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Abstract

This paper addresses the problem of maximum
pseudo-likelihood estimation of the non-homogeneous
Potts-Srauss image model parameters using higher-
order non-causal neighborhood systems in a
computationally efficient way. The motivation is the
development of a new methodology for contextual
classification that uses combination of sub-optimal
MRF algorithms for multispectral image classification,
which requires accurate parameters estimation. The
results show that the method is consistent with real
image data and in the presence of random noise.

1. Introduction

In most MRF applications, model parameters are
still chosen by trial and error [1]. The objective of this
paper is to propose a method for parameter estimation
of non-homogeneous isotropic Potts-Strauss MRF
model through maximum pseudo-likelihood approach
non restricted to first-order neighborhood systems, and
also make multispectral contextual classification fully
operationa without human intervention.

2. An approach for parameter estimation
using higher-order neighborhood systems

For a genera neighborhood system, the local
conditional density function (LCDF) for a pairwise
interaction inhomogeneous Potts-Strauss mode is:
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where U;;(m) is the number of neighbors equal to the
central element, B, isthe spatial dependency parameter
of region/class k and M is the tota number of
regiong/classes. In this work, we adopt Besag's

maximum pseudo-likelihood approach (MPL). Taking
the derivatives of the log-PL functions and setting the
resultsto zero leads to:
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We derive the proposed estimator by extending a
method that expands the derivative of the log-PL
function based on the number of occurrences of each
possible configuration pattern along the image [2]. The
proposed estimation method will be part of the MRF
parameter estimation module from the contextual
classification system illustrated in Figure 1.
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Figure 1. Contextual classification system using
combination of sub-optimal MRF iterative algorithms

2.1. Mapping the possible configurations

In first-order neighborhood system, the enumeration
of al possible interactions is straightforward, since
there are only five different cases, as shows Figure 2,



from all different labels to identical labels. These
configurations can be represented by vectors (Equation
3), indicating the number of occurrences of each label
around the central element, similar to a histogram.
Note that in the Potts-Strauss model, location
infformation is irrelevant (isotropic model). By
denoting this vector representation, we can generate all
possible configurations that define the interaction of a
central pixel with its neighbors through the solutions of
the following set of N-2 equations:
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with 0<x <N and xe{0,1,...,N}. The number of

possible configurations (A4 ) grows exponentially as the
number of neighborsincreases (ie., 5, 22, 637,...).
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Figure 2. Possible interactions between a central pixel and
its neighbors for afirst-order neighborhood system.

\:/0=(llll); \j1=(2,11110): (4)
v,=(2,20,0); V,=(310,0);
v,=(4,0,0,0);

2.2. Expanding the derivative log-PL function

Given the complete set of possible interactions, now
it is possible to expand the second term of (2). We can
regard the numerator as an inner product of two vectors

Uij and Vi, where Uij represents the configuration
vector of the current pixel and W, is the vector
w; [n]=exp{BU, [n]}. Similarly, the denominator is
the inner product of W with F =[11,...,1] . Thus, the

derivative of log-PL functions are expanded in a
summation of A terms, each one associated with a
possible configuration. However, as it involves a sum
for al image pixels, we define constantsK , i =1,..., 4

representing the number of occurrences of each
possible neighborhood configuration pattern along the
field. Thus, the solution can be obtained in an efficient
way by finding the zero of the resultant equation
through a numerical agorithm, preferably one that
does not require the computation (or even the
existence) of derivatives. In the experiments we
implemented Brent's method [3], which uses a
combination of bisection, secant, and inverse quadratic
interpolation methods.

3. Experiments and results

In the experiments we considered a sample of a
multispectral NMR fruit image, formed by T1, T2 and

Po bands, provided by Embrapa Agricultura
Instrumentation. These images have been used on the
development of a hon-invasive fruit quality assessment
system. We chose a mango transversal section Py band
image with dimensions of 256 x 256 pixels, 255 gray
levels and 3 classes: fruit, seed and background. To test
the method against different types of noise, we
degraded the image with a signal dependent Poisson
noise and a zero mean independent Gaussian noise.
The image partition in regions was generated by a
maximum likelihood classifier.
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Table 1. MPL parameter values for first, second and
third-order neighborhood systems

Original Poisson Gaussian
B.=19280 . =14441 J. =09723
First-Order ~ ~ A
Neighborhood Bs=21480  B;=15350 B =1.18%0
B.=22045 j,=21696 3, =2.1661
f-=15898 . =12711 f3. =0.9628
Second-Order ~ ~ ~
Neighborhood Bs =1.6615 Bs=1339 s =11125
B, =16876 [,=16784 3, =13035
JB.=13958 . =11808 /3. =0.8992
Third-Order ~ ~ ~
Neighborhood Bs=14490  [=12492 [ =1.0237
B, =14104 . =14114 j,=09273

4. Conclusions

The proposed method alows the statistica
modeling of less restrictive contextual systems in a
large number of MRF applications. Furthermore, the
numerical methods adopted are not based on intensive
global optimization algorithms, leading to an efficient
estimation procedure. Also, the final solution is robust
to variations on the initial conditions.
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