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Abstract

In the mathematical morphology context, a filter is an
operator that is increasing and idempotent. We propose an
alternative way to build self-dual morphological filters, ex-
tending some results obtained for morphological centers to
a different class of toggle operators whose decision rule is
based on which primitive value is closer to the original one.
With this new approach, a wider range of primitives can be
considered without causing oscillations, a common prob-
lem in toggle mappings. We also explore the use of non-flat
structuring elements which are shown to produce sharper
filtered images. To evaluate the proposed approach, we
carry out tests on images with different kinds of noise using
different pairs of primitives. Experimental tests on Synthetic
Aperture Radar (SAR) images show promising results, out-
performing some well-known filters related to this type of
pictures.

1 Introduction

A morphological filter is defined as an operator, ρ, act-
ing on a complete lattice L that preserves the ordering ≤
of L, X ≤ Y ⇒ ρ(X) ≤ ρ(Y ), and is idempotent,
ρ(ρ(X)) = ρ(X). The first condition, usually referred
as increasingness, preserves the basic lattice features, while
the second one is due to the fact that increasing operations
are non reversible and loose information [10].

There are also some other desired properties such as self-
duality, that is, ρ∗ = ρ, where ρ∗(X) = (ρ(X∗))∗ is called
the negative operator of ρ. A self-dual operator treats the
foreground and background of an image identically.

Since its introduction in 1988, the morphological fil-
tering theory has been widely discussed. Serra and Vin-
cent [10] presented a tutorial on morphological filtering, ap-
proaching from the basic opening and closings operations to
alternating sequential filters and toggle mappings.

In [4], Heijmans explored how to construct morphologi-
cal filters and derived notions called filter-derivates, where
the idempotence condition is only partially satisfied. How-
ever, as stated by the author, the proposed construction
method in general yields filters that are not self-dual.

Subsequently [2], Heijmans showed how to build self-
dual filters by iteration of a self-dual increasing operator
using the morphological center as basis. He also gener-
alized the notion of alternating sequential filters by using
filter-derivates instead of the traditional opening and clos-
ing operations.

In the following, we present a toggle-based framework to
build self-dual morphological filters. We extend the results
obtained using morphological centers [2][10] to a different
class of toggle operators, in which the decision rule chooses
the primitive transformation that is closer to the original
pixel value. We prove that, when using suitable primitives,
the defined toggle operator converges pixelwise to one of
the primitives, constituting an activity-extensive operator.

In contrast to other approaches, which require the def-
inition of a self-dual operator to build self-dual filters [2],
here we only require that the primitives be dual operations
and bounded in a specific way. We also explore the use of
non-flat structuring elements, which lead to better filtering
results than the flat ones.

This paper is organized as follows. In the next section,
we briefly discuss toggle operators, more specifically the
morphological centers. The proposed approach and some
of its main properties are described in Section 3. Section 4
shows some experimental results, analyzing how the prim-
itives and structuring elements influence the transforma-
tion,and Section 5 presents some results of Synthetic Aper-
ture Radar (SAR) image filtering. Finally, we draw some
conclusions and future work perspectives in Section 6 .

2 Toggle Mapping and Filtering

The key idea of toggle transformations or mappings is to
associate an image with (a) a series of possible transforma-



tions (primitives), ϕi, and (b) a decision rule which deter-
mines at each pixel x the best value among the candidates
ϕi(x) [10, 11].

A simple example of toggle mapping is the binary
thresholding operation, where the decision rule involves, at
a point x, the value f(x) and the threshold level. In this case,
the primitives are the white and black, which are indepen-
dent of f(x). On the other hand, in some cases, the primi-
tives consist on transformations acting on the initial image,
as in morphological centers. The algorithm definition of a
center, γ, for a family of primitives ϕi derives from [10]:

∧̇ϕi = γ = (id ∨ η) ∧ ζ = (id ∧ ζ) ∨ η, (1)

with η = ∨ϕi and ζ = ∧ϕi, where ∨ stands for sup and ∧
for inf .

When using only two primitives, ϕ1, ϕ2, the morpho-
logical center consists on the median between f, ϕ1 and
ϕ2 [10]. The median is a self-dual nonlinear image trans-
formation frequently used for noise filtering due to its edge
preservation properties. However, it is not idempotent, and
repeated applications can make previous changes undone
and lead to oscillations [3].

Heijmans [2] used the morphological center to build self-
dual operators and subsequently self-dual filters. Basically,
he explores the fact that every increasing, self-dual operator
can be modified in such a way that the sequence of iterations
of a given image is pixelwise monotone (strictly increasing
or decreasing in each pixel). This implies on a convergence
to a limit operator that is idempotent, thus avoiding oscilla-
tion problems.

Based on these same convergence assumptions, we pro-
pose an alternative way to build self-dual morphological fil-
ters using a different class of toggle operator as basis. At
this way, a wider range of primitives can be considered.

3 Proposed filtering toggle

In order to ensure a reasonable filter behavior, the prim-
itives must have some specific properties, defined below.
Here, we restrict to the use of the lattice of gray-scale im-
ages, where several definitions can be used in a more appro-
priate way (like negation, operators are restricted to finite
window ones, and so on).

Definition 3.1. (Bound-max transform) A transformation ψ
is said bound-max if it is increasing and bounded below by
the minimum over the neighborhood defined by the struc-
turing element, that is

[ψ(f)](x) ≥ min{x̃} ∀ x̃ ∈ N (x), (2)

where N represents the neighborhood defined by the struc-
turing element.

Definition 3.2. (Bound-min transform) A transformation φ
is said bound-min if it is increasing and bounded above by
the maximum over the neighborhood defined by the struc-
turing element, that is

[φ(f)](x) ≤ max{x̃} ∀ x̃ ∈ N (x), (3)

where, again,N represents the neighborhood defined by the
structuring element.

Note that these definitions are similar to that of
extensive/anti-extensive transformations. We now define a
toggle operator with filtering properties.

Definition 3.3. (Toggle-filter) We call toggle-filter a toggle
operator defined as follows
fk+1(x) =
[ψ(fk)](x) if [ψ(fk)](x)− fk(x) < fk(x)− [φ(fk)](x),

fk(x) if [ψ(fk)](x)− fk(x) = fk(x)− [φ(fk)](x),

[φ(fk)](x) otherwise,
(4)

where the primitives φ and ψ are bound-min and bound-
max, respectively. Finally, fk is the resulting image after k
iterations.

The decision rule chooses, at each point x, the primitive
transformed value that is closer to the original one, with
the primitives being themselves transformations acting on
the initial signal. The increasingness property preserves the
partial ordering. Since not necessarily ψ ≥ id ≥ φ, we
only consider values on R+. Also note that the toggle-filter
operator it is continuous by definition.

3.1 Toggle-filter properties

In order to prove that this operator constitutes a filter, we
must show that it is increasing and idempotent. In this pa-
per, we ensure the increasingness property by considering
as primitives only compositions of increasing transforma-
tions.

We have verified through computational experiments
that, although the toggle-filter operator is not necessarily
idempotent, it has a well-controlled behavior, with a given
pixel value converging to exclusively one of the primitives
after a few iterations. However, if we impose two more con-
ditions on the primitives, we can ensure that a given pixel
converges to only one primitive from the first iteration, as
stated in Proposition 3.4.

Proposition 3.4. Suppose fk+1(x) = [ψ(fk)](x). If

1. [ψ(fk+1)]([ψ(fk)](x)) < 2[ψ(fk)](x)− fk(x)

2. [φ(fk+1)]([ψ(fk)](x)) ≤ fk(x)



then the toggle-filter operator converges pixelwise to exclu-
sively one of the primitives through the different iterations.
PROOF. The toggle operator defined in Eq. 4 can be easily
rewritten as
fk+1(x) =

[ψ(fk)](x) if [ψ(fk)](x) + [φ(fk)](x) < 2fk(x),

fk(x) if [ψ(fk)](x) + [φ(fk)](x) = 2fk(x),

[φ(fk)](x) otherwise,
(5)

We are assuming fk+1(x) = [ψ(fk)](x). So, in order to
prove that the toggle operator will converge for the same
primitive in the next iteration, we must show that fk+2(x) =
[ψ(fk+1)](x), that is,

[ψ(fk+1)]([ψ(fk)](x))+[φ(fk+1)]([ψ(fk)](x)) ≤ 2[ψ(fk)](x),

which holds when considering conditions (1) and (2). The
proof when fk+1(x) = [φ(fk)](x) is analogous.

The condition (1) of the enunciation of Proposition 3.4
implies that the difference between successive transformed
values decreases through iterations. This constitutes a pix-
elwise monotone (increasing or decreasing) sequence that
converges to a constant value through these iterations.

Proposition 3.5. Let ψ be bound-max. If
[ψ(fk+1)]([ψ(fk)](x))− [ψ(fk)](x) ≤ [ψ(fk)](x)−fk(x)
(condition (1)), (ψ)∞k=1 is monotone increasing. Thus, the
sequence must converge.
PROOF. Take an ε > 0 and let c = sup(ψk). Then c is
finite, and given ε > 0, there exists at least one integer N
such that ψN > c − ε. Since the sequence is monotone
increasing, we then have that

|c− ψk| < ε ∀ k > N

what means, by definition, that the sequence converges to c.
The proof corresponding to the primitive φ is analogous.

A toggle-filter operator whose primitives obey the con-
ditions of Proposition 3.4 is said pointwise monotone, since
it is either increasing or decreasing in each pixel. Accord-
ing to the following proposition, this also implies that it is
activity-extensive.

Proposition 3.6. The operator ρ is activity-extensive if and
only if the sequence ρn(F ) is pointwise monotone, for every
function F.
PROOF. See [2], Proposition 21.

The activity-extensive property for the toggle-filter is
more general than that of the morphological centers. When
using extensive and anti-extensive primitives, for example,

the image will not be filtered through morphological cen-
ters (in this case, the original image will be the invariance
domain since, for two primitives, the center is nothing but
the median transformation).

The following proposition gives us the necessary condi-
tions to a filter.

Proposition 3.7. If ρ is a continuous operator and ρn →
ρ∞, then ρ∞ is idempotent. In particular, if ρ is also in-
creasing, then ρ∞ is a filter.
PROOF. See [2], Proposition 15.

Now, we have the necessary results to prove that a
toggle-filter is a morphological filter.

Proposition 3.8. Let T (x) be a toggle-filter operator. If
the primitives being used obey the conditions of Proposi-
tion 3.4, then T (x) is a morphological filter.
PROOF. First, we recall that the primitives are stationary,
that is, they approach a constant value after a certain num-
ber of iterations. From our hypothesis, we are assuming
that the toggle-filter operator converges pixelwise to one of
the primitives. Thus, we have that the operator converges
pointwise to a limit, which implies that the operator is a
filter, according to Proposition 3.7.

As we mentioned before, one of the desired properties
of a filter is self-duality. Proposition 3.9 states that a toggle
operator of the format of the toggle-filter is a self-dual op-
erator if we use dual primitives, thus extending the results
obtained for morphological centers in [2].

Proposition 3.9. Consider two dual primitives ψ and φ,
that is, [ψ(f)](x) = [φ(f)]∗(x∗). If ψ is bound-max and φ
is bound-min, the toggle operator given by
T (x) =
[ψ(f)](x) if [ψ(f)](x)− f(x) < f(x)− [φ(f)](x),
f(x) if [ψ(f)](x)− f(x) = f(x)− [φ(f)](x),
[φ(f)](x) otherwise,

(6)

is a self-dual operator.
PROOF. It follows directly from the complement operator
definition.

Filter-derivates are concepts related to filters where the
idempotence condition is only partially satisfied [2][4]. In
a general way, we can use as primitives different filter-
derivates, in such a way that the toggle mapping chooses
the one that best adapts to a given pixel. Formally:



Definition 3.10. [4] (Def. 3.1) An increasing operator ρ
on a complete lattice L is called

1. an overfilter if ρ2 ≥ ρ;

2. an underfilter if ρ2 ≤ ρ;

3. an inf-overfilter if ρ(id ∧ ρ) = ρ;

4. an sup-underfilter if ρ(id ∨ ρ) = ρ;

5. an inf-filter if ρ is a filter and an inf-overfilter;

6. an sup-filter if ρ is a filter and a sup-underfilter;

7. a strong filter if ρ is both a sup-filter and inf-filter.

From the Duality Principle [4], it follows that these defi-
nitions occur in pairs. In the next section, we present some
experimental results and discuss how different parameters
(primitives, structuring elements) influence the toggle-filter
transformation.

4 Results

We have carried out tests on images with different types
of noise, namely Gaussian (mean: 5 and variance: 2),
speckle (variance: 0.04), and salt and pepper (density of
noise: 0.1), illustrated in Figure 1. We apply the toggle-
filter operator using different primitives and structuring ele-
ments, thus investigating their influence for each noise.

(a) original (b) salt and pepper (RMSE
44.98)

(c) speckle (RMSE 22.08) (d) Gaussian (RMSE 24.84)

Figure 1. Original and noisy images.

Table 1 shows the set of considered primitives, where ε:
erosion, δ: dilation, α: opening, β: closing, and

ξ(f(x)) =
{
f(x) if ¯f(x)n×n < f(x),

¯f(x)n×n otherwise,
(7)

that is, ξ is a transformation that computes the mean value of
each pixel (considering a n×n window), and then replaces
the values that are lower than the original ones. The prim-
itive ξ̃ is analogous, but replaces the values that are greater
than the original ones.

φ ψ

Primitive Property
ε sup-underfilter
α filter
αβ sup-filter
αβα sup-filter
εβ sup-underfilter
αξ inf-overfilter
ξα inf-overfilter

Primitive Property
δ inf-overfilter
β filter
βα inf-filter
βαβ inf-filter
δα inf-overfilter
ξα overfilter

ξ̃β underfilter

Table 1. Primitives considered in the tests.

The first four primitives of Table 1 obey the conditions of
Proposition 3.4. Thus, for any of these pairs of primitives,
the toggle-filter operator constitutes a morphological filter.
For the other three primitives, the convergence to a specific
primitive happens after a finite number of iterations, as we
have verified through computational experiments.

Note that we have explored the combination of morpho-
logical operations with a linear function (the mean opera-
tor). It this way, we can take advantage of the well-known
benefits of such a transformation on image filtering, as we
will illustrate in Section 4.

Tables 2, 3 and 4 show the RMSE between the origi-
nal and filtered images, using the primitives of Table 1.
Observe that we obtain lower RMSE scores when us-
ing non-flat structuring elements. In the following tables,
NF line denotes the non-flat structuring element gσ =[
− 1
σ 0− 1

σ

]
, where σ is the scale being used. NF 3 × 3

denotes the parabolic structuring function, defined as gσ =
−|σ|‖x/σ‖2. Flat denotes a 3× 3 flat structuring element.

Note that, in a general way, the NF Line structuring ele-
ment conduces to better filtering results when compared to
the paraboloid, mainly on images corrupted by speckle and
Gaussian noise.

In summary, the non-flat structuring elements transform
the image in a more efficient way, in the sense that the flat
structuring element tends to preserve most of the flat zones
(weaker filtering property). This can be partially explained
by the sharpening properties of the non-flat structuring el-
ements. Shavemaker et. al [9], for example, proved that
toggle operators using the same decision rule as ours have
sharpening properties when we consider concave structur-
ing functions as structuring elements.



Primitives 1st iteration 3rd iteration 5th iteration

ε and δ
α and β
αβ and βα
αβα and βαβ
εβ and δα
αξ and ξα
ξα and ξ̃β

NF line NF 3× 3 Flat
45.839196 52.234350 54.027818
44.993757 45.197617 45.218715
21.699680 12.951973 13.637553
21.699680 12.956552 13.636086
17.704394 14.793701 15.827039
14.973064 17.976085 18.013872
12.571361 16.782212 16.757288

NF line NF 3× 3 Flat
46.013350 61.283703 67.518490
44.993757 45.197617 45.218715
19.595721 10.279760 11.565018
19.595721 10.286949 11.566435
15.140607 14.000633 15.709358
14.576912 14.802629 15.007235
10.782583 11.210586 11.163574

NF line NF 3× 3 Flat
46.019172 64.877638 74.934927
44.993757 45.197617 45.218715
17.975740 9.959203 11.543946
17.975740 9.970478 11.545185
15.146515 14.020200 15.844139
16.323533 15.139084 15.333759
12.227002 12.652450 12.460376

Table 2. RMSE for the image with salt and pepper noise processed by the toggle-filter operator. Original RMSE: 44.98

Primitives 1st iteration 3rd iteration 5th iteration

ε and δ
α and β
αβ and βα
αβα and βαβ
εβ and δα
αξ and ξα
ξα and ξ̃β

NF line NF 3× 3 Flat
24.523561 30.261435 34.714058
22.191971 24.698720 25.086553
18.899435 21.561307 22.375694
18.899435 21.582136 22.413713
19.257814 21.058530 20.221082
15.041276 20.545192 21.373054
15.084320 21.226537 21.629886

NF line NF 3× 3 Flat
24.809651 35.635693 46.463310
22.191971 24.698720 25.086553
18.127552 20.704314 22.070463
18.127552 20.736208 22.117517
18.090144 18.203970 17.273691
14.740220 20.328898 21.663466
13.785411 19.055371 19.901742

NF line NF 3× 3 Flat
24.809942 38.150455 54.218886
22.191971 24.698720 25.086553
18.120551 20.631190 22.052810
18.120551 20.667508 22.099949
18.077752 17.670817 17.186589
16.090226 20.290186 21.610729
14.567143 18.225591 19.356990

Table 3. RMSE for the image with speckle noise processed by the toggle-filter operator. Original RMSE: 22.08

Primitives 1st iteration 3rd iteration 5th iteration

ε and δ
α and β
αβ and βα
αβα and βαβ
εβ and δα
αξ and ξα
ξα and ξ̃β

NF line NF 3× 3 Flat
27.173707 34.656156 39.394072
24.935625 27.343457 27.637299
19.421262 21.406255 22.062486
19.421262 21.445994 22.117161
19.521073 20.930390 20.081623
15.138657 20.255623 20.884832
15.353559 21.863161 22.061116

NF line NF 3× 3 Flat
27.454539 42.561361 55.180710
24.935625 27.343457 27.637299
18.258721 19.989974 21.447274
18.258721 20.039343 21.518956
18.064284 17.864865 17.195927
14.859607 19.020344 20.179912
13.700294 18.611906 19.262163

NF line NF 3× 3 Flat
27.454985 46.079805 65.533397
24.935625 27.343457 27.637299
18.213702 19.862577 21.416747
18.213702 19.914279 21.487230
18.046972 17.384279 17.185158
16.379387 18.812792 19.990120
14.576275 17.241844 18.417931

Table 4. RMSE for the image with Gaussian noise processed by the toggle-filter operator. Original RMSE: 24.84

Figure 2 shows the best results obtained for each type
of noise illustrated in Figure 1. For the salt and pepper
noise, the best result was obtained at the 5th iteration for
the parabolic structuring element at scale σ = 0.2, using
as primitives αβ and βα. For the speckle and Gaussian
noises, the best results were obtained by using the non-flat
line structuring element, with the primitives ξα and ξ̃β, at
the 3rd iteration.

We have also compared our results against the ones ob-
tained by using the combined toggle approach [10]. Let ζ
and η be two strong filters, and let (α, β) be a pair made of
an opening and a closing such that α ≤ η ≤ ζ ≤ β.

As an efficient definition rule, we may proceed as fol-
lows [10]:

1. When (ηf)(x) ≤ f(x) ≤ (ζf)(x), apply a contrast κ,
of primitives η and ζ.

2. When (αf)(x) ≤ f(x) < (ηf)(x), go down to
(αf)(x), except if (ζf −ηf)(x) is smaller than a fixed
value d. In the latter case, go up to (ηf)(x).

3. When (ζf)(x) < f(x) ≤ (βf)(x), apply a rule similar
to rule 2, possibly with a scalar d′ different from d.

Table 5 presents some results for different values of d
(15, 45 and 75, respectively), using a flat and the paraboloid
structuring element. Also, ζ = αβα and η = βαβ.

(a) salt and pepper (RMSE
9.95)

(b) speckle (RMSE 13.78)

(c) Gaussian (RMSE 13.70)

Figure 2. Results with the lower RMSE.

Again, the best results were obtained when using the
non-flat structuring elements. However, as one can observes
in Tables 2, 3 and 4, the results obtained with our approach



Gaussian speckle salt and pepper
Non-flat Flat

25.91 27.17
20.26 24.15
19.18 22.16

Non-flat Flat
23.68 24.81
21.82 23.98
20.21 22.73

Non-flat Flat
24.56 29.21
15.57 20.23
12.52 16.83

Table 5. RMSE for the noisy images using the combined
toggle approach.

are better for all images. For the Gaussian noise, for ex-
ample, the lowest RMSE for the combined toggle approach
was 19.18, against 13.70 for our approach.

In the next section, we show a “real” application of the
proposed operator that helps to comprove the presented re-
sults.

5 Application: filtering of SAR images

In the last few years, the amount of images of the Earth
produced by Synthetic Aperture Radar (SAR) systems has
increased, as well as its applications, such as targeting, nav-
igation and environmental monitoring. SAR can be defined
as a remote sensing technology that combines reflected sig-
nals to form complex high-resolution images of broad areas
of terrain. In the resulting images, a common phenomena is
the presence of speckle noise, an interference pattern which
effect is a granular aspect in the image. It is caused mainly
by interference between coherent waves which, backscat-
tered by natural surfaces, arrives out of phase at a point to
the sensor [8].

Thus, when working with SAR images, it is essential to
reduce the speckle noise in order to improve their visual
quality. Besides speckle reduction, it is required that edges
and details be preserved (without blurring), considering that
these images are frequently used for segmentation and clas-
sification purposes [7] [8].

Various algorithms have been proposed for speckle noise
reduction. Here, we compare our approach against two
well-known methods: the Lee filter [5][6] and the Frost fil-
ter [1]. In SAR images it is assumed that the speckle noise
has a multiplicative error model. The Lee filter first ap-
proximates this model by a linear one, and then apply the
minimum square error criterion to it.

The Frost filter differs from the Lee filter in the sense
that the scene reflectivity is estimated by convolving the
observed image with the impulse response of the SAR sys-
tem, which is obtained by minimizing the mean square er-
ror between the observed image and the scene reflectivity
model. It is considered an adaptive filtering algorithm, since
it adapts to the local statistics of the image to preserve edges
and small features [8].

In order to compare the results obtained with our ap-
proach against the ones obtained with the Lee and Frost fil-

ters, we have used different measures, evaluating different
aspects, such as the reduction of the noise and radiomet-
ric distortion [7][8]. In the following, let f be the original
image, n the noisy version and f̂ the filtered version.

The contrast ratio is a consistent measure of the effect of
speckle on an image, and is given by [7]

λ =
σf̂
µf̂

(8)

where σf̂ denotes the standard deviation and µf̂ the mean

of f̂ . The reduction of this ratio indicates that the speckle
noise has decreased.

Another measure is the mean of the ratio between the
noisy and filtered pixel values. When the observed mean
value differs significantly from 1 it is an indication of radio-
metric distortion. It is represented by the expression [7]:

MR =
1
NP

k∑
k=1

rk (9)

where NP is the number of pixels in the image and

rk =
n

f̂
(10)

We have also calculated the equivalent number of looks
(ENL), given by [8]:

ENL =

(
µf̂
σf̂

)2

(11)

where, again, σf̂ denotes the standard deviation and µf̂ the

mean of f̂ . This measure indicates the number of indepen-
dent intensity values averaged per pixel. Finally, we have
also measured the RMSE between the original and filtered
images.

We have carried out tests on three images. We have gen-
erated two test images by adding multiplicative noise to the
original image f , according to the equation n = f +ns∗f ,
where ns is an uniformly distributed random noise with
mean 0 and variances 0.04 (Figure 3(b)) and 0.2 (Fig-
ure 3(c)). The other test image is a real SAR image (Fig-
ure 3(d)).

Table 6 presents the scores for the test images of Fig-
ure 3. We use the pair of primitives ξα and ξ̃β (which
yielded the best results for the speckle noise in the experi-
ments of Section 4), and the paraboloid structuring element
at scale 30.

When compared to Lee and Frost filters, our approach
presents a superior performance. When considering the λ
score, for example, our approach obtained the greater re-
duction in all cases, indicating a speckle reduction. In a
future approach, one can use as primitives statistical trans-
formations that take into account the multiplicative model
of the corresponding noise as well.



(a) (b) (c) (d)

Figure 3. Test images.

Primitives Image1 Image2 Image3

λ
ENL
MR

RMSE

Operator Lee Frost Original
0.3453 0.3669 0.3989 0.5468
8.3890 7.4293 6.2852 3.3442
1.0541 1.2918 1.0766 0.9876
21.2081 25.2486 32.1366 59.1646

Operator Lee Frost Original
0.3676 0.3737 0.3775 0.4185
7.4005 7.1616 7.0163 5.7109
1.0069 1.2458 1.0026 0.9900

12.6581 15.1425 15.5593 28.1981

Operator Lee Frost Original
0.4659 0.4991 0.5148 0.5924
4.6079 4.0143 3.7729 2.8493
0.9716 1.4515 0.9615 0.9797

- - - -

Table 6. Scores for images with speckle noise processes by the toggle-filter operator.

6 Conclusions

We have proposed an alternative way to build self-dual
morphological filters based on a toggle operator whose de-
cision rule is based on which primitive value is closer to the
original one. We impose some conditions on the primitives,
in order to ensure an activity-extensive operator. When
compared with the morphological center, another class of
toggle operators used to create self-dual filters, our ap-
proach can use a wider range of primitives.

To evaluate the performance of our approach we applied
the defined operator on images with different types of noise
using different pairs of primitives. Promising results were
obtained for all test images. As we have already discussed,
the use of non-flat structuring images yields best results.

We have also shown an application of the defined oper-
ator to filter SAR images. Based on criteria that take into
account different aspects, such as the reduction of the noise
and radiometric distortion, our approach performed better
when compared to well-known methods such as the Lee
and Frost filters. This technique can be used in different
applications, if we consider that the speckle noise also has
a negative impact on ultrasound imaging, for example.

As a future work we intend to explore the multiscale ca-
pabilities of the non-flat structuring elements, as well as the
use of different classes of primitives in a multiresolution
image transformation.
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