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Abstract

Gel electrophoresis images are common results of
biomolecular techniques such as RFLP-PCR (Restric-
tion Fragment Length Polymorphism - Polymerase Chain
Reaction). These images are used to discover the genetic re-
lations between organisms. Find patterns in these images
are a complex and delayed work if it is performed by hu-
mans. Traditionally, the analysis of gel electrophoresis
images has been done by biologist using dendrogram rep-
resentations aiming to capture the relations between organ-
isms in a hierarchical organization. However this represen-
tation may be hard to analyze, especially when the infor-
mation becomes large. This highlights the need to seek new
ways of representing this type of data that become more in-
tuitive. One of that methods is MDS (Multidimensional
Scaling) which is a method used to transform measure-
ments of similarity (or dissimilarity) between pairs of
objects into points in a low-dimensional space, allow-
ing visualize the data in a form that makes it easier to
interpret. This paper proposes a new procedure to repre-
sent RFLP-PCR images as points in a low-dimensional
space, based in a MDS technique. The procedure was ap-
plied in a genomic dataset obtained from a Brazilian col-
lection of Na-fixing bacterial strains belonging to the genus
Bradyrhizobium. The results showed the efficacy of the pro-
cedure to represent the RFLP-PCR images, facilitating the
identification of patterns in a more intuitive way than den-
drogram’s representations. Also, our procedure allows an
appropriate integration with a pattern-recognition algo-
rithm, taking advantages of the visual human skills and the
computational power.

1. Introduction

Restriction Fragment Length Polymorphism - Poly-
merase Chain Reaction (RFLP-PCR) [18] is a useful

technique in the biomolecular area. The most impor-
tant applications of this technique are: genome mapping,
localization of genetic disease genes, genetic fingerprint-
ing, paternity testing and taxonomic identification among
organisms. This technique is based in the fragmenta-
tion of genomic DNA by restriction enzymes, which cut
DNA wherever a specific short sequence occurs. The result-
ing DNA fragments are then separated by length through
a process known as gel electrophoresis, resulting in a im-
age that contain a profile of bands that can be used in
genetic analysis

Usually, this analysis is done by biologist in a visual way,
but this can be a complex and delayed work, prone to sub-
jectiveness of the human perceptions. To overcome these
limitations, was proposed the use of hierarchical techniques
[7] to represent the gel electrophoresis data in a hierarchical
organization. This representation is commonly used by biol-
ogist to identify genetic relations between organisms. How-
ever there are several problems associated with this repre-
sentation [14, 16], such as : i) isomorphism, when the com-
parison between branches is symmetric then the direct dis-
tance between nodes is not directly related to their true dis-
tance; ii) scalability, dendrograms do not scale up especially
when the data size becomes large; iii) misclassification, it is
difficult to find the level where the dendrogram must be cut;
iv) dendrograms are restricted to represent hierarchical or-
ganized data, and are not suitable for analyzing data that
is not inherently hierarchically organized. These limitations
highlight the need of searching new ways to represent this
type of data.

Multidimensional Scaling (MDS)[4] is a family of tech-
niques aimed to transform (map) measurements of simi-
larity (or dissimilarity) among pairs of objects into points
in a low-dimensional space, with the objective to visual-
ize and present the data in a way that makes it easier to
interpret. In MDS, objects with high similarity are repre-
sented by close points on the target space[4]. This method
enables the users to literally “look™ at the data and to vi-
sually explore their relationships. The success of the MDS



techniques is due to its application in a wide range of prob-
lems. For example, it was applicated in phsychology[10],
marketing[5], data mining[9], molecular modeling [17, 3],
and others [14, 13, 2, 1]. Like the dendrogram representa-
tion, MDS is directly performed from the distance matrix,
which can be calculated from different data types (vectors
of characteristics, time sequences, images, etc.) using any
distance metric.

In this paper, we propose a procedure based in a MDS
technique to address the problem of representing RFLP-
PCR data. We choose the Landmark Multidimensional Scal-
ing (LMDS) technique [6, 12] to perform the mapping. This
technique was chosen because its demonstrated computa-
tional efficiency and good mapping precision [6, 12]. The
distance matrix is computed by extracting the electrophero-
gram sequence of each image and comparing them with the
Pearson’s correlation index [7]. A visual environment tool
was implemented to present the mapped data.

The proposed procedure was applied to the Bradyrhi-
zobium dataset [8], which is a set of RFLP-PCR images
obtained from a Brazilian collection of N»-fixing bacterial
strains belonging to the genus Bradyrhizobium. This bacte-
rial are important in agriculture due to its capacity of trans-
forming the nitrogen of the atmosphere (N5) into plant us-
able compounds. This dataset was analyzed with the aim to
map the images into points in a low-dimensional space, to
identify the intrinsic dimensionality of the data, and to vi-
sualize and explore the mapped data trying to identify rele-
vant groups.

The results showed the usefulness of the procedure,
facilitating the visual identification of patterns. The low-
dimensional mapping of the Bradyrhizobium dataset pre-
sented in the visual environment showed to be more in-
tuitive than the dendrogram representations presented in
[8, 11]. The procedure also allows a proper integration with
a pattern-recognition algorithm, taking advantages of the
human visual skills and the computational power.

The paper is organized as follows: Section 2.1 addresses
a method for the pre-processing of the data. Section 2.2 in-
troduces the mapping with the LMDS algorithm. Section
2.3 explains the visualization and clustering process. Sec-
tion 3 discusses the experimental results obtained with the
Bradyrhizobium dataset. Finally, in Section 4 some com-
ments and conclusions are presented. Also we remark top-
ics for future work.

2. Materials and Methods
2.1. Pre-Processing
Figure 1 shows an example of gel electrophoresis images

obtained by the RFLP-PCR technique. This images are pho-
tographs taken after the electrophoresis process [18]. In this

process DNA (or RNA) molecules are splitted into many
fragments by the action of restriction enzymes. These frag-
ments are placed into agarose gel where an electric field is
applied. Fragments with similar molecular weight tend to
move toward the positive pole at a same rate. After a pe-
riod of time, the process is stopped and the gel shows a se-
ries of bands which are darker regions that represent frag-
ments with similar size. The set of bands generated by a spe-
cific restriction enzyme in a DNA sample is called lane. The
identification of the bands in the lanes is important because
this information can be used to compare organisms. For ex-
ample in Figure 1 the lane 1 and 4 have similar band pattern,
which can suggests that the respective organism share com-
mon traits.
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Figure 1. Example of gel electrophoresis im-
ages obtained by the RFLP-PCR technique.
Each lane correspond to one organism.

Due the RFLP-PCR technique involves manual proce-
dures, many problems are induced in the image lanes, such
as: background noise, deformation in the bands, brightness
variability, overlapping bands, etc. To tackle these problems
we perform a pre-processing phase. First, each lane is sep-
arated in a individualized image file, then an electrophero-
gram sequence is computed according to the following pro-
cedure:

1. The grayscale pixel matrix of the input lane R = [r; ;]
is reduced to a sequence by averaging the columns of

the matrix: )
a1 - |
il =5 X (M

where w is the number of pixel columns;

2. The resulting sequence is smoothed by a FIR low pass
filter, getting the sequence s’ = Fir(s);

3. The sequence s’ is shifted downwards in such a way
that the relevant information (gel bands) is placed over
the zero line, this is, t[i] = s'[i] — th, where th is the
threshold to consider valid gel band and was empiri-



cally determined as: th = y1 4+ 05 X o, where p and o
are the mean and standard deviation of s’;

4. The electropherogram sequence e is obtained by zero-
ing the negative values of ¢ and normalizing the posi-
tive values with respect to the maximum value, thus:

tli .

eli] = { o M= 00
0 , tli <0

The resulting sequence, called electropherogram, contains

the useful information of the lane, but with noise reduced

and bands easily identifiable. Figure 2 depicts an example

of this pre-processing phase.
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Figure 2. Example of an image pre-
processing. The result is an eletrophero-
gram sequence.

As the MDS algorithm needs the distance information
to perform the mapping, we need to compute a distance
matrix. The similarity between two lanes is calculated us-
ing their respective electropherogram sequences. We use the
Pearson Coefficient Correlation [7] to measure the similar-
ity between each pair of sequences. This coefficient mea-
sures the degree of linear relationship between two se-

quences, regardless the amplitude scale. It ranges from +1
to -1, where a correlation of +1 means a perfect positive lin-
ear relationship between sequences. For two electrophero-
gram e, and e, the coefficient correlation is defined as:

L . _ . _
o Ey) o

where L is the electropherogram length; €,, and o, are the
mean and standard deviation of e,; &, and o, are the mean
and standard deviation of e,.

For a set of n lanes, the distance matrix A = (§;;) is a
n X n symmetric matrix, each element d;; representing the
dissimilarity between two lanes ¢ and j, calculated as:

0ij =1 =1y “)

Figure 3 shows the process of constructing the distance
matrix as described in the previous procedure.
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Figure 3. Construction of the distance matrix.

2.2. Mapping with LDMS

In this paper we use the LMDS algorithm [6] to repre-
sent the distance information and to determine the relevant
dimensionality of the dataset. The choice of this algorithm
is justified by its good performance in many datasets [12].
The first step of LMDS is to run the classical Multidimen-
sional Scaling algorithm (CMDS) [4] to map a subset of n
choosen points of the dataset, referred as landmark points
L, whose distance matrix is A,,. The second step is calcu-
late the distance-based triangulation procedure, which uses
the distances of the already-embedded landmark points to
determine where the remaining points should be placed. Fi-
nally is carried out an analysis of coordinates by eigenval-
ues decomposition in the resulting point dataset. LMDS is
summarized in Algorithm 1. In this algorithm, MazMin()
is the procedure to select the landmark points [6], u is the



mean value of the matrix solution generated by LMDS , U
are the eigenvectors, A are the eigenvalues. The possibly
n — 1 dimensional solution F' = U x X can be reduced
to an approximate 2D or 3D solution by selecting the 2 or 3
first dimensions, respectively.

Algorithm 1 LMDS

Require: A « squared distance matrix
n « desired number of landmark points
k «+ desired number of output dimensions
Ensure: F'
F' «+— matrix solution LMDS
1: N — rows(A) {data size}
Select landmark points (Use MaxMin)
2. L — MaxMin(N,A,n,1)
Calculate the submatrix Landmark A,
32 A, < D(L,L)
Call CMDS with A,,
[L, A] «— CMDS (A,)
5: ki — min(k, size(A)) {dimensions for set out}
Calculate the distance-based triangulation
6: un «— mean(A,)
7. sqrA — JA(L: ki)
8 Li V(:,1:ki)

ones(n,1)xsqrAT
. LiT (A,) xones(1,N)
9: F «— 5

Calculate the eigendecomposition
10: u « mean(F7T)
11: X «— F —u(:) x ones(1,N)
12 [U,A] « eigen(X x XT)
13 F—U"x X

The mapping with LMDS is not perfect and always im-
plies certain distortion between the original distance matrix
and the distance matrix obtained from the mapped points.
Usually this distortion is measured through a fitness index
called stress. This index evaluates the quality of the map-
ping. In this paper we use two stress functions known as
Kruskal’s stress [4], defined as:

.05 — dj; 2
o (I

oo > icjlOij — dij(X_)]Z ©
e ldig(X) - d)?

where d is the mean measure of distances; d;; is the dis-
tance computed from the mapped points.

2.3. Visualization

To visualize the resulting LMDS mapping, it was imple-
mented a tool in C language using the Visualization Tool Kit

(VTK) open source library [15]. This library was chosen be-
cause its wide variety of functions that make suitable for
interactive exploration, taking advantage of the human abil-
ities to explore data in 3D environments. The visual envi-
ronment assigns colors to the mapped points according to
the RGB color space. This environment, join to the addi-
tion of xyz-planes, can help the users to identify groups in
the data. An example of this environment is showed in the
Figure 4.
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Figure 4. 3D visualization environment in VTK

The visual environment is useful to identify roughly the
groups in the data, but this may not be enough when a more
precision is required. To overcome this limitation we pro-
pose the following procedure: first, let the user to identify
visually the number of groups, and second, supply this num-
ber of groups to a clustering method and let it to discover
these groups. We suggest the use of the K-means [7] algo-
rithm due to its simplicity and computational efficiency.

3. Results

We present here a case of study showing the application
of the proposed procedure. The dataset analyzed is formed
by RFLP-PCR images corresponding to a Brazilian collec-
tion of Ny-fixing bacterial strains belonging to the genus
Bradyrhizobium. This symbiotic bacteria is important in
agriculture by its capacity to transform the nitrogen of the
atmosphere (N3) into plant usable forms. A detailed infor-
mation of this dataset can be found in [8].

The procedure of Section 2 was applied in the Bradyrhi-
zobium dataset with the following objectives: map the im-



ages into points in a low-dimensional space, identify the in-
trinsic dimensionality of the data, visualize and explore the
mapped data trying to identify relevant groups.

The dataset is formed by 119 bacterial strains identi-
fied by a sequential number. Each strain is described by
three lanes, which correspond to the RFLP-PCR analysis
of the ribosomal region 16S with three different restric-
tion enzymes: Cfo I, Dde I and Msp I. The lanes were pre-
processed according to the procedure 2.1. Then, three dis-
tance matrices D1, D2, D3 were computed, one for each
restriction enzyme, as is depicted in the Figure 5.
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Figure 5. Pre-processing of the Bradyrhizo-
bium dataset. The result are the distance ma-
trices D1, D2 and D3.

The resulting distance matrices were used as inputs for
the LMDS algorithm. The number of landmark points n was
set to 12 points (10% of the data size). The desired dimen-
sion k entered to the LMDS algorithm was set according
to the number of positive eigenvalues resulting of mapping
the landmark points with CMDS. These dimensions were
7, 6 and 8 for the distance matrices D1, D2 and D3 re-
spectively. Figure 6 shows for each mapping the resulting
stress indexes as a function of the dimensionality. To con-
struct these stress curves, it was incrementally varied the co-
ordinate number of the LMDS mapping (from 1 dimension
to the mapping dimension) and computed the correspondent
Euclidean distance matrices, which were compared with the
original dissimilarity matrix according to equations 5 and 6.
It can be observed that steady values are reached at 5 dimen-
sions, independent of the restriction enzyme and the stress
index. This means that taking more than 5 dimensions does
not give major information of the data, and hence, this di-
mension can be considered the intrinsic dimensionality.

Figure 7 shows a 3D visualization of the LMDS map-
pings for each distance matrix, considering the three first
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Figure 6. Stress values resulting of mapping
the D1,D2 and D3 distance matrices.

dimensions. The quantity of information exhibited in these
representations is calculated as the percentages that the 3
higher eigenvalues represent on the total sum of eigenvalues
of the covariance matrix, calculated for each mapping. The
quantity of information represented in Figure 7 are respec-
tively 73%, 78% and 78% for D1, D2 and D3 mappings.
After a visual exploration, we identified 4 groups for the D1
and D3 mappings and 3 groups for the D2 mapping, which
are circled in Figure 7. These numbers of groups were in-
troduced to the K-Means algorithm, which grouped the data
using all the mapped dimensions. The resulting classifica-
tion is exhibited in Figure 8 where is possible to observe a
great similarity with the visual classification. This fact re-
marks the utility of the low-dimension representation and
the colored visual environment, which allow an easy identi-



fication of patterns, agreeing with the results that K-Means
performs in the whole dimensional space.

For reasons of comparison we show in Figure 9 a den-
drogram representation for the distance matrix D1. This was
created using the Unweighted Pair Group Method with Ar-
itmetic Means (UPGMA) [7]. Note that this representation
is more difficult to understand and get knowledge than the
MDS mappings. As we can observe, the dendogram does
not scale up for large amounts of data. Besides, it is difi-
cult to find the level to cut the tree and get the “natural” par-
tition of the data.

4. Conclusions

In this paper we propose a procedure to map RFLP-
PCR images in a low-dimensional space aiming to be vi-
sually represented. The application of this procedure in
the Bradyrhizobium dataset showed its usefulness to fa-
cilitate the identification of patterns in the data. The low-
dimensional mapping obtained by the LMDS algorithm and
represented in the visual environment showed to be more in-
tuitive than the dendrogram representations found in [8, 11].
Also, the procedure allowed us to integrate the visual explo-
ration with a pattern-recognition algorithm, taking advan-
tage of the human visual skills and the computational power
and precision. With this integration we identified between 3
and 4 groups in the analyzed dataset, which are similar with
the results found in the literature using dendogram repre-
sentations. By other hand, the stress indexes can be used to
determine the intrinsic dimensionality of the data, which in-
dicates the enough quantity of dimensions of the resulting
mapping to be considered when a pattern-recognition algo-
rithm is used. In the next future we will apply the proposed
procedure in more datasets to compare and to validate the
found patterns from a biological point of view.
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