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Abstract 
 

The non-invasive in vivo nature of magnetic 
resonance imaging (MRI) makes it the modality of 
choice of many neuroanatomical imaging studies. This 
paper discusses automatic brain structure 
segmentation based on previous knowledge on 
statistical models. The method is validated by an 
experiment involving magnetic resonance images 
acquired from 20 healthy adult individuals (10 men 
and 10 women). The results provide normative data of 
the midsagittal surface area of the corpus callosum 
from a 46-55 years old range group, splitting results 
by gender. Our results were also compared with data 
obtained from other authors, validating the correlation 
between brain volume and the area of this structure. 
The final goal of this work is computer-aided diagnosis 
for brain diseases. 
 
1. Introduction 
 

The preference for non-invasive clinical diagnosis 
allied to computational improvements and high quality 
images obtained on magnetic resonance (MR) justify 
the increasing popularization of medical imaging 
exams in the neuroanatomy research area. 

Some volumetric measurements acquired from 
magnetic resonance images are used to evaluate and 
quantify the impact of certain brain diseases on the 
human central nervous system [2][3]. Despite the 
acceptance of MR volumetric measurements as 
possibly reflecting ongoing brain diseases, this 
information is not routinely demanded by clinical or 
surgical specialists, as manual segmentation takes 

much time from the radiologist, besides being 
subjective and error-prone [4]. According to Marchetti 
et al [5], the time spent on manual segmentation of the 
hippocampus may take 75 minutes per patient/exam. 

The goal of this work is to use image-processing 
methods and previous knowledge on statistical models 
to obtain automated segmentation and labeling of brain 
regions in order to support radiologists to make clinical 
diagnosis. 

In this work, the automated segmentation was 
achieved by spatially normalizing all the structural 
images to the same stereotaxic space, segmenting the 
normalized images into gray matter, white matter and 
cerebral spinal fluid, and finally performing region- 
labeling techniques. The normalization approach used 
voxel-based morphometry (VBM). The VBM 
technique allows us to compare different brains on a 
voxel-by-voxel basis after the deformation fields have 
been used to spatially normalize the images [1]. 

Our experiment analyzed 20 different MR scans (10 
men and 10 women) obtained from OASIS database, 
with age ranging from 46 to 55 years old, in order to 
calculate the corpus callosum area. The corpus 
callosum is a prominent white matter bundle, readily 
identifiable on magnetic resonance imaging, which 
connects the two cerebral hemispheres in a homotopic 
organization with reference to the cortex representation 
[19]. Besides the corpus callosum key role in 
normative processes of inter-hemispheric 
communication and specialization [20], it is also 
important due to its vulnerability to environmental 
toxins, white matter diseases (such as multiple 
sclerosis) and schizophrenia [37, 21]. The size of the 
corpus callosum was also investigated by 
neurobiologists working in many specialized fields, 



 

including handedness [22], musical ability [23], 
schizophrenia [24], autism [25] and Alzheimer’s 
disease [26][27]. 

 We intended to verify gender differences of corpus 
callosum area obtained on a midsagittal plane. Similar 
studies were proposed by several different authors 
using MR manual segmentation or other dissection 
techniques [6, 7, 8, 9, 10, 11, 12, 13, 14]. Automatic 
segmentation of other specific brain regions, such as 
the hippocampus, may play an important role on 
Alzheimer´s disease, even when symptoms are still 
subtle [4]. 

The rest of this article is organized in five more 
sections. Section 2 explains how automatic 
segmentation of brain tissue can be done using VBM 
techniques and anatomical atlas. Section 3 describes 
our practical experiments and presents the corpus 
callosum surface area of the 20 studied subjects, 
splitting results by gender and different age ranges. 
Section 4 evaluates our results. Section 5 compares our 
proposal to related work. Final considerations and 
future works are presented in Section 6. 
 
2. Brain Tissue Segmentation Based on 
Anatomical Atlas 
 

Segmentation using anatomical atlas [15] is based 
on previously knowledge of the image signal intensity 
and spatial probability distribution of the anatomical 
structures. This method became possible due to 
improvements in image normalization and 
morphometry techniques, as detailed in the following 
paragraphs. 

Image normalization is the process of transforming 
different data sets into one coordinate system [16]. 
Normalization is necessary to compare or integrate 
data sets obtained from different measurements. The 
result of an image registration process is a set of 
matrices describing linear and non-linear 
transformations.  Those linear transformations consist 
of a combination of 12 affine parameters representing 
translation, rotation, global scaling, shearing and 
perspective effects. The non-linear or non-rigid 
transformation approaches include polynomial 
wrapping and interpolation of smooth basis functions. 
The result is a deformation mapping built by linear 
combination of discrete cosine transforms. The optimal 
transformation parameters were achieved by applying a 
Gauss-Newton optimization method [18].  The goal is 
to transfer the original image to the same stereotaxic 
space of the reference image, called template [16]. 

The reference image represents the common brain 
shape considering different populations. The template 
was designed over voxel-based morphometry. VBM is 

a neuroimaging analysis technique that allows 
investigation of brain volume variability considering 
different individuals. The reference image is smoothed, 
so that each voxel represents the average of itself and 
its neighbors [15]. Voxel is a volume unit, representing 
a value on a regular grid in a tridimensional space. 

Equation 1 represents the mathematical 
representation of image normalization, where gφ is the 
spatial transfer function composed by parameter φ; hψ 
is the intensity transfer function composed by 
parameters ψ, It is the reference image and γ is the 
translation matrix used to align source coordinates. The 
parameters φ are the 12 parameters of an affine 
transformation function, including parameters from a 
deformation field function. The parameters ψ compose 
the intensity mapping function. The objective function 
consists of estimating parameters φ e ψ in order to 
approximate the terms of equation 1. 

γφψ += ))),,((( zyxgIhI t  (1) 
Equation 2 is the problem formulation, where Bt is 

the region of interest mapped at the template image and 
B̂  expresses the same region in the original image. 

)),,((),,(ˆ zyxgBzyxB t φ=  (2) 
The normalization computational approach is 

achieved by a linear algorithm, whose function is to 
minimize the square-difference between the original 
image and the template, as showed in expression 3. 
Matrix M represents the transformation parameters, 
f(Mxi) is the original image, g(xi) is the template and 
w, a constant. 
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Image segmentation refers to the process of 
partitioning a digital image into multiple regions. In 
neuroanatomy, image segmentation classifies voxels 
into three tissue categories: gray matter, white matter 
and cerebral spinal fluid. The process uses a modified 
Gaussian model by knowing the prior spatial 
probability of each brain tissue categorization. 
Equation 4 expresses the probability of a voxel 
belonging to category k, following a bayesian model 
[17], where rijk is the probability function of the 
template and sijk is the probability function of the 
original image [18]. The indices i and k represent the 
coordinates (abscissa and ordinate) of a slice from the 
normalized image. 
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The segmentation computational approach is 
achieved by a linear algorithm, whose function is to 
maximize expression 5. 
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As the corpus callosum is a white matter structure, 

in the following step, we applied the automated 
segmentation based on the white matter tissue. This 
process is achieved by grouping regions after applying 
a region clustering technique. The major area region 
represents the corpus callosum. A cropping rectangular 
window around the corpus callosum was applied to 
delimit the regions considered. That window was 
necessary to eliminate the brainstem area from 
segmented image. The brainstem is another brain 
structure, whose area is bigger than the corpus 
callosum. The cropping window coordinates are the 
same for all images. Those coordinates were defined 
based on the template image, eliminating the need for 
user interaction in the segmentation process. 

The final step is transferring back the corpus 
callosum region to the original image coordinate 
system by applying the inverse deformation mapping. 
The corpus callosum area is computed by counting its 
pixels and multiplying them by their spatial 
dimensions. 

Figure 1 and Figure 2 show the normalization and 
segmentation processes, respectively. Figure 3 and 
Figure 4 show the corpus callosum (CC) region 
identification and labeling achieved by applying the 
inverse deformation mapping in order to transfer back 
the image to its original coordinate system. 

 

 
Figure 1. Image normalization 
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Figure 2. Image segmentation 

 

 
Figure 3. CC region identification 
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Figure 4. CC labeling 



 

3. Corpus Callosum Segmentation Results 
 
The MR images used in this work were acquired 

from OASIS database, a public compiling and 
distributing MRI datasets facility, available by HHMI 
at Harvard University, NRG at Washington University 
School of Medicine and Biomedical Informatics 
Research Network, BIRN [28]. 

The analyzed images were from 20 non-demented 
right handed subjects (50% males and 50% females), 
with age ranging from 46 to 55 years old. The images 
format was 16-bit Analyze 7.5 with dimensions 256 x 
256 x 128, voxel size 1 x 1 x 1.25mm, oriented in the 
sagittal plane. 

The VBM images were made available by MNI 
(Montreal Neurological Institute) as part of ICBM 
(International Consortium for Brain Mapping), NIH P-
20 project [29]. 

Our implementation utilized Mathworks Matlab and 
the SPM (Statistical Parametric Mapping) framework, 
developed by College London University [30]. 

The routines were processed on a Pentium 2.4GHz, 
1GB RAM, taking about 3 minutes to complete the 
normalization and segmentation processes for each 
image. 

Figure 5 shows final corpus callosum segmentation 
results of 10 female subjects. Figure 6 shows results 
considering 10 male subjects. Finally, Table 1 shows 
the total brain volume (TBV), midsagittal corpus 
callosum (CCA) surface area and a ratio analysis 
between them (CCA/TBV), considering the entire 
image dataset. The ratio CCA/TBV was proposed to 
permit comparisons of different populations [1, 32]. 
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Figure 5. Corpus callosum segmented from 
female subjects 
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Figure 6. Corpus callosum segmented from 
male subjects 

 
Table 1. Total brain volume, corpus 

callosum surface area and CCA/TBV ratio, 
splitting results by gender. 

  TBV 
(dm³) 

CCA 
(cm²) 

CCA / 
TBV 
ratio 

(10-3cm-1)
1 1.27 4.42 3.48 
2 1.38 6.62 4.80 
3 1.35 5.98 4.42 
4 1.37 5.59 4.06 
5 1.39 5.13 3.70 
6 1.56 6.18 3.97 
7 1.46 6.05 4.13 
8 1.35 6.69 4.97 
9 1.42 5.18 3.65 
10 1.41 5.46 3.87 

Fe
m
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e 

su
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ts

 

average 1.39±0.076 5.73±0.71 4.10 
 

1 1.60 7.01 4.37 
2 1.71 6.65 3.88 
3 1.63 7.17 4.41 
4 1.58 7.06 4.46 
5 1.52 6.51 4.28 
6 1.69 5.84 3.46 
7 1.59 6.14 3.87 
8 1.76 7.34 4.16 
9 1.57 6.48 4.12 
10 1.61 6.62 4.09 

M
al

e 
su

bj
ec

ts
 

average 1.67±0.082 6.62±0.53 4.09 
final 

average 1.51±0.137 6.17±0.76 4.10 
TBV – total brain volume; CCA – corpus callosum area 
 



 

4. Results Evaluation 
 

Sullivan et al [31] predicted that some differences in 
outcomes for corpus callosum area, considering 
different genders, would be significantly attenuated or 
entirely removed with adjustment based of brain sizes. 
These results can be observed in Table 1, comparing 
the CCA/TBV ratio between genders. 

Salat et al [12] divided the corpus callosum in 3 
sectors: anterior, middle and posterior sectors. They 
examined gender differences in area and age-related 
atrophy of the corpus callosum. The areas of the CC 
and CC sectors between genders were compared with 
and without head size correction. Despite differences 
in CC sectors, the adjusted CC areas were close, 
considering different genders. 

Smith et al [32] argued that the corpus callosum 
midsagittal area depends on brain volume. Hence, it is 
necessary to consider certain ratios involving brain and 
corpus callosum, in order to allow comparisons of the 
corpus callosum size among groups or individuals who 
have different brain volumes. 

Johnson et al [10] presented the corpus callosum 
area of 200 individuals based on MR manual 
segmentation, without head size correction. Table 2 
shows its values, arranged by gender and age. 

 
Table 2. CC manual segmentation based on 

200 subjects according to Johnson et al. [10] 
Men Women Age range 
N Area [cm²] N Area [cm²]

16-25 30 6.80±0.96 19 6.58±1.07 
26-35 20 6.94±1.02 22 6.36±0.76 
36-45 14 6.78±1.16 20 6.72±1.03 
46-55 18 6.76±1.08 24 6.32±0.93 
56-65 18 6.16±0.83 15 6.18±0.93 
16-65 100 6.70±1.02 100 6.44±0.94 

CC – corpus callosum; N – number of individuals studied. 
 
Laissy et al [33] showed the corpus callosum area 

of 124 individuals without adjustment based on brain 
size, arranged by gender as condensed in Table 3. 
 

Table 3. CC manual segmentation based on 
124 subjects according to Laissy et al [33] 

Gender N Area [cm²] 
Men 63 6.54±1.26 

Women 61 6.17±1.07 
Total 124 6.36±1.19 

CC – corpus callosum; N – number of individuals studied. 
 

Evaluating those works from different authors, we 
concluded that our automated segmentation method 
results are similar to the literature. The CCA/TBV 
average ratios showed in Table 1 are very close, 
considering the corpus callosum area and total brain 
volume of individuals from different genders. The 
corpus callosum area itself is close to the values 
published by different authors that used manual 
segmentation. Manual segmentation depends on the 
technique used by the radiologists, leading to a few 
differences among areas obtained by different 
specialists. This may explain the difference among our 
area results and the ones showed in Table 2, especially 
for female images. On the other hand, our average 
CCA/TBV index values were very similar for both 
genders. 

Evaluating Figure 5, besides the corpus callosum, 
another linear anatomical structure (the fornix) was 
identifiable in two analysed individuals (patients 
number 1 and 4). The fornix is a white matter structure 
located below to corpus callosum. In certain images, 
the signal intensity of these structures were very 
similar to the corpus callosum, so that  the region 
identification algorithm  incorrectly classified the 
fornix as belonging to corpus callosum. Despite being 
a small structure, its inclusion can be a method 
restrictor that can impact the final corpus callosum area 
analysis. 

 
5. Related Work 
 

Lundervold et al [34] proposed an automated 
segmentation of the corpus callosum in midsagittal 
sections, using both multispectral MRI measurements 
and prior information about shape (CC template). The 
algorithm has been successfully tested on a sample of 
10 subjects scanned with multispectral MRI, collected 
from a study of dyslexia. 

Hamarneh et al [35] presented an automatic 
segmentation model based on deformable organisms. It 
is a dynamic mesh model with physics-based 
framework that identifies object boundary considering 
its deformation parameters. The paper shows robust 
and consistent results. 

Lee at al [36] proposed a new algorithm to find the 
corpus callosum automatically from midsagittal brain 
MR images using the statistical characteristics and 
shape information of the corpus callosum. A region- 
growing algorithm is applied in order to match 
previous shape information. The proposed algorithm 
was applied to 120 images and provided promising 
results. 

The common characteristic of the works related 
above is the need of previous knowledge achieved by 



 

an initial shape or prototype in order to obtain the 
segmentation of the object of interest. This paper 
proposes a completely automated method to segment 
the corpus callosum, using a region identification 
technique from an MR midsagittal white matter 
segmented image. Hence, the knowledge of an initial 
shape or seed is not necessary in our method. 
 
6. Conclusions 
 

Volumetric measurements of brain structures can 
have several applications for diagnosis, tracking and 
treatment options of some diseases, which can 
demonstrate size and shape changes of certain 
anatomic structures, such as those observed in the 
corpus callosum and multiple sclerosis disease [37]. 

This work proposed the use of VBM techniques for 
automatic brain tissue segmentation and automatic 
calculation of the corpus callosum surface area from an 
MR midsagittal image. Our corpus callosum 
segmentation method is completely automatic. There is 
no need for a seed. We used a segmentation method 
based on anatomical atlas, which has a previously 
knowledge of the image signal intensity and spatial 
probability distribution of the anatomical structures.  

The application of this work is useful to support 
future researches involving brain structures and their 
impact in the case of brain degenerative diseases. 
Another application can provide normative data in 
order to measure the impact of the corpus callosum 
atrophy and its damage to brain cognitive functions, 
correlating the anatomic volumes or areas with other 
signals or clinical tests. 

In practice, the structure segmentation process is 
usually made manually by the medical specialist, 
which is time-consuming and error-prone. For this 
reason, automatic structure segmentation is certainly of 
great value for the medical staff. 

The future challenge will be the design of a 
computer-aided diagnosis system that identifies brain 
structure anomalies and correlates them to specific 
brain diseases. 
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