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Abstract 
 

This paper addresses the problem of maximum 
pseudo-likelihood estimation of the non-homogeneous 
Potts-Strauss image model parameters using higher-
order non-causal neighborhood systems in a 
computationally efficient way. The motivation is the 
development of a new methodology for contextual 
classification that uses combination of sub-optimal 
MRF algorithms for multispectral image classification, 
which requires accurate parameters estimation. The 
results show that the method is consistent with real 
image data and in the presence of random noise.  
 
1. Introduction 
 

In most MRF applications, model parameters are 
still chosen by trial and error [1]. The objective of this 
paper is to propose a method for parameter estimation 
of non-homogeneous isotropic Potts-Strauss MRF 
model through maximum pseudo-likelihood approach 
non restricted to first-order neighborhood systems, and 
also make multispectral contextual classification fully 
operational without human intervention.  
 
2. An approach for parameter estimation 
using higher-order neighborhood systems 
 

For a general neighborhood system, the local 
conditional density function (LCDF) for a pairwise 
interaction inhomogeneous Potts-Strauss model is: 
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where  is the number of neighbors equal to the 
central element,  is the spatial dependency parameter 
of region/class k and M is the total number of 
regions/classes. In this work, we adopt Besag’s 

maximum pseudo-likelihood approach (MPL). Taking 
the derivatives of the log-PL functions and setting the 
results to zero leads to: 
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We derive the proposed estimator by extending a 
method that expands the derivative of the log-PL 
function based on the number of occurrences of each 
possible configuration pattern along the image [2]. The 
proposed estimation method will be part of the MRF 
parameter estimation module from the contextual 
classification system illustrated in Figure 1. 

 

 
Figure 1. Contextual classification system using 

combination of sub-optimal MRF iterative algorithms 
 

2.1. Mapping the possible configurations 
 

In first-order neighborhood system, the enumeration 
of all possible interactions is straightforward, since 
there are only five different cases, as shows Figure 2, 
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