (1 + 〈y, z〉)d,

• Gaussian kernel: [2]: K(y, z) = exp
(
−‖y−z‖2

2σ2

)
,

• Wavelet kernel [14]: K(y, z) =
∏n
i=1 h

(
yi−zi

σ

)
,

where h(u) = cos(1.75u)e−
u2
2 ,

III. RECONSTRUCTION BY LEARNING METHOD

A. Sampled vector fields
A vector field F defined on a subset Ω ⊂ Rn is a map

that assigns to each point x ∈ Ω a vector v ∈ Rn (Figure 2

(left)). In the Cartesian coordinate system, the vector field
is represented by an ordered n-tuple of scalar functions
F(x) = (F1(x), F2(x), . . . , Fn(x)) The function Fi is
called the i-th coordinate function of F. A vector field is
differentiable when all of its n coordinate functions are.

This paper aims at providing a differentiable vector field
F̂ : Ω → Rn that approximates an ideal vector field F
on the region Ω by the use of a learning-machine method
based on ε-SVR. As an input of the reconstruction problem,
it is considered a set of l pairs of n dimensional points
S = {(x1,v1), . . . , (xl,vl)} sampled from F, such that
xi ∈ Ω and vi ≈ F(xi) ∈ Rn. It is assumed that xi’s
are independent and identically distributed samples, and that
both xi and vi are on the same basis of the Cartesian
coordinates.

B. Learning 2D vector fields

There are two classical ways to represent a vector v ∈
R2. One is the Cartesian coordinates system v = (v1, v2)
and the other is the polar coordinates system (r, θ), for r ∈
[0,∞) and θ ∈ [0, 2π) (Figure 2). The equality (v1, v2) =
r(cos θ, sin θ) is used to convert one system into the other.
Thus, we propose two methods for learning 2D vector field
F : Ω ⊂ R2 → R2, one for each coordinate system.

Learning in Cartesian coordinates: The first 2D vector
field learning method determines, from the samples in S, the
reconstructed field F̂ by learning each coordinate function of
F separately. This means that two ε-SVR machine learning
problems are solved, one to find F̂1 that approximates F1 and
other to find F̂2 that approximates F2. The approximation
for the vector field function F is thus obtained by:

F̂2Dc(x) = (F̂1(x), F̂2(x)),

where F̂j(x) =
∑l
i=1(α̂?i,j − α?i,j)K(xi,x) + b?j .

Learning in polar coordinates: The second 2D method
determines from the sampling set S the reconstructed field
F̂ by learning three functions:

R(x) = ‖F(x)‖, C(x) =
F1(x)
‖F(x)‖

, and S(x) =
F2(x)
‖F(x)‖

.



The first represents the norm of the vector F(x), the second
represents the cosine of the phase and the last the sine
of the phase. The approximation for these three functions,
respectively named R̂, Ĉ, and Ŝ, are also expressed using
equation (2). Figure 2 shows the result of this approach on
a synthetic field.

It is better to learn both the cosine of θ and the sine
of θ instead of only the argument angle θ itself since it
avoids the discontinuity of the argument θ close to 0 or
2π. Such discontinuities do not fit well for SVR, since the
prediction function f is continuous for continuous kernels
(see equation (1)). To avoid this problem, the following
adjustment is proposed: the predicted point (Ĉ(x), Ŝ(x))
is projected on the unit circle orthogonally. Notice that
the projected point has the same argument as the original,
correcting only the phase as desired. According to this, the
adjusted point is:

(Ĉ(x), Ŝ(x)) =
(Ĉ(x), Ŝ(x))√
Ĉ2(x) + Ŝ2(x)

,

F̂2Dp(x) = (R̂(x)Ĉ(x), R̂(x)Ŝ(x)).

Figure 6(right) shows that the approximation F̂2Dp for the
vector field function F using this second strategy improves
the pointwise relative error.

C. The role of the support-vectors.

According to the definition given in section II, in the ε-
SVR learning method, the explicative points xi for which the
associated α?i or α̂?i does not vanish are called the support
vectors. Consequently, the explicative points that are not
support vectors have estimation errors less than ε. Since
the support vectors are the only explicative points used to
compute the ε-SVR estimated function (see equation 2), it is
important to notice that these points have a strong geometric
meaning. Since the reconstructed functions are computed
only from the support vectors, they capture the main ele-
ments of the reconstructed vector field. It is important to
observe that the number of support vectors heavily depends
on the parameters of the SVR, in particular on ε and P .

For example, in Figure 3 the support vectors for the sam-
pled vector field of Figure 2 using the Cartesian coordinate
method (left) and the polar coordinate method (right). In this
example, the Cartesian coordinates system reconstruction
uses 160 support vectors for the x-coordinate and the same
number for the y-coordinate, while in the polar coordinates
system reconstruction there are 155 support vectors for
the norm predicted function, and respectively 182 and 142
support vectors for the cosine and for the sine predicted
functions (Figure 2).

The left image Figure 3 shows that, the support vectors of
each direction in the Cartesian method identified features of
the field in the corresponding directions. However, the right
image shows that the support vector in the polar method

captured much more features. This occurs because the polar
method have to learn the norm, the sine and the cosine of
the phase, which characterize more clearly the singularities
of the vector field. As a conclusion, this advantage of the
polar coordinate method compensates the fact that it has to
solve three learning problems to obtain the reconstruction.

Figure 3. The support vectors in the Cartesian (left) and polar coordinates
(right), with the following color code: (left) red for x, green for y, (right)
red for the norm, green and blue for the phase cosine and sine.

D. Learning 3D vector fields

The learning methods proposed for 2D vector field recon-
struction are easily generalized to 3D as follows.

Learning in Cartesian coordinates: The reconstruction
method for a 3D vector field F : Ω ∈ R3 → R3 using
Cartesian coordinates learns from the sampling set S each
coordinate function individually. obtaining:

F̂3Dc(x) = (F̂1(x), F̂2(x), F̂3(x)),

where F̂j(x) =
∑l
i=1(α̂?i,j − α?i,j)K(xi,x) + b?j .

Learning in spherical coordinates: In spherical coor-
dinates, a vector v = (v1, v2, v3) ∈ R3 is represented by the
triple (r, θ, γ), for r ∈ [0,∞), θ ∈ [0, 2π) and γ ∈ [0, π).
The equality (v1, v2, v3) = r(cos θ sin γ, sin θ sin γ, cos γ)
is used to convert from the Cartesian to the spherical
coordinate system and vice-versa.

Similarly to the polar coordinates in 2D, the approxima-
tion method for a 3D vector field function F : Ω ∈ R3 →
R3 learns from the sampling set S the functions:

R = ‖F‖, C =
F3

‖F‖
, CS =

F1

‖F‖
, and SS =

F2

‖F‖
.

R(x) represents the norm of the vector F(x), C(x) rep-
resents the cosine of γ, CS(x) represents the cosine of θ
times the sine of γ, and, finally, SS(x) represents the sine
of θ times the sine of γ. The approximation for these four
functions, respectively named R̂, Ĉ, ĈS and ŜS, are also
expressed using equation (2).

In order to adjust the prediction of C, CS, and SS to
satisfy the identity CS2(x) + SS2(x) + C2(x) = 1 the
following adjustment is used:

(ĈS(x), ŜS(x), Ĉ(x)) =
(ĈS(x), ŜS(x), Ĉ(x))√
Ĉ2(x) + ĈS

2
(x) + ŜS

2
(x)

.



As a result, the approximation for the 3D vector field
function F using spherical coordinates is obtained by:

F̂3Ds(x) = (R̂(x)ĈS(x), R̂(x)ŜS(x), R̂(x)Ĉ(x)).

Figure 1 shows the reconstruction of a real 3D
velocity field captured by PIV acquisition device
(piv.vsj.or.jp/piv/image3d/image351.html). The volumetric
and projected visualization of the reconstruction map
are displayed. The color scale from blue to red means
the magnitude of the reconstruction field in the two first
images, and the cosine of phase in the two last images.
Some stream lines in the reconstructed velocity field are
shown at the second and the fourth images.

E. Parameters for the ε-SVR regression

For all methods discussed above the user has to choose
the following parameters:
• the tolerance value ε,
• the penalizing constant P ,
• the Kernel function K and its corresponding parame-

ters. For example, the Gaussian kernel is parameterized
by σ.

Large ε generally results in a very smooth approximation and
a small number of support vectors. Small ε results on better
approximations since it will use almost all points (Figure 4).
Tiny ε (from 1.0 to 0.25 in the figure) may induce overfitting
the data, which is not suitable in noisy cases. Small P
generates smooth reconstructions that loosely approximate
the training data. For large P , the approximation fits the
vector field very close to the training set, but this may harm
the prediction elsewhere.

Usually, Gaussian kernel is a very nice choice for vector
fields when no particular structure is known a priori. As
suggested by Steinke et al. [8] a good initial choice of its
parameter σ is the half of the diameter of the bounding box
of the points. In order to have a control of these parameters,
the coordinates of the vectors xi and the coordinates of
the target values yi are all standardized, i.e. their value
is subtracted by the mean and the result is divided by
the standard deviation. After the prediction the values are
transformed back using the inverse process. Using this
strategy, an initial suggestion is to set P = 1 and ε = 0.01.

Another option to deduce good parameters is to separate
the samples into a training set, used to compute the vector
field F̂ and a validation set used to tune the SVR. This cross-
validation can be easily implemented by pre-selecting values
for each SVR parameter and perform a regression for each
combination of these values. The parameters that generate
the best prediction on the validation set are retained.

F. Multi-scale ε-SVR regression

For surface reconstruction Steinke et al. [8] proposed the
combination of kernels with different sizes, for example to

Figure 4. The effect of the ε parameter: original data (top left) and
decreasing ε (in reading order) the reconstruction fits closer to the input
data, but harms the smoothness of the reconstructed field.

interpolate across holes. Their scheme provides an approx-
imation with enough variability to capture the details while
guaranteeing good results in large distances. It uses a coarse-
to-fine approximation: In the first scale, it captures basically
the sign of the scalar function and on the subsequent scale
levels it approximates the residual errors. Since they are
using a kernel that is a radial basis function, at each level
the scale is divided by two. The points having the desired
error tolerance are not considered on the next level learning
procedure. The final function is given by the sum of the
functions obtained at each level. A novel adaptation of
this multi-scale method is proposed here to improve the
approximation results of the vector field reconstruction.

Given a data set S = {(x1, y1), (x2, y2), . . . , (xl, yl)},
the initial multi-scale targets are err0i = yi for i = 1, . . . , l,
thus the initial multi-scale data set is S0 = S and the initial
estimation function is f0 → SVR{S0, ε, σ}. At scale k,
Sk, εk, σk and P k represent, respectively, the Gaussian
kernel parameter, the loss function parameter, the error
penalizing constant and the training data set. The procedure
SVR{Sk, εk, σk, P k} returns the estimated function fk us-
ing the ε-SVR technique.

The proposed multi-scale method can be summarized by
the following procedure:

errki = errk−1
i − fk−1(errk−1

i )
Sk = {(x1, err

k
1), (x2, err

k
2), . . . , (xl, errkl )}

εk = ε
2k , σk = σ

2k and P k = P

fk → SVR{Sk, ε
2k ,

σ
2k , P

k}

(3)



Taking into account the estimations at N different scales,
the final multi-scale estimation function is:

f∗(x)=
N∑
k=1

fk(x)=
N∑
k=1

∑
v∈SVk

(α̂k,∗v −αk,∗v )K(v,x) (4)

Figure 5 shows an example of the improvement provided by
the multi-scale scheme on a PIV data.
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(a) Original filed (left) and mean absolute error (right) for x and y with
1 and 4 scales vs number of support vectors (logarithmic scale axies).

(b) Single scale. (c) 4 scales.

Figure 5. Single-scale regression versus multi-scale regression: the ability
to reconstruct several scales at the same time improves the reconstruction
on the original field. The multi-scale parameters are: σ0 = 4, P 0 = 1,
ε0 = 0.1.

The scheme proposed above differs from Steinke et al. [8]
in the following points: First, their method adapts SVR for
surface reconstruction. Second, their method discards the
points xi having the desired error tolerance, in the method
proposed in this work the residual vector is set to zero if
the distance from yi to F̂(xi) is less than ε. Third, the
proposed method divides by two at each level not only the σ,
but also the ε parameter. By doing so, this proposed scheme
corresponds to the physical paradigm that higher frequencies
generally have lower amplitudes. We apply this multi-scale
approach to each learning method for 2D and 3D vector field
reconstruction.

G. Implementation

All the proposed vector field reconstruction methods use
a Sequential Minimal Optimization (SMO) [15] to the ε-
SVR quadratic optimization problem, the implementation is
based on the open source libSVM [16], [17]. All the SVR
inputs, including the errors in the multi-scale regression, are
normalized to a normal distribution before being processed.

IV. RESULTS

The reconstruction methods proposed above were tested
on different kind of vector fields: synthetic fields, velocity
fields acquired from PIV devices, and velocity fields of fluid
flow simulation.

We measure the quality of the reconstruction by the
distribution of a punctual error at a point x with a known
vector field v = F (x). We compute the punctual magnitude
error by: ‖v − F̂(x)‖

max{‖v‖, ‖F̂(x)‖}
.

The phase error is measured by the cosine of the angle
between the estimated vector and the correct vector from
the analytical function. To maintain the coherence of the
quality measure, no point x used for the error computation
is used in the learning process.

A. Synthetic Analytic Fields

Figure 2 illustrate the reconstruction of a 2D synthetic
field from unstructured samples, using the Cartesian and the
polar coordinates learning method respectively. Since it is
ansynthetic field, a global measure of the error can be done
using the average of the pointwise error at the vertices of
a regular grid. Figure 6(left) shows this average error for
various samplings of the same vector field. The quality of
the reconstruction is not sensitive to a particular sampling.
The improvement in normalization of the polar coordinates
is illustrated in Figure 6(right).
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Figure 6. Error histograms in the synthetic field (Figure 2): (left) Average
error distribution over 112 random uniform samplings of 3600 points: the
estimation of F̂1 have similar behaviors independently of the sampling,
provided it has the same average density. (right) The normalization of the
polar coordinates improves the histogram of the pointwise relative error.

Figure 7 shows the reconstruction of the 3D synthetic field
F (x, y, z) = (−z, 0.2y2, x) with 5000 random samples in
the [−2.8, 2.8]3 domain. In reading order, the first image
shows some stream lines of the reconstruction field with
colors representing, from blue to red, the cosine of the
field’s phase. The second one displays the support vectors
of the function ĈS using the spherical coordinates learning
scheme. Observe that the support vectors here show the
spiral behavior of the field. The next two images of this
figure illustrate respectively the pointwise errors of the
field’s magnitude and the cosine of phase absolute error
measured on a 3D regular grid. The color scale from blue to
red corresponds to, respectively, small and big errors. In the



magnitude error, the error range is θ(error) = [10−4, 100],
while the relative error order of the cosine phase error is
θ(error) = [10−8, 10−1]. Observe that the phase error is
concentrated where the magnitude vanishes.

B. Fields acquired from PIV techniques

Figure 8 shows our experiments on the velocity fields of
a gas flow acquired from a PIV device. The original data
is given on a regular grid and we selected randomly 80%
of the original data to use in the learning stage, and we use
the remaining 20% for the test/validation phase. Using the

Figure 7. Reconstruction of a 3D vector field F (x, y, z) = (−z, 0.2y2, x)
with 5000 random samples in the [−2.8, 2.8]3 domain using a single scale
ε = 0.1, P = 1 and σ = 2.63522.

Cartesian coordinate method with Gaussian kernel in single
scale, we obtain the reconstructed field whose phase cosine
is represented in Figure 8(left). The error (Figure 8(right))
is measured by the reconstruction error on the training set
(20% of the original data). In the above context, the multi-
scale approach improves on single-scale reconstruction as
can be seen in the example of Figure 5.

C. Fluid Flow Simulation Examples

Figure 9 provides an example of a velocity field recon-
struction obtained from 4096 samples of an Eulerian grid-
based fluid-simulation [18]. From left to right, the first image
shows a grid sampled velocity field of a smoke flow, the
second illustrates this field reconstructed by the 2D learning
method in polar coordinates. Finally, the last image displays
the support vectors results for the three ε-SVR problems.
The vectors in red, green and blue represent, respectively, the
support vector from the norm, from the cosine and from the
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Figure 8. Exponential decreasing of the relative error computing using
the test data set, which corresponds to 20% separated from the original
PIV data that contains 16000 samples. In the learning process, only 80%
of the original data was used to train the SVR machine using the Cartesian
coordinates method.

sine of the polar coordinates learning scheme. Notice that,
in this image, the support vectors visually identify relevant
features of the vector field.

Figure 9. Reconstruction of a smoke-flow using the polar coordinates
learning method: (left) The 4096 sampling points. (middle) The recon-
structed cosine of phase, the colors range from blue (cosine equal to -
1) to red (cosine equal to 1). (right) The vectors in red, green and blue
represents respectively the support vectors from the norm, cosine and sine
SVR learning process.

Figure 10 shows the reconstruction of velocity fields
obtained from a 3D SPH simulation. The input data cor-
respond to 3840 fluid particles in the free-surface flow
simulation of the dam-break problem after the impact of
the fluid front against the vertical wall at the end of the dry
deck. Figure 10(bottom) show several examples of integral
curves computed using an Euler method on the evaluation
of the reconstruction function. The color scale from blue
to red means the magnitude of the reconstructed field,
moreover Figure 10(top) show the volumetric and projected
visualization of the same map.

Limitations: The main limitation of our current imple-
mentation of the proposed method is still the execution time
on huge data. For example, in a field with 10, 000 samples,
the learning process last around 4 minutes and the evaluation
on a 100×100 grid last around 150 seconds, which is slower
than MPU approaches [5]. Since the reconstruction is global,
it requires a global optimization which harms its efficiency.
This will be improved in a future work by factoring results
for repetitive regression, or by using local solutions for good
initial guess of the SMO quadratic solver.



Figure 10. 3D Velocity field reconstruction using the 3D Cartesian
coordinate scheme from a 3840 fluid particles in the free-surface flow
simulation of the dam-break problem after the impact of the fluid front
against the vertical wall at the end of the dry deck.

V. CONCLUSIONS

This paper proposes to solve the vector field reconstruc-
tion problem in a Machine Learning context. Using the well
known Support Vector Regression scheme, the proposed 2D
and 3D schemes achieve faithful reconstruction on synthetic
and real data. Moreover, the reconstruction is statistically
stable with respect to a specific sampling. A multi-scale
variation of the method improves its robustness on real data.

Other contribution of this paper is the use of support
vectors as a useful tool for a visual analysis of the vector
field before an eventual relatively long-lasting evaluation of
topological feature detection algorithms. Since the support
vectors generally appear close to the field features.

With the proposed approach, the reconstructed field is
global and differentiable. This is suitable for vector field
analysis involving derivatives, which can be directly calcu-
lated from the derivatives of the kernel. The authors plan
to develop a new method for vector field differentiable
topological analysis from samples based on the formulation
presented in this work.
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