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Abstract 
 

Shadow mapping is a widely used rendering tech-

nique for real-time shadow generation. However, it 

may produce jagged shadow borders and incorrect 

self-shadowing artifacts. When applied to CAD (Com-

puter-Aided Design) models, it presents additional 

challenges due to the existence of thin and complex-

silhouette objects, high depth range, and high depth 

complexity. In this work, we present a short survey of 

shadow mapping algorithms and investigate their 

suitability to CAD model rendering. We also present 

two improvements to existing techniques: a general-

ized parameter for LiSPSMs (Light-Space Perspective 

Shadow Maps) and an adaptive z-partitioning scheme. 

 

1. Introduction 
 

Shadows are very important visual effects on 

computer-generated scenes because they reveal infor-

mation about the spatial relationships among objects 

and enhance the realism of the visualization. Unfortu-

nately, generating fast and accurate shadows is still 

challenging due to the global nature of the problem. 

Recently, there has been a lot of discussion about 

shadow mapping, a widely used shadow rendering 

technique due to its simplicity, efficiency and general-

ity. The technique is particularly attractive to CAD 

model rendering because it does not require an expen-

sive analysis of the model’s geometry (although ge-

ometry shaders are making such analysis cheaper). 

As an image-space algorithm, shadow mapping [1] 

suffers from aliasing problems due to the limited reso-

lution available for sampling the scene. This results in 

jagged shadow borders and the incorrect self-

shadowing of objects. These artifacts are particularly 

strong and difficult to avoid in CAD models because 

of their high depth range and depth complexity, and 

the presence of many thin complex-silhouette objects 

such as bars and lattices. 

In this paper, we present a survey of shadow map-

ping techniques that address the problems of self-

shadowing and aliasing. Each algorithm is analyzed 

considering visual quality, computational efficiency, 

ease of implementation and suitability to CAD model 

rendering. Additionally, we present two improvements 

to existing techniques. First, we build on the works of 

Wimmer et al. [2] and Zhang et al. [3] to derive a 

LiSPSM (Light-Space Perspective Shadow Map) pa-

rameter generalized to different angles between the 

light and view directions. Second, we propose an adap-

tive z-partitioning scheme based on the work of Lloyd 

et al. [4,5]. By combining these improvements with a 

set of previous techniques, we achieved real-time high-

quality shadow rendering, as illustrated in Figure 1. 

The remainder of the paper is organized as fol-

lows: Section 2 reviews and analyses several existing 

techniques and their suitability to CAD model render-

ing. Section 3 presents our generalized LiSPSM pa-

rameter and our adaptive z-partitioning scheme. 

Section 4 presents results and additional remarks. 

Finally, conclusions are drawn in Section 5. 

 

2. Survey of shadow mapping techniques 
 

The standard shadow mapping technique [1] first 

renders the scene from the viewpoint of the light 

source and stores the depth buffer in a texture called 

shadow map. Then, the scene is rendered again from 

the viewer’s position. Each pixel is transformed back 

 
Figure 1. Shadow-mapped CAD Model 



into the light space, where it is determined to be in 

shadow if its depth is farther from the light source than 

the corresponding value in the shadow map. 

The main problems associated with shadow map-

ping are incorrect self-shadowing and aliasing arti-

facts. In this section, we analyze existing techniques 

that address these problems and discuss their suitabil-

ity for CAD model rendering. 
 

2.1. Depth bias and sample alignment 
 

When using the shadow mapping technique, incor-

rect self-shadowing artifacts may appear because of the 

limited precision and resolution available to sample 

depth values throughout the scene. 

Ideally, the depth of a lit pixel in relation to the 

light source is equal to the corresponding value stored 

in the shadow map. However, when a pixel is trans-

formed into light space, it does not align exactly with 

the center of a shadow map texel [6]. Therefore, the 

two samples do not actually represent the same point, 

which produces wrong shadow test results: a lit pixel 

may be considered to be in shadow. 

Usually, the self-shadowing problem is countered 

by adding a small bias to the depth values stored in the 

shadow map [1]. However, if the bias is exaggerated, 

shadows are visibly pushed away from their true posi-

tions. The choice of an appropriate value can be hard, 

since it depends on factors such as the thickness of 

scene objects, the relative position of the camera and 

the light source, and the shadow map resolution [6]. 

A generic bias zbias can be conveniently expressed 

as a function of the depths of the first (z1) and second 

(z2) surfaces nearest to the light source [8]. The value 

stored in the shadow map is then given by: 
 

(1) 
 

Table 1 summarizes the zbias functions proposed 

by different authors. 

The Second-Depth technique, (b) in Table 1, re-

quires the scene to include only thick solid objects. 

When this condition is satisfied, the bias can be im-

plemented easily and efficiently with polygon front-

face culling, and the overall result is often satisfactory. 

Unfortunately, however, CAD models often include 

non-solid objects, which invalidate this approach. 

Midpoint-based techniques, (c) and (d) in Table 1, 

disregard back-facing surfaces for z2. The upper bound 

in (d) is required to avoid self-unshadowing artifacts 

when using back-face culling [8]. Although these tech-

niques produce the best results in a general scene, they 

have the drawback of requiring an additional shadow 

map generation pass to obtain the second surface using 

depth peeling. Therefore, they are more recommended 

for static scenes and uniform shadow maps (with no 

view-dependent warping or partitioning), which may 

be generated only once. However, since warping is 

highly recommended for CAD model visualization 

(Section 2.3), the additional cost of midpoint tech-

niques may become prohibitive. Because of that, we 

generally recommend the use of a simple constant bias. 

As a different approach to avoid self-shadowing 

artifacts, Wang & Molnar [6] introduce the technique 

of sample alignment. Since the camera samples do not 

lie on the centers of the shadow map texels, they calcu-

late a virtual sample, on the plane tangent to the object 

surface, which does lie in the right spot. Note that the 

alternative, reconstructing the shadow map value that 

matches each camera sample, does not work well, 

since interpolated depth values between two different 

occluders have no useful meaning. 

When combined with depth bias, camera sample 

alignment greatly reduces self-shadowing artifacts (al-

though some issues persist, as discussed in [6]). There-

fore, the technique is recommended when depth bias 

alone cannot avoid the problem. 

 

2.2. Filtering 
 

Jagged shadow borders are usually filtered using 

PCF (Percentage-Closer Filter) [9], which is applied to 

the results of multiple shadow tests. A more efficient, 

recently presented alternative is the use of VSMs 

(Variance Shadow Maps) [10]. 

With VSMs, the shadow map stores not only the 

depth, but also the squared depth of each sample. 

These values are filtered and then used to determine 

the mean µ and variance σ² of all the samples inside 

the filter kernel. In the final rendering pass, Cheby-

chev’s inequality is calculated for every pixel: 

 

 

(2) 

 

In Equation (2), pmax is the maximum probability 

that a pixel should be lit, considering the distribution 

of depths inside the filter region. This value is used 

directly as the resulting light intensity for the pixel. 

Unfortunately, VSMs are not well suited for CAD 

model rendering. In their paper, Donnely & Lauritzen 

pointed out that VSMs may produce light bleeding 
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Table 1. Typical zbias functions 

Technique zbias(z1,z2) 

 (a) Constant Bias [1] zoffset 

 (b) Second-Depth [6] z2-z1 

 (c) Midpoint [7] (z2-z1)/2 

 (d) Dual-Depth [8] min ( (z2-z1)/2, zmax ) 

 



artifacts [10]. This effect is particularly strong in CAD 

models due to the high depth range and depth com-

plexity, as can be seen in Figure 2. In region A, the 

silhouette of a tower can be seen because of a high σ² 

value. In region B, light bleeding occurs because the 

filtered depth values (µ) are interpolated with a far 

away object, inverting the result of the depth test and 

skipping the calculation of pmax according to the VSM 

algorithm. Finally, in region C, the term (zpixel - µ) in 

(2) is very small, making pmax rise and the shadow dis-

appear. Because of such strong light bleeding artifacts, 

VSMs are not recommended for CAD model visualiza-

tion, and PCF should be used instead. Current re-

searches on “Summed Area VSMs” [11] have at-

tempted to eliminate light bleeding, but such an ap-

proach has yet to be tested. 

Percentage-closer filtering is already supported di-

rectly by some video cards with a 2×2 kernel. Larger 

filters are also becoming less expensive with the in-

creasing fragment processing power of current graph-

ics hardware. Kryachko’s implementation [12] of a 

circular filter kernel with jittered samples seems very 

appealing, since it efficiently eliminates banding ef-

fects. On the other hand, the test samples and adaptive 

refinement proposed in that work may introduce arti-

facts in shadows of complex-silhouette objects such as 

lattices, and therefore this optimization should be 

avoided when performance is not at critical levels. We 

recommend a 3×3 to 5×5 kernel size. 

One aspect of PCF is often overlooked. The kernel 

should be considered in texel space, not in pixel space. 

In other words, the distance between the centers of two 

cells should be that of one texel. This means the filter 

region will automatically adjust its size to blur the ali-

ased shadow border region. However, shadows with no 

visible aliasing will remain unblurred as hard-shadows. 

Unfortunately, this is necessary to guarantee proper 

blur where aliasing is strong. After all, PCF is an anti-

aliasing technique, not properly a soft shadow one. 

Normally, PCF’s shadow tests compare only one 

camera sample with several shadow map values, which 

aggravates self-shadowing artifacts. In order to avoid 

this problem, multiple camera virtual samples should 

be generated on the surface’s tangent plane [6]. When 

a regular filter kernel is used in texel space, only the 

first virtual sample must be calculated, while the others 

can be obtained by simple texture coordinate additions. 

For a circular jittered kernel, however, aligning the 

samples one by one can be expensive and cancel the 

jitter effect. In this case, we recommend calculating the 

virtual samples at the exact coordinates given by the 

PCF kernel, without alignment to the texel centers. 

This is usually enough to prevent self-shadowing arti-

facts with a small constant bias. 

 

2.3. Warping or parameterization 
 

Several techniques attempt to minimize aliasing 

artifacts by warping the shadow map to an appropriate 

space before sampling the scene. In this work, we fo-

cus on perspective parameterization techniques, intro-

duced by Stamminger & Drettakis [13]. The idea is to 

apply a perspective transformation to the scene in such 

a way that objects closer to the viewer (not necessarily 

close to the light source) appear in a larger area of the 

shadow map. The techniques have only a very low cost 

on CPU to compute the transform matrix and can dras-

tically reduce shadow border aliasing in most cases. 

In order to understand perspective warping and its 

benefit, we must first define an aliasing error metric. 

Consider Figure 3, where a surface area can be seen by 

both the camera and the light source. The camera and 

light beams pass through one image pixel and one 

shadow map texel, respectively, and hit the surface 

with angles θc and θL, covering areas wc’ and wL’. 

Note that, when wL’ > wc’, a single shadow map 

texel determines the shadow state of more than one 

image pixel. Therefore, we can define the aliasing er-

ror m as the ratio between the areas “seen” by a 

shadow map texel and an image pixel [5]: 

 

(3) 

 
 

 
Figure 3. Aliasing error metric 
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Figure 2. Light Bleeding with VSMs 



 
Figure 4. Perspective warp P fit to a frustum V 

 

Equation (3) is often used to classify aliasing into 

perspective aliasing (wL/wc) and projection aliasing 

(cos(θL)/cos(θc)) [13]. The second type is potentially 

unbounded and depends on the orientation of each 

surface of the scene in relation to the light and view 

directions. Since this effect is also less noticeable and 

not avoided by perspective warping, it is usually ig-

nored in the analysis of such algorithms. 

Now, consider Figure 4, where V is the view frus-

tum. The light and view directions are perpendicular in 

this case. Perspective warping techniques first fit a 

frustum P around the view volume (and objects that 

cast shadows into it). Before updating the shadow map, 

they apply the perspective transformation associated 

with P to the scene. In the figure, V has a field-of-view 

of 2φ, near plane n and far plane f. Similarly, P has a 

field-of-view of 2φ’, near plane n’ and far plane f’. A 

generic point on the central axis of V, which is at a 

distance z from the camera, is mapped to a distance z’ 

from point c, the center of projection of P. The coordi-

nates (x’,y’,z’) correspond to the “light space” defined 

in the LiSPSM paper [2], whose origin gives the posi-

tion of c. The shadow map coordinates (s,t) are as-

sumed to be aligned with (x’,z’), respectively. 

The strength of the perspective warp is controlled 

by the parameter n’. When n’ = n, we have the PSM 

(Perspective Shadow Map) technique [13]. When 

n’→ ∞, the warp loses strength and becomes orthogo-

nal, leading to the standard shadow mapping. The 

LiSPSM (Light-Space Perspective Shadow Map) pa-

rameter is the one that minimizes Mz, 

the maximum error in the z direction: 

 

(4) 

 

It can be shown [2,5] that, while PSM minimizes 

the maximum error in the x direction, it makes the er-

ror in the z direction grow linearly with z, which pro-

duces strong aliasing on surfaces not close to the near 

plane. On the other hand, LiSPSM minimizes the 

maximum error in the z direction while also keeping a 

small maximum error in the x direction. Furthermore, 

LiSPSM guarantees that the error in the z direction is 

equal on both the camera’s near and far planes, which 

is beneficial for z-partitioning (Section 2.4). For those 

reasons, we recommend the use of LiSPSM for CAD 

model rendering and other applications. 

 

2.4. Partitioning 
 

Partitioning techniques subdivide the scene ac-

cording to some criteria and generate a different 

shadow map for each partition. The shadow map reso-

lution allocated to each partition may be the same or 

be decided by an aliasing error metric. 

In this section, we focus on face and z-partitioning 

as described by Lloyd et al. [4,5]. Compared with 

other techniques [14,15], these are simpler to imple-

ment, require fewer rendering passes, and can more 

easily be combined with warping for better results. 

Every perspective warping technique fails when 

the light and view directions are near parallel. In this 

situation, the parameterization is usually forced to 

converge to the standard shadow mapping by imposing 

n’→ ∞ [2,5]. This difficulty can be overcome by divid-

ing the view frustum according to its faces, as seen by 

the light source, and generating a different shadow 

map for each division with its own transformation 

[4,5]. This “face partitioning” approach, however, can 

be too expensive, as it requires at least four shadow 

maps to be generated each frame. Besides, despite its 

excellent results in the near-parallel case, the technique 

does not improve shadow quality when the light is per-

pendicular to the view direction. 

As a different approach, z-partitioning attempts to 

achieve higher shadow quality in all cases by dividing 

the view frustum along its z axis, as shown in Figure 5. 

A shadow map, either warped or not, is then generated 

for each partition. This can be seen as a piecewise ap-

proximation of the optimal logarithmic parameteriza-

tion of the shadow map [5], which gives constant alias-

ing error in both x and z directions. 
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With z-partitioning, the maximum aliasing error in 

each partition is proportional to its f / n ratio. As a re-

sult, the optimal z-partitioning scheme uses self-similar 

partitions, that is, which have the same f / n ratio [4,5], 

as in Figure 5a. For a total of k partitions, the i’th parti-

tion satisfies: 

 

(5) 

 

 

As shown by Lloyd et al. [5], z-partitioning can 

provide more benefit than face-partitioning with the 

same number of subdivisions. Moreover, the use of 

only 2 or 3 partitions with LiSPSM warping suffices to 

greatly reduce aliasing errors when the light is either 

perpendicular or parallel to the view direction. This is 

thus the recommended setting for most systems. 

 

3. Proposed improvements 
 

In this section, we propose two improvements to 

existing techniques. First, we build on [2,3,5] to derive 

a LiSPSM parameter generalized to different angles 

between the light and view directions. Second, we pro-

pose an adaptive z-partitioning scheme based on the 

work of Lloyd et al. [4,5]. 

 

3.1. Generalized LiSPSM parameter 
 

Recall that Figure 4 shows the optimal configura-

tion for the LiSPSM warp, when the light and view 

directions are perpendicular. Based on the figure and 

on our aliasing error metric (Equation 3), it can be 

shown [5] that, for an image of (rescx × rescy) pixels 

and a shadow map of (resls × reslt) texels, the maximum 

error in the z direction is given by: 

 

(6) 

 

 

The derivative in Equation (6) is calculated from 

the standard OpenGL perspective transformation: 

 

(7) 

 

 

Figure 4 also gives: 

 

(8) 

(9) 

 

Equations (8) and (9) are only valid for the situa-

tion depicted in Figure 4, where the light and view 

directions are perpendicular. If the light is tilted to-

wards or away from the camera, we must consider the 

two general cases shown in Figure 6, where the small-

est angle between the light and view directions is γ. 

Aided by the auxiliary triangles shown in Figure 6a, 

we can see that: 
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In these equations, a and b are half the height of 

the view frustum’s near and far planes, respectively. 

Substituting (10) into (7), differentiating, and using the 
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Figure 6. Shadow Map generalized perspective parameterization 



result in (6), we find the generalized error in the z di-

rection: 
 

(12) 

 

 

 

 

 

 

 

 

Differentiation of Equation (12) shows that the er-

ror function has only one local minimum in z ∈ [n,f]. 

The maximum error must then occur at the camera’s 

near and far planes, and can be minimized by making 

its value equal on those extremes: 

 

 

(13) 

 

 

Equation (13) represents a generalized LiSPSM 

parameter that keeps the maximum error minimized 

when γ < π/2. Unfortunately, however, n2’ assumes 

negative values when the light and view directions are 

near parallel. This means that our constraint is impos-

sible to satisfy, which corroborates the fact that every 

perspective warp must converge to the standard 

shadow mapping in this case [2,3,5]. In order to obtain 

a smooth transition in the shadow quality, we modify 

Equation (13) using the following new constraints: 

 

(14) 

 

 

In Equation (14), γlim is the limit angle where we 

stop using Equation (13). To avoid numerical instabil-

ity and the generation of overly wide warp frustums, it 

should be kept higher than φ. We recommend using the 

angle which makes the near and far faces of the view 

frustum superpose in the light’s view: 

 

(15) 

 

Our modified parameter can now be written as: 

 

 

(16) 

 

 

In Equation (16), the function r(γ) descends from 

r(γlim) = 1 to r(0) = 0, which satisfies the constraints of 

Equation (14). In their paper, Zhang et al. propose the 

following function for the PSM case [3]: 

 

(17) 

 

 

For our LiSPSM case, however, we required r(γ) 

to descend faster to zero, once again to avoid exces-

sively wide warping frustums. We have achieved good 

results with the following function: 

 

(18) 

 

 

Figure 7 shows the form of the final generalized 

LiSPSM parameter. The warp at first becomes stronger 

as the light is tilted towards or away from the view 

direction. Below the limit angle γlim, the warp quickly 

converges to the standard shadow mapping. 

In general, we have achieved better shadow qual-

ity with our generalized LiSPSM than with other 

parameterizations for most light directions. Figure 8 

compares the standard and generalized LiSPSM warps 

for a lattice shadow close to the near plane, where the 

improvement is most noticeable. Nevertheless, one 

must keep in mind that minimizing the maximum error 

over the entire view frustum does not guarantee a 

minimal error everywhere in the scene. A simpler 

technique like the original LiSPSM or PSM might give 

better results for specific cases. 
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Figure 7. Generalized LiSPSM parameter  

(n = 1, f = 100, φφφφy = ππππ/6). 

   
Figure 8. Left: Standard LiSPSM. 

Right: Generalized LiSPSM. 



3.2. Adaptive z-partitioning 
 

Recall the z-partitioning scheme described in 

Section 2.4. When the light and view directions are 

perpendicular, the use of self-similar partitions and of 

LiSPSM warping guarantees that the maximum alias-

ing error in the z direction is minimal and equal in the 

near and far planes of every partition. In the x direc-

tion, the error is small and does not change drastically 

over the view frustum. These are important properties 

because otherwise a sudden change in the shadow 

quality would be noticeable as a “seam” at the inter-

face between partitions. 

However, when the light and view directions are 

not perpendicular, the LiSPSM warp converges to the 

standard shadow mapping. As a result, the aliasing 

error in both directions has its maximum value at the 

near plane and minimum value at the far plane of each 

partition. In this case, the algorithm produces visible 

seams between each pair of partitions, as shown by the 

detail on the left in Figure 9. Moreover, the seams 

move together with the camera, which catches the 

user’s attention and becomes very distracting. 

In order to minimize seams, the ratio f / n of all 

partitions, except the one closest to the camera, should 

be kept small. This reduces the difference between the 

maximum error at the near plane and the minimum 

error at the far plane. The disadvantage is that the error 

close to the camera (near plane of the first partition) 

becomes higher than with the optimal partitioning. 

In this paper, we propose an adaptive partitioning 

scheme. When the light and view directions are per-

pendicular, the optimal z-partitioning should be used 

to minimize the maximum error over the view frustum. 

In the near-parallel case, however, every i’th partition 

but the first should have its (fi / ni) ratio reduced to a 

small value αi. A smooth transition can be achieved by 

linearly interpolating the distance of each subdivision 

between the optimal and limit cases, using the angle γ 

between the light and view directions as the weight: 
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Note that Equation (19) is calculated iteratively, 

starting with the last partition (i=k) and backward until 

the second (i=2), always using the values of fi previ-

ously calculated by the linear interpolation. The first 

partition has n1=n and f1=n2. It can be shown that, 

when γ = π/2, Equations (5) and (19) are equivalent. 

Figure 9 compares the shadows generated by the 

optimal z-partitioning technique and our adaptive one 

with 2 partitions. The interface between the partitions 

is indicated with a white arrow. In the left detail, opti-

mal partitioning produces the best shadow quality 

close to the far plane of the first partition. However, 

the technique produces a visible seam between this 

region and the beginning of the next partition. When 

using the proposed adaptive scheme with α=2, aliasing 

is not reduced so dramatically in the first partition, but 

the seam becomes almost unnoticeable.  

Empirically, we recommend a value α no higher 

than 4 without PCF filtering and no higher than 2 with 

PCF, since the filter in texel space as described in 

Section 2.2 makes seams more noticeable (note the 

blur in the second partition in the left of figure 9). 

 

4. Results and additional remarks 
 

We have implemented all the techniques discussed 

thoroughly in this paper on a machine with a dual core 

2.4GHz processor and a GeForce 8800 GTS graphics 

card. Tests were performed on an oil platform CAD 

model with 250k triangles, using 800×600 screen reso-

lution and 2048×2048 shadow maps. 

For our performance tests, we used constant bias, 

generalized LiSPSM warping, 2 adaptive partitions 

along the view frustum’s z axis and 5×5 texel-space 

PCF with jittered kernel samples and multiple non-

aligned virtual sample generation. Despite the extra 

cost associated with the generation of two shadow 

maps and the use of PCF in the final rendering pass, 

these techniques can run faster than the standard 

shadow mapping for some camera and light views, as 

shown in Table 2, since frustum culling can be opti-
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Figure 9. Adaptive z-partitioning with detail on 
the right. The detail on the left shows the re-

sult of optimal z-partitioning with visible seam 



mized for each partition. The results in the table were 

obtained for a close-up view where about 20% of the 

scene’s geometry was visible to the camera, while the 

light sources circled around the scene at a far distance. 

From our results, it should also be noted that, due to 

the increasing fragment processing power of graphics 

cards, PCF can be applied with nearly negligible cost. 

As a final remark, it is important to notice that, 

when aliasing is not completely eliminated, view-

dependent warping techniques can cause shadow bor-

ders to crawl while the camera or light moves around. 

Fortunately, blurring the shadow borders with PCF 

makes this effect much less noticeable. However, the 

situation of near-parallel light and view directions must 

still be handled with care to avoid disturbing temporal 

changes in shadow quality. This emphasizes the impor-

tance of a good partitioning scheme. 

5. Conclusion 
 

We have presented a survey of shadow mapping 

techniques that attempt to reduce self-shadowing and 

aliasing artifacts. In particular, we have investigated 

the effectiveness of depth bias, sample alignment, fil-

tering, perspective warping and partitioning techniques 

when applied to CAD model visualization. For this 

kind of application, we recommend the use of a con-

stant bias or the dual-depth technique when generating 

the shadow map, as well as LiSPSM warping and 2 or 

3 partitions along the view frustum’s z axis. In the final 

rendering pass, we recommend the use of texel-space 

PCF with a 3×3 to 5×5 jittered kernel and multiple 

non-aligned virtual samples. We have concluded that 

this set of techniques can produce high quality shad-

ows in real-time for CAD models. 

Additionally, we have presented improvements to 

existing techniques: a generalized parameter for 

LiSPSMs, which keeps the maximum error in the z 

direction minimized for different angles between the 

light and view directions; and an adaptive z-

partitioning scheme that minimizes seams, that is, 

avoids sudden changes in shadow quality between each 

pair of partitions. 
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Table 2. Performance results 

 Technique 

Lights 

Standard 

Shadow Map 

Recommended 

Techniques 

1 dynamic light 45 fps 29 to 59 fps 

2 dynamic lights 25 fps 18 to 30 fps 

 


