Analyzing Polarimetric Imagery with gg Mixture Modelsand SEM Algorithm
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Abstract per, each pixel information, denoted, obeys a mixture

modelM (0, p) given by f(z) = >-7_, pifi(z,0;), where

This paper presents the use of a finite mixture model for }-?_, p, = 1 are non-negative proportions arfe z, ;)
multi-look polarimetricSAR image analysis. The pixels are are densities that characterize mga(ai, C;,n) law, given

complex covariance matrices set ag mixture distribu- by [1]:
tion. The parameters are estimated with 8EMalgorithm [P (i — )
Experimental results on re8AR data are reported, show- fi(2,0;) = :

h(n, m)|Ci|"T (—a;)(—a; — 1) 1)

ing that a careful statistical model is important. ! ‘
(nTr(C772) 4 (—ag — 1) 7™,

whereh(n,m) = #™"m=D/2T(n)---T'(n —m + 1), m is

1. Introduction the number of polarimetric componentsthe number of
looks, T'r and|.| are the trace and determinant amd< 0
In multi-look polarimetric imageryRol SAR), the sta- IS the roughness parameter. When— —oo, under cer-

tistical modeling process turns out to be able to design ef-tain conditions, the pixels obey the complex Wishart law

fective techniques for processing and analysis. This typeV(Ci, n), given by [2]

of data has been classically described using the complex P [ exp(—nTr(C 1 2))

Wishart and Polarimetri&” distributions [1, 2]. fi(2,0;) = - o e
The gg distribution was proposed to model extremely (n, m)|C]

heterogeneous areas, but it can also be used to describe In [1], the G)(a;, C;,n) parameters were estimated by

heterogeneous and homogeneous clutter [1]. In this paperthe moment method. These estimators are integrated in the

Pol SARdata are modeled as a finite mixturegjfdistribu- SEMalgorithm.

tions, where each component corresponds to a specific sta- Given m;(Z) the ith-order sample moment of thi'

(@)

tistical land-cover. The parameters are estimated with thesampleZ = (Z;,...,Zy) from an area, the covariance
stochastic expectation-maximizatioBEM algorithm [3]. matrix is computed by
Thegg mixture model was compared with the Wishart mix- A
ture model. ¢ =mi(Z). (3)
The roughness is calculated with the mean of the estimates
2. Moded for Pol SARImage Data a; of each intensity channgle {hh, hv,vv} by
In the multi-lookPol SARimagery the observed value at I2(—é; — 1/4)T% (7 + 1/4) B i (Z;)

each pixels is formed a complex covariance matrix [1] re- T'(—a; — 1/2)T'(n + 1/2)(=a:)T(2) My 5(Z;) =0

lated to the dielectric properties of the scene. In this pa- 4)



Law Kappa Accuracy

I mage 1 Go(a,C,n=3) 044 68%
(558 x 491)  W(C,n = 3) 0.22 56%
Image 2 G9(a,C,n=3) 0.70 85%
(890 x 491)  W(C,n =3) 0.52 72%

Table 1. Classification with  SEMAIgorithm.

3. SEMAIgorithm

The SEMis an iterative stochastic algorithm which for-
malizes the problem of the parameters estimation of a mix-
ture distribution as an incomplete data problem [3]. It dgoi
the analytical maximization of the expected log-likelikdoo
function and the moment estimators are used instead. Given
0% theith component parameters in theh iteration, where
0F = (af,CF) for G law or6F = C¥ for Wishart law, the
algorithm has three steps and alternates between these thre
steps until convergence. The image can be grouped using, N—
for instance, a maximum a posterior decision rule. ig .

The E-Step updates the posterior probabili- df
ties for each pixel and each mixture component by 4
Tty = pi fil25.08)) 32021 P felz5, 0).

The S-Stegrandomly samples a label for each pixel ac-
cording to the current estimate@. of the jth pixel parti-
tioning, thus, the image in groups{Q?, ..., Q%}.

TheM-Stepupdates the parameters estimateﬂb*y1 = (c) Wishart mixture model
#{QF}/N and@F** are updated by equations (4) and (3)
with the pixels of groug¥.
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Figure 1. Classification with  SEMAlgorithm.
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