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Figure 1. A simple discontinuous vector field (left) pertubed with a gaussian additive noise (middle left). The gaussian filter (middle right) blurs the
interface, while the random walk (right) preserves it.

Abstract—In recent years, several devices allow to directly
measure real vector fields, leading to a better understanding
of fundamental phenomena such as fluid simulation or brain
water movement. This turns vector field visualization and
analysis important tools for many applications in engineering
and in medicine. However, real data is generally corrupted
by noise, puzzling the understanding provided by those tools.
Those tools thus need a denoising step as preprocessing,
although usual denoising removes discontinuities, which are
fundamental for vector field analysis. This paper proposes a
novel method for vector field denoising based on random walks
which preserve those discontinuities. It works in a meshless
setting; it is fast, simple to implement, and shows a better
performance than the traditional gaussian denoising technique.
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I. INTRODUCTION

Computer simulations of mechanical phenomena heavily
rely on vector field generation, visualization and analysis.
In particular, several techniques allow for measuring vec-
tor fields, generating fundamental data for understanding
a physical behavior. Particle Image Velocimetry (PIV) is
concerned with the quantitative investigation of fluids by
imaging techniques [1] and has been used on several appli-
cations in mechanical engineering, in particular to modern
aerodynamics and hydrodynamics research [2]. However,
such real data is typically corrupted by noise, which harms
further simulation and puzzles the interpretation. The pre-
processing of vector fields typically involves a denoising
step. Classical denoising approaches rely on local coherence,
considering that noise follow one of the vanishing mean

model, and thus can be cancelled by averaging a piece of
data with its neighbors. This has a smoothing effect which
is very well understood for scalar fields such as images.

However, as opposed to scalar physical quantities associ-
ated to energies, for which one expects a globally smooth
behavior in real experiments, vector fields can present
rapidly changing directions. In fact those discontinuities
are generally the most interesting part to analyze: they
correspond to interfaces in fluid simulation, structural tissues
when measuring brain water movement, faults and fractures
in geophysical interpretation of soils. . . On one side, denois-
ing such vector fields by a direct local smoothing would
simply remove those discontinuities, and all its valuable
information. On the other side, there is still little under-
standing of the exact noise model induced by the vector
field measurement techniques, leaving the vanishing-mean
noise as the most reasonable model.

Contributions: In this work, we propose a vector field
denoising technique based on random walks that preserves
coherent discontinuities while removing noise under a
vanishing-mean per continuous region model (Figure 1).
Random walk is a stochastic process consisting in taking
successive random steps, giving a probability for each direc-
tion according to its coherence with the current state. In that
sense, it is closely related to Markov chains. This approach
leads to a very simple and fast implementation of the denois-
ing, while allowing the handling of unstructured (meshless)
data. It shows to have better performance when compared
to more pervasive gaussian filtering, while preserving the
vector field features, like discontinuities and singularities.



II. PREVIOUS AND RELATED WORK

Random walks: Random walk has many applications
nowadays not only in visual computing but also in genetics,
physics, medicine, chemistry, computer science, just to cite a
few. The first work using random walks in computer vision is
in the application of texture discrimination [3], and recently
has been applied to image segmentation [4]. In the field
of image processing, random walk has been used to image
enhancement [5] and filtering [6]. The use of random walks
in geometry processing was recently proposed by Sun et
al in [7], [8] for mesh denoising, and after that it appears
an application to mesh segmentation in [9]. This paper is
inspired in the work of [5] and [7], we extend their work to
deal with meshless data in the plane.

Vector field denoising: In 2005, Westenberg and Erlt in
[10] proposed to threshold vector wavelet coefficients to
suppress additive noise on a 2D vector field. This work has
a disadvantage to work only on a structured grid of points.
They compare their work to Gaussian filters. The importance
of color image processing is forcing the development of
vector filtering techniques on structured grids [11]. Many
filters for color images are interested in the reduction of
impulsive noise [12], [13], [14]. In geometry processing
several works have been proposed to noise reduction on the
surface normals [15], [16], [7], [8].

III. RANDOM WALKS

Random walk (RW), or drunkards walk, was one of the
first chance-processes studied in the theory of probability
and has gained a lot of attention in several areas in visual
computing. The name random walk is used because one may
think of it as being a model for an individual walking on a
straight line who at each point of time either takes one step
to the right with probability p or one step to the left with
probability 1− p, for example.

Given a graph and a starting node, one selects one of its
neighbor at random and moves to this neighbor then selects
a neighbor of this node at random and moves to it and so
on. This sequence of nodes selected randomly this way is a
random walk on the graph. You will see in section IV that
the denoising method to be proposed applies random walks
on a graph whose nodes are the input points, and whose
links represents the connectivity between them. To do such
random walk, a probability has to be assigned to each edge
on the graph and this represents the chance to move from a
vertex to its adjacent neighbor through an edge.

Actually random walk on graph is a very special case
of a Markov process [17]. This work follows the notation
presented in [7].

A Markov process is a sequence of possibly dependent
random variables (X1, X2, X3, . . .) identified by increasing
values of their index, commonly time. Its main property is
that any prediction of the next value of the sequence (Xn),
knowing the preceding states (X1, X2, X3, . . . , Xn−1), may

be based only on the last state Xn−1. That is, the future
value of such a variable is independent of its past history:
P (Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, . . . , X1 =
x1) = P (Xn+1 = xn+1|Xn = xn).

When a Markov process is a sequence of discrete-valued
variables it is called a Markov Chain [18]. The possible
values of Xn are called the state space, which is a countable
set and can be either finite or infinite. In this paper, the state
space I is finite and has L possible values. In the denoising
method proposed here, L will represent the number of points
in the input set.

A transition probability from state i to state j at the step
n, where i, j ∈ I, is equal to P (Xn+1 = j|Xn = i) and
is denoted by pi,j(n). A Markov chain is stationary when
the transition probability does not depend on n, that means:
P (Xn+1 = j|Xn = i) = P (Xn = j|Xn−1 = i).

The transition probability matrix Π(n) ∈ RL×L is the ma-
trix whose the entry at the ith row and jth column is pi,j(n).
Observe that each of its rows sums one. The probability that
the Markov chain reaches the state i at the nth time step is
equal to P (Xn = i) and is denoted by pi(n). The probability
distribution of the Markov chain over all states at time n is
represented by the vector P (n) = [p1(n), . . . , pL(n)]. Note
that

∑L
i=1 pi(n) = 1.

Given an initial probability distribution, denoted by P (0),
the distribution of the Markov chain in the first step is
P (1) = P (0)Π(1), and in the second step is P (2) =
P (1)Π(2) = P (0)Π(1)Π(2). So, after n steps, the dis-
tribution of the Markov chain is P (n) = P (0)Πn where
Πn = Π(1) · · ·Π(n) is the n-step transition probability
matrix. The entry at the ith row and jth column of Πn

is the probability of moving from state i to the state j after
n steps, and is denoted by pni,j . Observe that if the MC is
stationary, Π(1) = Π(2) = ... = Π(n), so Πn = (Π(1))n.

IV. DENOISING VECTOR FIELDS

A. Problem description

Given a set of L unstructured points P =
{p1,p2, . . . ,pL}, where each point pi ∈ Ω ⊂ R2

base a vector vi ∈ R2, and denote the set of vectors
{v1,v2, . . . ,vL} by V (see Figure 2). A vector field is a
map F : Ω ⊂ R2 → R2 that associates to each point p ∈ Ω
a vector F(p). It is supposed that the vectors vi ∈ V are
sampled from an unknown map F and corrupted by an
additive random noise. The problem is to develop a method
that suppress the noise from the samples that mantains the
relevant features of the vector field.

B. Graph definition

Since the points on P are unstructured, the first step of
the random walk based method is to define a graph G on
which a random walk will be processed.
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Figure 2. The support region and the induced graph for the random walk.

The nodes of G: There is a bijective mapping from the
nodes of graph G to the set of input points P , which
associates each node ni on G the corresponding point pi
on P .

The links of G: The connectivity between the nodes of
G depends on a model parameter R, which represents the
radii of balls centered at each point of P , the nodes that
correspond to points that are inside the ball centered at pi
are adjacent1 to ni. From now on, the graph defined for a
given radius R will be denoted by GR. More precisely, to
define the links of GR, the following rule is adopted:

“Node ni is adjacent to node nj through a link lij if and
only if ||pi − pj || < R.”

The first neighborhood of a node ni, denoted by N(ni), is
the set of all adjacent nodes of ni on GR.

C. Random walks for vector fields denoising

The basic principle used in [5], [7], [8], translated to a
graph setting, is that the probability for moving from one
node to its neighbor on the graph depends on how similar
they are. Suppose that a single virtual particle i is located
at every node ni ∈ GR, and that each particle i knows
not only the position pi but also the vector vi. At each
step of the random walk the particle moves from nj to one
of its neighbors or stay at its current position. After the
application of n steps of these random walks, the L particles
are redistributed on the graph according to the transition
matrix Πn. Such matrix induces a weighted average filter to
be applied to each vector vi ∈ V . The random walk filter
computes, for each node ni of the graph GR, a new vector
vi, denoted by v′i, and is computed according to:

v′i =
∑
j∈I

pni,jvj , (1)

1On a graph G, two of its nodes ni and nj are adjacent if there is a
link joining them.

where I = {1, 2, . . . , L} and pni,j is the probability of
moving from state i to the state j after n steps, which is
the entry at the ith row and jth column of Πn. The main
question now is how to define the transition matrices.

D. Similarity functions for vector fields

The idea to define the transition matrix Π(n) is based on
the fact that larger is the “difference” between two vectors,
less similar they are. In [7], the authors suggest a set of
similarity functions whose independent variable is the norm
of the difference d between the normals of adjacent faces,
like for example s(d) = 1

C e
−αd2 , where α ∈ (0,∞) is a

scale parameter and C is a normalization constant. When α
is small, only faces with very close normals are considered
similar. Thus, using such kind of similarity function, one has
the property that larger is the difference between the normal
vectors, smaller is the probability one should use to move a
particle between the nodes. This function s are adopted in
all examples of this paper.

Specifically to the application of this paper which is to
suppress the noise from a vector field in an unstructured set
of points., a more specific measure of similarity is suggested.
Eibl and Brundle in [19] propose three different measures for
two given pairs of point/vector fi = (pi,vi), fj = (pj ,vj):

• Squared Euclidian distance → d2
1 = ||pi − pj ||2+

||vi − vj ||2
• Mahanalobis distance → d2

2 = (fi − fj)Σ−1(fi − fj)T ,
where Σ is the covariance matrix of the coordinates of
fk’s.

• Weighted additive distances → Given weights wp, wθ,
wr and wβ , d2

3 = wp‖pi − pj‖2 + wθ(∠(vi,vj))2 +
wr(‖vi‖−‖vj‖)2+wβ(∠(pj−pi), 1

2 (vj+vi))2, where
∠(·, ·) is the angle between two vectors. Those weights
balance the effects of each distances: the Euclidean dis-
tance from the base points, the vectors angle and norm
difference and the difference of the points segment with
the vector average direction.

They apply such measures to vector field segmentation.
After several experiments, the authors decided to adopt the

weighted additive distances. As a conclusion, the transition
probability to move the particle from the node ni to the node
nj at the nth step is given by:

pi,j(n) =


1
C e
−αd2i,j if nj ∈ N(ni),

0 otherwise,

(2)

where d2
i,j is the weighted additive distance between (pi,vi)

and (pj ,vj) and the value of the normalization constant is

C =
∑

nj∈N(ni)

e−αd
2
.



Figure 3. A Particle Image Velocimetry (PIV) example of a fluid flow (left), filtered by a gaussian filter (middle) and by our random walk (right): the
random walk better preserves the magnitude of the field.

E. Filtering

There are two ways to implement Equation (1). One
is what Sun et al. [7] called the batch scheme, and the
alternative one is what they called the progressive scheme. In
the batch scheme the entries pni,j are computed by growing
the neighborhood of the nodes, and computing for each
step all transition probabilities, and use them at the end to
compute the weighted average. In the progressive scheme,
the algorithm runs step by step. It traverses only the first
neighbors of the spot vertex and computes the probabilities
for its neighbors. Here the authors suggest using progressive
scheme, since it shows to be faster than the batch one in the
greater majority of the experiments: actually the denoising
requires only a few iterations.

F. Parameters of the method

Besides the radius R used to construct the connections
between the nodes of the graph, and the number n of steps
for the random walk, there are more four parameters, the
ones for the weighted additive distances: wp, wθ, wr and wβ .

A suggestion for the weight wp is 1/(2R2), in order
to give more weights to the points that are more close to
each other in the ball of radius R. Notice that the term
wp||pi − pj ||22 naturally incorporates the distance between
the base points, which is a nice advantage when the set
of input points are unstructured. To fix parameter wθ inde-
pendently of the experiment, we optimize it for an average
configuration: when the angles (∠(vi,vj)) are uniformly
distributed in the interval [0, π]. Then one can set as default
wθ to be the variance of this distribution, i.e. wθ = π/12.
Finally, if σ2 is the variance of the lengths of the vector, then
a suggestion for the value of wr is 100/(2σ2), since in this
case it is considering the Gaussian distribution with variance
equal to the total variance over ten. Since the application is
on denoising, as default the weight wβ is set to zero, because

it usually destroys the interface of discontinuity of the vector
field if it exists.

Figure 4. Performance on the PIV model of Figure 3.

V. RESULTS

We tested our de-noising method on three kind of models:
a simple noisy discontinuity test, where we expect the
random walk to outperform the gaussian filter, measured
vector field of physical systems and simulation models.
For all examples on this section, we choose the parame-
ters according to the suggestions presented in the previous
section. We compare our method to a Gaussian filter, which
corresponds to a particular case by setting wp = (2R2)−1,
and wθ = wr = wβ = 0. For all examples, we set n = 2
for both filtering methods.

This simple discontinuity test is constructed using a
synthetic vector field:

F(x, y) =
{

(2, 1) if (10y < (x+ 1)2),
(1,−1) otherwise.



Figure 5. A shear band simulation of a granular flow (left): the gaussian filter (middle) removes the shear band, while the random walk (right) stresses it.

The samples are created by evaluating this map on 900
base points that are randomly generated using a stratified
distribution in the grid [−3, 3] × [−3, 3] [20]. To each
component of the sampled vectors we add an independent
and identically distributed random gaussian noise with mean
0 and standard deviation equals to 0.05. Figure 1 shows that
the gaussian filter blurs the interface, while the random walk
nicely preserves it.

We perform a second test of our approach on a real data
acquired from a PIV device. The left picture of Figure 3
shows the original data on Ω = [−1, 1] × [−1, 1] with
15607 points. This sampled velocity field corresponds to
a flow of a gas that is continuously injected horizontally
on the bottom left corner. This gas flows on the domain
from left to right until it meets an wall, represented on
the image by its right edge. To this data we again add to
each component of the sampled vectors, an independent and
identically distributed random gaussian noise with mean 0
and standard deviation equals to 0.1. The resulted vector
fields after applying a gaussian and a random walk filter are
illustrated, respectively, by the middle and the right pictures
on Figure 3. For the same data, we performed another tests.
We vary the standard deviation of the additive gaussian noise
from 0.0 to 0.51. Figure 4 shows a graph that represents the
vector magnitude Mean Squared Error (MSE) measured on
the noised image as a function of the standard deviation
of the additive noise. As one can see, the proposed filter
conserves better the norm of the vector field.

We also checked our method on a simulation of shear
bands in granular flows [21]. The vectors on this example
are placed on a 50 × 50 grid. The left picture of Figure 5
shows the equilibrium state of the mobility of grains in a
dense granular system under shear, which almost half of
the rows are moving one way, half moving the other way,
with the shear band being formed at the very center. At this
center area, the velocity is randomically distributed and its

module is almost zero, resulting in a shear band. In this
figure, for visualization purpose, the size of the vectors are
the same, the colors are used to represent their norm. In this
example, the samples are originally with an unknown noise.
The middle and the right pictures shows the filtered vector
field by the gaussian and by the random walks method.
The gaussian filter almost removes the shear band, while
the random walk stresses it.

Smooth Particle Hidrodynamics (SPH) has been recog-
nized as a flexible mesh free method for computational
fluid dynamics simulations [22]. In such method the fluid
is modeled as a collection of particles, which move under
the influence of hydrodynamic and external forces. Each
portion of fluid is represented by a particle with attributes,
among which the velocity vector. We finally checked our
method on simulation models of a two-dimensional granular
slide deformation on a slope and its impact into a water
body [23], such data is available from SPHERIC [24]. First
our method is tested on an landslide measured by PIV
methods (Figure 6) and then it is again tested on a SPH
simulation data (Figure 7). We can see on both cases that
the random walk matches the global behaviour, sketched on
(Figure 7).

VI. CONCLUSIONS

This work proposed a 2D vector field denoising technique
based on random walks, whose main characteristic is that
it preserves coherent discontinuities while removing noise
under the vanishing-mean per continuous region model. To
do so, a suitable similarity function with weighted additive
distance for the pair point/vector was proposed. Although the
method has been proposed for 2D, it can be easily extended
to higher dimensions by proposing adequate similarity func-
tions. We show several applications of the method to PIV
images, SPH and granular flows.



For the future, the authors plan to continue this work
implementing a 3D vector field denoising algorithm and also
plan to develop new algorithms for vector field segmentation
based on random walks.

ACKNOWLEDGEMENTS

The authors would like to thank CNPq, CAPES and
FAPERJ for their support during the preparation of this
work. Thanks to Prof. L.-F. Alzuguir for the PIV data-set.
The authors would like also to thank the reviewers for their
comments and suggestions.

REFERENCES

[1] M. Raffel, C. Willert, and J. Kompenhans, Particle Image
Velocimetry: A Practical Guide. Springer, 2002.

[2] M. Stanislas, J. Kompenhans, and J. Westerweel, Particle
Image Velocimetry - Progress Towards Industrial Application.
Springer, 2000.

[3] H. Wechsler and M. Kidode, “A random walk procedure
for texture discrimination,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 1, no. 3, pp. 272–280, 1979.

[4] L. Grady, “Random walks for image segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1768–
1783, 2006.

[5] B. Smolka and K. W. Wojciechowski, “Random walk ap-
proach to image enhancement,” Signal Process., vol. 81, no. 3,
pp. 465–482, 2001.

[6] M. Szczepanski, B. Smolka, K. N. Plataniotis, and A. N.
Venetsanopoulos, “On the geodesic paths approach to color
image filtering,” Signal Process., vol. 83, no. 6, pp. 1309–
1342, 2003.

[7] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein, “Ran-
dom walks for mesh denoising,” in SPM ’07: Proceedings of
the 2007 ACM symposium on Solid and physical modeling.
New York, NY, USA: ACM, 2007, pp. 11–22.

[8] ——, “Random walks for feature-preserving mesh denois-
ing,” Comput. Aided Geom. Des., vol. 25, no. 7, pp. 437–456,
2008.

[9] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin, “Fast mesh
segmentation using random walks,” in SPM ’08: Proceedings
of the 2008 ACM symposium on Solid and physical modeling.
New York, NY, USA: ACM, 2008, pp. 183–191.

[10] M. A. Westenberg and T. Ertl, “Denoising 2-d vector fields
by vector wavelet thresholding,” Journal of WSCG, vol. 13,
no. 1-3, pp. 33–40, 2005.

[11] K. N. Plataniotis and A. N. Venetsanopoulos, Color image
processing and applications. New York, NY, USA: Springer-
Verlag New York, Inc., 2000.

[12] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and
color images,” in Computer Vision, 1998. Sixth International
Conference on, 1998, pp. 839–846.

[13] B. Smolka, R. Lukac, A. Chydzinski, K. N. Plataniotis, and
W. Wojciechowski, “Fast adaptive similarity based impulsive
noise reduction filter,” Real-Time Imaging, vol. 9, no. 4, pp.
261–276, 2003.

[14] R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venet-
sanopoulos, “Generalized selection weighted vector filters,”
EURASIP J. Appl. Signal Process., vol. 2004, pp. 1870–1885,
2004.

[15] G. Taubin, “A signal processing approach to fair surface
design,” in SIGGRAPH ’95: Proceedings of the 22nd annual
conference on Computer graphics and interactive techniques.
New York, NY, USA: ACM, 1995, pp. 351–358.

[16] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi,
“Efficiently combining positions and normals for precise 3d
geometry,” ACM Trans. Graph., vol. 24, no. 3, pp. 536–543,
2005.

[17] L. Lovasz, “Random walks on graphs: A survey,” Bolyai
Society Mathematical Studies, vol. 2, no. 1, pp. 1–46, 1993.

[18] J. Norris, Markov chains. Cambridge University Press, 1998.

[19] G. Eibl and N. Brandle, “Evaluation of clustering methods
for finding dominant optical flow fields in crowded scenes,”
Pattern Recognition, 2008. ICPR 2008. 19th International
Conference on, pp. 1–4, Dec. 2008.

[20] R. L. Cook, “Stochastic sampling in computer graphics,”
ACM Trans. Graph., vol. 5, no. 1, pp. 51–72, 1986.

[21] A. Bordignon, L. Sigaud, G. Tavares, H. Lopes, T. Lewiner,
and W. Morgado, “Arch generated shear bands in granular
systems,” Physica A: Statistical Mechanics and its Applica-
tions, vol. 388, no. 11, pp. 2099 – 2108, 2009.

[22] J. J. Monaghan, “Smoothed particle hydrodynamics,” Reports
on Progress in Physics, vol. 68, pp. 1703–1759, 2005.

[23] V. Heller, W. Hager, and H. Minor, “Scale effects in subaerial
landslide generated impulse waves,” Experiments in Fluids,
vol. 44, no. 5, pp. 691–703, 2008.

[24] “Spheric - sph european research interest community.”
[Online]. Available: wiki.manchester.ac.uk/spheric



Figure 6. Landslide in 5 steps (each block): PIV measure (top left), simulated SPH vector field (top right). The bottom left and right pictures show the
random walks and the gaussian filtered vector fields, respectively. The gaussian method oversimplifies the model.



Figure 7. Sketched model of the landslide of Figure 6 (top left) that corresponds to the vector field on the top right rendered with a third of the samples.
The bottom left and right pictures show the random walks and the gaussian filtered vector fields, respectively.


