
Improved Real-Time Shadow Mapping for CAD Models

Vitor Barata R. B. Barroso

TecGraf, Computer Science Dept., PUC-Rio

vbarata@tecgraf.puc-rio.br

Waldemar Celes

TecGraf, Computer Science Dept., PUC-Rio

celes@tecgraf.puc-rio.br

Abstract

Shadow mapping is a widely used rendering tech-

nique for real-time shadow generation. However, it

may produce jagged shadow borders and incorrect

self-shadowing artifacts. When applied to CAD (Com-

puter-Aided Design) models, it presents additional

challenges due to the existence of thin and complex-

silhouette objects, high depth range, and high depth

complexity. In this work, we present a short survey of

shadow mapping algorithms and investigate their

suitability to CAD model rendering. We also present

two improvements to existing techniques: a general-

ized parameter for LiSPSMs (Light-Space Perspective

Shadow Maps) and an adaptive z-partitioning scheme.

1. Introduction

Shadows are very important visual effects on

computer-generated scenes because they reveal infor-

mation about the spatial relationships among objects

and enhance the realism of the visualization. Unfortu-

nately, generating fast and accurate shadows is still

challenging due to the global nature of the problem.

Recently, there has been a lot of discussion about

shadow mapping, a widely used shadow rendering

technique due to its simplicity, efficiency and general-

ity. The technique is particularly attractive to CAD

model rendering because it does not require an expen-

sive analysis of the model’s geometry (although ge-

ometry shaders are making such analysis cheaper).

As an image-space algorithm, shadow mapping [1]

suffers from aliasing problems due to the limited reso-

lution available for sampling the scene. This results in

jagged shadow borders and the incorrect self-

shadowing of objects. These artifacts are particularly

strong and difficult to avoid in CAD models because

of their high depth range and depth complexity, and

the presence of many thin complex-silhouette objects

such as bars and lattices.

In this paper, we present a survey of shadow map-

ping techniques that address the problems of self-

shadowing and aliasing. Each algorithm is analyzed

considering visual quality, computational efficiency,

ease of implementation and suitability to CAD model

rendering. Additionally, we present two improvements

to existing techniques. First, we build on the works of

Wimmer et al. [2] and Zhang et al. [3] to derive a

LiSPSM (Light-Space Perspective Shadow Map) pa-

rameter generalized to different angles between the

light and view directions. Second, we propose an adap-

tive z-partitioning scheme based on the work of Lloyd

et al. [4,5]. By combining these improvements with a

set of previous techniques, we achieved real-time high-

quality shadow rendering, as illustrated in Figure 1.

The remainder of the paper is organized as fol-

lows: Section 2 reviews and analyses several existing

techniques and their suitability to CAD model render-

ing. Section 3 presents our generalized LiSPSM pa-

rameter and our adaptive z-partitioning scheme.

Section 4 presents results and additional remarks.

Finally, conclusions are drawn in Section 5.

2. Survey of shadow mapping techniques

The standard shadow mapping technique [1] first

renders the scene from the viewpoint of the light

source and stores the depth buffer in a texture called

shadow map. Then, the scene is rendered again from

the viewer’s position. Each pixel is transformed back

Figure 1. Shadow-mapped CAD Model

into the light space, where it is determined to be in

shadow if its depth is farther from the light source than

the corresponding value in the shadow map.

The main problems associated with shadow map-

ping are incorrect self-shadowing and aliasing arti-

facts. In this section, we analyze existing techniques

that address these problems and discuss their suitabil-

ity for CAD model rendering.

2.1. Depth bias and sample alignment

When using the shadow mapping technique, incor-

rect self-shadowing artifacts may appear because of the

limited precision and resolution available to sample

depth values throughout the scene.

Ideally, the depth of a lit pixel in relation to the

light source is equal to the corresponding value stored

in the shadow map. However, when a pixel is trans-

formed into light space, it does not align exactly with

the center of a shadow map texel [6]. Therefore, the

two samples do not actually represent the same point,

which produces wrong shadow test results: a lit pixel

may be considered to be in shadow.

Usually, the self-shadowing problem is countered

by adding a small bias to the depth values stored in the

shadow map [1]. However, if the bias is exaggerated,

shadows are visibly pushed away from their true posi-

tions. The choice of an appropriate value can be hard,

since it depends on factors such as the thickness of

scene objects, the relative position of the camera and

the light source, and the shadow map resolution [6].

A generic bias zbias can be conveniently expressed

as a function of the depths of the first (z1) and second

(z2) surfaces nearest to the light source [8]. The value

stored in the shadow map is then given by:

(1)

Table 1 summarizes the zbias functions proposed

by different authors.

The Second-Depth technique, (b) in Table 1, re-

quires the scene to include only thick solid objects.

When this condition is satisfied, the bias can be im-

plemented easily and efficiently with polygon front-

face culling, and the overall result is often satisfactory.

Unfortunately, however, CAD models often include

non-solid objects, which invalidate this approach.

Midpoint-based techniques, (c) and (d) in Table 1,

disregard back-facing surfaces for z2. The upper bound

in (d) is required to avoid self-unshadowing artifacts

when using back-face culling [8]. Although these tech-

niques produce the best results in a general scene, they

have the drawback of requiring an additional shadow

map generation pass to obtain the second surface using

depth peeling. Therefore, they are more recommended

for static scenes and uniform shadow maps (with no

view-dependent warping or partitioning), which may

be generated only once. However, since warping is

highly recommended for CAD model visualization

(Section 2.3), the additional cost of midpoint tech-

niques may become prohibitive. Because of that, we

generally recommend the use of a simple constant bias.

As a different approach to avoid self-shadowing

artifacts, Wang & Molnar [6] introduce the technique

of sample alignment. Since the camera samples do not

lie on the centers of the shadow map texels, they calcu-

late a virtual sample, on the plane tangent to the object

surface, which does lie in the right spot. Note that the

alternative, reconstructing the shadow map value that

matches each camera sample, does not work well,

since interpolated depth values between two different

occluders have no useful meaning.

When combined with depth bias, camera sample

alignment greatly reduces self-shadowing artifacts (al-

though some issues persist, as discussed in [6]). There-

fore, the technique is recommended when depth bias

alone cannot avoid the problem.

2.2. Filtering

Jagged shadow borders are usually filtered using

PCF (Percentage-Closer Filter) [9], which is applied to

the results of multiple shadow tests. A more efficient,

recently presented alternative is the use of VSMs

(Variance Shadow Maps) [10].

With VSMs, the shadow map stores not only the

depth, but also the squared depth of each sample.

These values are filtered and then used to determine

the mean µ and variance σ² of all the samples inside

the filter kernel. In the final rendering pass, Cheby-

chev’s inequality is calculated for every pixel:

(2)

In Equation (2), pmax is the maximum probability

that a pixel should be lit, considering the distribution

of depths inside the filter region. This value is used

directly as the resulting light intensity for the pixel.

Unfortunately, VSMs are not well suited for CAD

model rendering. In their paper, Donnely & Lauritzen

pointed out that VSMs may produce light bleeding

()211 , zzzzz biasmap +=

()
() max

22

2

p
z

zzP

pixel

pixelmap ≡
−+

≤≥
µσ

σ

Table 1. Typical zbias functions

Technique zbias(z1,z2)

 (a) Constant Bias [1] zoffset

 (b) Second-Depth [6] z2-z1

 (c) Midpoint [7] (z2-z1)/2

 (d) Dual-Depth [8] min ((z2-z1)/2, zmax)

artifacts [10]. This effect is particularly strong in CAD

models due to the high depth range and depth com-

plexity, as can be seen in Figure 2. In region A, the

silhouette of a tower can be seen because of a high σ²

value. In region B, light bleeding occurs because the

filtered depth values (µ) are interpolated with a far

away object, inverting the result of the depth test and

skipping the calculation of pmax according to the VSM

algorithm. Finally, in region C, the term (zpixel - µ) in

(2) is very small, making pmax rise and the shadow dis-

appear. Because of such strong light bleeding artifacts,

VSMs are not recommended for CAD model visualiza-

tion, and PCF should be used instead. Current re-

searches on “Summed Area VSMs” [11] have at-

tempted to eliminate light bleeding, but such an ap-

proach has yet to be tested.

Percentage-closer filtering is already supported di-

rectly by some video cards with a 2×2 kernel. Larger

filters are also becoming less expensive with the in-

creasing fragment processing power of current graph-

ics hardware. Kryachko’s implementation [12] of a

circular filter kernel with jittered samples seems very

appealing, since it efficiently eliminates banding ef-

fects. On the other hand, the test samples and adaptive

refinement proposed in that work may introduce arti-

facts in shadows of complex-silhouette objects such as

lattices, and therefore this optimization should be

avoided when performance is not at critical levels. We

recommend a 3×3 to 5×5 kernel size.

One aspect of PCF is often overlooked. The kernel

should be considered in texel space, not in pixel space.

In other words, the distance between the centers of two

cells should be that of one texel. This means the filter

region will automatically adjust its size to blur the ali-

ased shadow border region. However, shadows with no

visible aliasing will remain unblurred as hard-shadows.

Unfortunately, this is necessary to guarantee proper

blur where aliasing is strong. After all, PCF is an anti-

aliasing technique, not properly a soft shadow one.

Normally, PCF’s shadow tests compare only one

camera sample with several shadow map values, which

aggravates self-shadowing artifacts. In order to avoid

this problem, multiple camera virtual samples should

be generated on the surface’s tangent plane [6]. When

a regular filter kernel is used in texel space, only the

first virtual sample must be calculated, while the others

can be obtained by simple texture coordinate additions.

For a circular jittered kernel, however, aligning the

samples one by one can be expensive and cancel the

jitter effect. In this case, we recommend calculating the

virtual samples at the exact coordinates given by the

PCF kernel, without alignment to the texel centers.

This is usually enough to prevent self-shadowing arti-

facts with a small constant bias.

2.3. Warping or parameterization

Several techniques attempt to minimize aliasing

artifacts by warping the shadow map to an appropriate

space before sampling the scene. In this work, we fo-

cus on perspective parameterization techniques, intro-

duced by Stamminger & Drettakis [13]. The idea is to

apply a perspective transformation to the scene in such

a way that objects closer to the viewer (not necessarily

close to the light source) appear in a larger area of the

shadow map. The techniques have only a very low cost

on CPU to compute the transform matrix and can dras-

tically reduce shadow border aliasing in most cases.

In order to understand perspective warping and its

benefit, we must first define an aliasing error metric.

Consider Figure 3, where a surface area can be seen by

both the camera and the light source. The camera and

light beams pass through one image pixel and one

shadow map texel, respectively, and hit the surface

with angles θc and θL, covering areas wc’ and wL’.

Note that, when wL’ > wc’, a single shadow map

texel determines the shadow state of more than one

image pixel. Therefore, we can define the aliasing er-

ror m as the ratio between the areas “seen” by a

shadow map texel and an image pixel [5]:

(3)

Figure 3. Aliasing error metric

surface

Light
beam

Camera
beam

θc

θL

wL

wL’

wc

wc’

()

()Lc

cL

c

L

w

w

w

w
m

θ

θ

cos

cos

'

'

≈=

Figure 2. Light Bleeding with VSMs

Figure 4. Perspective warp P fit to a frustum V

Equation (3) is often used to classify aliasing into

perspective aliasing (wL/wc) and projection aliasing

(cos(θL)/cos(θc)) [13]. The second type is potentially

unbounded and depends on the orientation of each

surface of the scene in relation to the light and view

directions. Since this effect is also less noticeable and

not avoided by perspective warping, it is usually ig-

nored in the analysis of such algorithms.

Now, consider Figure 4, where V is the view frus-

tum. The light and view directions are perpendicular in

this case. Perspective warping techniques first fit a

frustum P around the view volume (and objects that

cast shadows into it). Before updating the shadow map,

they apply the perspective transformation associated

with P to the scene. In the figure, V has a field-of-view

of 2φ, near plane n and far plane f. Similarly, P has a

field-of-view of 2φ’, near plane n’ and far plane f’. A

generic point on the central axis of V, which is at a

distance z from the camera, is mapped to a distance z’

from point c, the center of projection of P. The coordi-

nates (x’,y’,z’) correspond to the “light space” defined

in the LiSPSM paper [2], whose origin gives the posi-

tion of c. The shadow map coordinates (s,t) are as-

sumed to be aligned with (x’,z’), respectively.

The strength of the perspective warp is controlled

by the parameter n’. When n’ = n, we have the PSM

(Perspective Shadow Map) technique [13]. When

n’→ ∞, the warp loses strength and becomes orthogo-

nal, leading to the standard shadow mapping. The

LiSPSM (Light-Space Perspective Shadow Map) pa-

rameter is the one that minimizes Mz,

the maximum error in the z direction:

(4)

It can be shown [2,5] that, while PSM minimizes

the maximum error in the x direction, it makes the er-

ror in the z direction grow linearly with z, which pro-

duces strong aliasing on surfaces not close to the near

plane. On the other hand, LiSPSM minimizes the

maximum error in the z direction while also keeping a

small maximum error in the x direction. Furthermore,

LiSPSM guarantees that the error in the z direction is

equal on both the camera’s near and far planes, which

is beneficial for z-partitioning (Section 2.4). For those

reasons, we recommend the use of LiSPSM for CAD

model rendering and other applications.

2.4. Partitioning

Partitioning techniques subdivide the scene ac-

cording to some criteria and generate a different

shadow map for each partition. The shadow map reso-

lution allocated to each partition may be the same or

be decided by an aliasing error metric.

In this section, we focus on face and z-partitioning

as described by Lloyd et al. [4,5]. Compared with

other techniques [14,15], these are simpler to imple-

ment, require fewer rendering passes, and can more

easily be combined with warping for better results.

Every perspective warping technique fails when

the light and view directions are near parallel. In this

situation, the parameterization is usually forced to

converge to the standard shadow mapping by imposing

n’→ ∞ [2,5]. This difficulty can be overcome by divid-

ing the view frustum according to its faces, as seen by

the light source, and generating a different shadow

map for each division with its own transformation

[4,5]. This “face partitioning” approach, however, can

be too expensive, as it requires at least four shadow

maps to be generated each frame. Besides, despite its

excellent results in the near-parallel case, the technique

does not improve shadow quality when the light is per-

pendicular to the view direction.

As a different approach, z-partitioning attempts to

achieve higher shadow quality in all cases by dividing

the view frustum along its z axis, as shown in Figure 5.

A shadow map, either warped or not, is then generated

for each partition. This can be seen as a piecewise ap-

proximation of the optimal logarithmic parameteriza-

tion of the shadow map [5], which gives constant alias-

ing error in both x and z directions.

y'

z'

light map
0 t 1

0 n z f

far

near

camera
c

φ’ φ
d

P

V

wL

wC

0 n’ z’ f ’

nfnn LiSPSM +='

[]
()

cyLz
fnz

z wwM
,

max
∈

=

 (a) perpendicular light (b) parallel light

Figure 5. View frustum, as seen by the light
source, with z-partitioning

2φ

camera

V

y

z

0 n f

V

2a 2b

2/3 n f 1/3 n f
n n

With z-partitioning, the maximum aliasing error in

each partition is proportional to its f / n ratio. As a re-

sult, the optimal z-partitioning scheme uses self-similar

partitions, that is, which have the same f / n ratio [4,5],

as in Figure 5a. For a total of k partitions, the i’th parti-

tion satisfies:

(5)

As shown by Lloyd et al. [5], z-partitioning can

provide more benefit than face-partitioning with the

same number of subdivisions. Moreover, the use of

only 2 or 3 partitions with LiSPSM warping suffices to

greatly reduce aliasing errors when the light is either

perpendicular or parallel to the view direction. This is

thus the recommended setting for most systems.

3. Proposed improvements

In this section, we propose two improvements to

existing techniques. First, we build on [2,3,5] to derive

a LiSPSM parameter generalized to different angles

between the light and view directions. Second, we pro-

pose an adaptive z-partitioning scheme based on the

work of Lloyd et al. [4,5].

3.1. Generalized LiSPSM parameter

Recall that Figure 4 shows the optimal configura-

tion for the LiSPSM warp, when the light and view

directions are perpendicular. Based on the figure and

on our aliasing error metric (Equation 3), it can be

shown [5] that, for an image of (rescx × rescy) pixels

and a shadow map of (resls × reslt) texels, the maximum

error in the z direction is given by:

(6)

The derivative in Equation (6) is calculated from

the standard OpenGL perspective transformation:

(7)

Figure 4 also gives:

(8)

(9)

Equations (8) and (9) are only valid for the situa-

tion depicted in Figure 4, where the light and view

directions are perpendicular. If the light is tilted to-

wards or away from the camera, we must consider the

two general cases shown in Figure 6, where the small-

est angle between the light and view directions is γ.

Aided by the auxiliary triangles shown in Figure 6a,

we can see that:

(10)

(11)

In these equations, a and b are half the height of

the view frustum’s near and far planes, respectively.

Substituting (10) into (7), differentiating, and using the

() () ()

() () ()





<<−++

≤≤−++
=

y

y

fzb

nzan
z

φγγγ

πγφγγ

0,sincosn'

2,sincos'
'

()

1

1

tan2

1
−









==

dz

dt

zres

res

w

w
m

lt

cy

yc

zl

z

φ

()
()

() ()'''

''

''

''

2

1

2

1
'

nfz

nf

nf

nf
zt

−
−

−

+
+=

nfnf

nznz

−+=

−+=

''

''

() () () ()

()





<<+

≤≤−+++
=

y

y

bn

nfban
f

φγγ

πγφγγ

0cos2'

2,sincos'
'

light

light

map

map

0
0

n’

n’
z’

z’

f ’

z’

z’
γ

z z f f
n

n

P
P

V V

γ γ
a a

b b
z z

φ φ

γ

γ a

z-n

(z-n)sin(γ)

a / tan(γ)

f ’

γ

c

c

()

},...,2,1{,, 1

1

ki
n

f
nnf

n

f
nn

ki

ii

ki

i ∈







==








= +

−

 (a) φ ≤ γ ≤ π/2 (b) 0 < γ < φ

Figure 6. Shadow Map generalized perspective parameterization

result in (6), we find the generalized error in the z di-

rection:

(12)

Differentiation of Equation (12) shows that the er-

ror function has only one local minimum in z ∈ [n,f].

The maximum error must then occur at the camera’s

near and far planes, and can be minimized by making

its value equal on those extremes:

(13)

Equation (13) represents a generalized LiSPSM

parameter that keeps the maximum error minimized

when γ < π/2. Unfortunately, however, n2’ assumes

negative values when the light and view directions are

near parallel. This means that our constraint is impos-

sible to satisfy, which corroborates the fact that every

perspective warp must converge to the standard

shadow mapping in this case [2,3,5]. In order to obtain

a smooth transition in the shadow quality, we modify

Equation (13) using the following new constraints:

(14)

In Equation (14), γlim is the limit angle where we

stop using Equation (13). To avoid numerical instabil-

ity and the generation of overly wide warp frustums, it

should be kept higher than φ. We recommend using the

angle which makes the near and far faces of the view

frustum superpose in the light’s view:

(15)

Our modified parameter can now be written as:

(16)

In Equation (16), the function r(γ) descends from

r(γlim) = 1 to r(0) = 0, which satisfies the constraints of

Equation (14). In their paper, Zhang et al. propose the

following function for the PSM case [3]:

(17)

For our LiSPSM case, however, we required r(γ)

to descend faster to zero, once again to avoid exces-

sively wide warping frustums. We have achieved good

results with the following function:

(18)

Figure 7 shows the form of the final generalized

LiSPSM parameter. The warp at first becomes stronger

as the light is tilted towards or away from the view

direction. Below the limit angle γlim, the warp quickly

converges to the standard shadow mapping.

In general, we have achieved better shadow qual-

ity with our generalized LiSPSM than with other

parameterizations for most light directions. Figure 8

compares the standard and generalized LiSPSM warps

for a lattice shadow close to the near plane, where the

improvement is most noticeable. Nevertheless, one

must keep in mind that minimizing the maximum error

over the entire view frustum does not guarantee a

minimal error everywhere in the scene. A simpler

technique like the original LiSPSM or PSM might give

better results for specific cases.

()
()

z

nz
n

w

w
nzm

yc

zl

z

2
),',(

),'(,',
γψ

γξγ ==

() () ()

() () ()





<<−++

≤≤−++
=

y

y

fzbn

nzan
nz

φγγγ

πγφγγ
γψ

0,sincos'

2,sincos'
),',(

()
()

()γφ
γξ

sin

1

''

''

tan2

1
),'(

fn

nf

res

res
n

ytl

yc −
=

() ()

() () () ()

() () () ()






<<−+=

≤≤−+=
=⇒

=

y

y

zz

bnffn

anfnn
n

nfmnnm

φγγγγ

πγφγγγ

γγ

0,cossin

2,cossin
'

,',,',

'

2

'

1

() ()lim

'

1lim

'

2

'

2
0

lim

γγ

γ

nn

n

=

∞=
→















−

+
=

nf

ba
arctanlimγ

() () () ()

()
()

()








<<=

≤≤−+=

=
lim

lim

'

1'

2

lim

'

1

0,

2,cossin

'
γγ

γ

γ
γ

πγγγγγ

r

n
n

anfnn

n

()













=

2
sin

lim

π

γ

γ
γr

()

2

lim 2
1sin1










































−+=

π

γ

γ
γr

Figure 7. Generalized LiSPSM parameter

(n = 1, f = 100, φφφφy = ππππ/6).

Figure 8. Left: Standard LiSPSM.

Right: Generalized LiSPSM.

3.2. Adaptive z-partitioning

Recall the z-partitioning scheme described in

Section 2.4. When the light and view directions are

perpendicular, the use of self-similar partitions and of

LiSPSM warping guarantees that the maximum alias-

ing error in the z direction is minimal and equal in the

near and far planes of every partition. In the x direc-

tion, the error is small and does not change drastically

over the view frustum. These are important properties

because otherwise a sudden change in the shadow

quality would be noticeable as a “seam” at the inter-

face between partitions.

However, when the light and view directions are

not perpendicular, the LiSPSM warp converges to the

standard shadow mapping. As a result, the aliasing

error in both directions has its maximum value at the

near plane and minimum value at the far plane of each

partition. In this case, the algorithm produces visible

seams between each pair of partitions, as shown by the

detail on the left in Figure 9. Moreover, the seams

move together with the camera, which catches the

user’s attention and becomes very distracting.

In order to minimize seams, the ratio f / n of all

partitions, except the one closest to the camera, should

be kept small. This reduces the difference between the

maximum error at the near plane and the minimum

error at the far plane. The disadvantage is that the error

close to the camera (near plane of the first partition)

becomes higher than with the optimal partitioning.

In this paper, we propose an adaptive partitioning

scheme. When the light and view directions are per-

pendicular, the optimal z-partitioning should be used

to minimize the maximum error over the view frustum.

In the near-parallel case, however, every i’th partition

but the first should have its (fi / ni) ratio reduced to a

small value αi. A smooth transition can be achieved by

linearly interpolating the distance of each subdivision

between the optimal and limit cases, using the angle γ

between the light and view directions as the weight:

(19)

Note that Equation (19) is calculated iteratively,

starting with the last partition (i=k) and backward until

the second (i=2), always using the values of fi previ-

ously calculated by the linear interpolation. The first

partition has n1=n and f1=n2. It can be shown that,

when γ = π/2, Equations (5) and (19) are equivalent.

Figure 9 compares the shadows generated by the

optimal z-partitioning technique and our adaptive one

with 2 partitions. The interface between the partitions

is indicated with a white arrow. In the left detail, opti-

mal partitioning produces the best shadow quality

close to the far plane of the first partition. However,

the technique produces a visible seam between this

region and the beginning of the next partition. When

using the proposed adaptive scheme with α=2, aliasing

is not reduced so dramatically in the first partition, but

the seam becomes almost unnoticeable.

Empirically, we recommend a value α no higher

than 4 without PCF filtering and no higher than 2 with

PCF, since the filter in texel space as described in

Section 2.2 makes seams more noticeable (note the

blur in the second partition in the left of figure 9).

4. Results and additional remarks

We have implemented all the techniques discussed

thoroughly in this paper on a machine with a dual core

2.4GHz processor and a GeForce 8800 GTS graphics

card. Tests were performed on an oil platform CAD

model with 250k triangles, using 800×600 screen reso-

lution and 2048×2048 shadow maps.

For our performance tests, we used constant bias,

generalized LiSPSM warping, 2 adaptive partitions

along the view frustum’s z axis and 5×5 texel-space

PCF with jittered kernel samples and multiple non-

aligned virtual sample generation. Despite the extra

cost associated with the generation of two shadow

maps and the use of PCF in the final rendering pass,

these techniques can run faster than the standard

shadow mapping for some camera and light views, as

shown in Table 2, since frustum culling can be opti-

()














=

∈−+

























==

=

≤≤=

−

−

nn

ki
f

n

f
nfn

ff

i

i
i

i

i

ii

k

1

1

1 }2,3,...,{,1

10,
2

α
λλ

λ
π

γ
λ

Figure 9. Adaptive z-partitioning with detail on
the right. The detail on the left shows the re-

sult of optimal z-partitioning with visible seam

mized for each partition. The results in the table were

obtained for a close-up view where about 20% of the

scene’s geometry was visible to the camera, while the

light sources circled around the scene at a far distance.

From our results, it should also be noted that, due to

the increasing fragment processing power of graphics

cards, PCF can be applied with nearly negligible cost.

As a final remark, it is important to notice that,

when aliasing is not completely eliminated, view-

dependent warping techniques can cause shadow bor-

ders to crawl while the camera or light moves around.

Fortunately, blurring the shadow borders with PCF

makes this effect much less noticeable. However, the

situation of near-parallel light and view directions must

still be handled with care to avoid disturbing temporal

changes in shadow quality. This emphasizes the impor-

tance of a good partitioning scheme.

5. Conclusion

We have presented a survey of shadow mapping

techniques that attempt to reduce self-shadowing and

aliasing artifacts. In particular, we have investigated

the effectiveness of depth bias, sample alignment, fil-

tering, perspective warping and partitioning techniques

when applied to CAD model visualization. For this

kind of application, we recommend the use of a con-

stant bias or the dual-depth technique when generating

the shadow map, as well as LiSPSM warping and 2 or

3 partitions along the view frustum’s z axis. In the final

rendering pass, we recommend the use of texel-space

PCF with a 3×3 to 5×5 jittered kernel and multiple

non-aligned virtual samples. We have concluded that

this set of techniques can produce high quality shad-

ows in real-time for CAD models.

Additionally, we have presented improvements to

existing techniques: a generalized parameter for

LiSPSMs, which keeps the maximum error in the z

direction minimized for different angles between the

light and view directions; and an adaptive z-

partitioning scheme that minimizes seams, that is,

avoids sudden changes in shadow quality between each

pair of partitions.

Acknowledgements

During this research, the first author was finan-

cially supported by Brazilian agency CNPq. Tecgraf is

a laboratory at PUC-Rio that is mainly funded by the

Brazilian oil company, Petrobras.

References

[1] L. Williams, “Casting curved shadows on curved sur-

faces”, Proceedings of ACM SIGGRAPH’78, ACM Press,

1978, vol. 12, pp. 270-274.

[2] M. Wimmer, D. Scherzer, and W. Purgathofer, “Light

space perspective shadow maps”, Proceedings of the Euro-

graphics Symposium on Rendering 2004, Eurographics As-

sociation, 2004, pp. 143-152.

[3] F. Zhang et al., “Generalized Linear Perspective Shadow

Map Reparameterization”, Proceedings of the ACM interna-

tional conference on virtual reality continuum and its appli-

cations, 2006. pp. 339-342.

[4] B. Lloyd et al., “Subdivided Shadow Maps”, University

of North Carolina at Chapel Hill, 2005, Technical Report

TR05-024.

[5] B. Lloyd et al., “Warping and Partitioning for Low Error

Shadow Maps”, Proceedings of the Eurographics Sympo-

sium on Rendering 2006, Eurographics Association, 2006,

pp. 215-226.

[6] Y. Wang, and S. Molnar, “Second-Depth Shadow Map-

ping”, The University of North Carolina at Chapel Hill,

1994, Technical Report TR94-019.

[7] A. Woo, “The Shadow Map Revisited”. D. Kirk (ed.),

Graphics Gems III, AP Professional, Boston, 1992, pp. 338-

342.

[8] D. Weiskopf, and T. Ertl, “Shadow Mapping Based on

Dual Depth Layers”, Proceedings of the Eurographics 2003

Short Papers, Eurographics Association, 2003, pp. 53-60.

[9] W. Reeves, D. Salesin, and R. Cook, “Rendering antiali-

ased shadows with depth maps”, Proceedings of ACM SIG-

GRAPH’87, ACM Press, 1987, vol. 21, pp. 283-291.

[10] W. Donnelly, and A. Lauritzen, “Variance shadow

maps”, Proceedings of the 2006 symposium on Interactive

3D graphics and games, ACM Press, New York, NY, USA,

2006, pp. 161-165.

[11] http://forum.beyond3d.com/showthread.php?t=38165,

Internet forum, last access on 07/20/2007.

[12] Y. Kryachko, “Efficient Soft-Edged Shadows Using

Pixel Shader Branching”, M. Phar, and R. Fernando (Ed.),

GPU Gems II, ch. 17, NVidia Corp., 2005, pp. 269-282.

[13] M. Stamminger, and G. Drettakis, “Perspective

shadow maps”, Proceedings of ACM SIGGRAPH’02, ACM

Press, 2002, pp. 557-562.

[14] J. Arvo, “Tiled shadow maps”, Proceedings of Com-

puter Graphics International 2004, IEEE Computer Society,

2004, pp. 240-247.

[15] R. Fernando et al., “Adaptive shadow maps”, Proceed-

ings of ACM SIGGRAPH, ACM Press, 2001, pp. 387-390.

Table 2. Performance results

 Technique

Lights

Standard

Shadow Map

Recommended

Techniques

1 dynamic light 45 fps 29 to 59 fps

2 dynamic lights 25 fps 18 to 30 fps

