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Abstract 

 
Optical microscopic images, especially with a 

nonconfocal microscope, are fundamentally limited 
because the optical transfer function (the Fourier 
transform of the point-spread function) is zero over a 
region of the spatial-frequency domain. Iterative 
algorithms were developed for the restoration and 
extrapolation of diffraction-limited imagery. In this 
paper we present the effectiveness of an iterative 
method based on the Richardson-Lucy algorithm for 
image restoration and a simultaneous modified version 
of Gerchberg-Papoulis method to extrapolate the 
spectrum and control the noise amplification. Good 
convergence stabilization results were achieved and 
also good numerical results were observed. 
 
1. Introduction 
 

Like the human eye, most instruments cannot 
discern fine details. Microscopic images are often used 
on medical and biological research and are severely 
affected by blurring due to the limited size of the 
aperture lens. Since the formation of an image alters 
the recorded information content from that of the 
original object, there is interest directed to processing 
images so that it closely matches the original object.  

Fourier optics demonstrates that there exists a cut-
off spatial frequency, which is directly determined by 
the shape and size of the limiting pupil in the optical 
system [1]. This distortion of the spatial frequency 
components is governed by the OTF (Optical Transfer 
Function), the normalized Fourier transform of the PSF 
(Point Spread Function) of an imaging system. The 
PSF describes the spatial spread for a single point 
input.  

Credible methods appeared in the last decades for 
the reconstruction of spatial frequencies of the object 
within the diffraction limit [2]. For instance, 
Richardson and Lucy [3] [4] defined a probabilistic 
method to restore images which formation can be 

modeled by a Poisson process such as in telescopic and 
microscopic systems. However, the ability of 
restoration of frequencies beyond the image or signal 
passband are controversial with literature proclaiming 
it as not possible [2] [5]. 

After the work of Pollak, Landau and Slepian [6] 
that used prolate spheroidal functions, Gerchberg and 
Papoulis [7] [8], showed that the imposition of known 
constraints on frequency and time domain could 
extrapolate a signal, but they do not present a good 
estimation of the original image, since they are not  
concerned with blur and noise. A blind deconvolution 
method that used constraints on space and frequency 
domain was also proposed [9]. In the middle of 1990’s, 
Hunt [5] and Carrington [10] showed the possibility of 
superresolution through non-negativity and other 
constraints that used as a priori knowledge in the 
performed algorithms. Conchello [11] studied the band 
extrapolation capability of the Expectation-
Maximization algorithm. A recent paper applied a 
mathematical extrapolation [12] with good results, but 
the method also assumed absence of noise. Sementilli 
et al. [13] showed other examples of recovering 
information from beyond the diffraction limit. A 
previous work [14] also used a non-linear filter to 
achieve extrapolation. 

This work proposes a restoration method that 
simultaneously can restore frequencies within the 
diffraction limit and also enhance the spectrum beyond 
this limit for fluorescence microscopy images. These 
images are band-limited and modeled by photon 
statistics, so they have implicit Poisson noise that 
could difficult the convergence, as will be described in 
next section. 

The unification of restoration, denoising and 
extrapolation in one algorithm is a goal we are 
pursuing and the paper shows the possibility of that 
unification. The approach used was to carry out a joint 
use of a Gerchberg-Papoulis iteration, together with a 
median filter, and an Richardson-Lucy step to restore 
frequencies and control the noise. This is the main 



contribution of this work, which shows the possibility 
of classical algorithms improvement solving old 
convergence problems that appear in problems like 
going beyond the diffraction limit in the presence of 
noise. 

 
2. Fluorescence Microscopy Images 
 

The general imaging system for an optic wide-field 
microscope has two main stages as shown on Figure 1. 
The first stage is a lens system that causes the blurring. 
Due to the photon counting nature of light based 
sensors, the noise can be modeled by a Poisson 
distribution. Then, a CCD camera is used to acquire 
and to quantize the image.  

The microscopy images of the present work were 
acquired on a scientific wide-field microscope with a 
CCD camera attached. The images were obtained 
under a low exposure to avoid photobleaching, a 
process that causes loss of fluorescence [15]; therefore 
it generates a signal dependent noise that can be 
modeled by a Poisson distribution. There is another 
kind of noise added to the image due to the CCD 
electronic device, often modeled by a Gaussian 
distribution [16]. 

 

 
Figure 1. Stages of microscopy imaging system 

 
The image formation can be modeled as: 
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where g is the observed image, h the point spread 
function (PSF) that models the blurring due to the 
optical system, f is the original image, * is a two-
dimensional convolution operator and n is the additive 
Gaussian noise - the electronic CCD adds Gaussian 
noise but it is not significant compared to the Poisson 
photon counting noise [16]. 

Since the convolution is a computational expensive 
procedure, we use the convolution theorem of Fourier 
Transform to use a simple product: 
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where the capital letters indicates the Fourier transform 
of each object described on equation 1. The model 
described is suitable for an incoherent imaging system 
[1].  

The natural solution would be the inverse filter: 
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Unfortunately, practical OTF have zero valued 
regions (beyond the diffraction limit), resulting in no 
information on these areas, and low valued regions that 
can amplify the noise. Also, it does not model the 
Poisson process nature of the microscopy system. 
 
3. Richardson-Lucy Deconvolution Method 
 
The Richardson-Lucy (RL) algorithm [3] [4] uses a 
probabilistic approach. 

In fluorescence microscopy, the recorded image can 
be viewed as a Poisson process. Suppose the noise is 
white, the probability is: 
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where x represents the (x,y) pair for a 2D signal. 
The non-regularized RL algorithm minimizes the 

functional , giving the 
maximum likelihood estimation: 
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The RL iteration is given by: 
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This extensively used algorithm is generally 
stopped at a finite number of iterations. In real 
situations, the deconvolution is an ill-posed problem, 
so the RL iterations result in only noise when the 
number of iterations ∞→n . The level of noise in 
fluorescence microscopy is often high so regularization 
methods are used in order to minimize the undesirable 
effects.  
 
4. Filtered Gerchberg-Papoulis 
 

The Gerchberg-Papoulis (GP) algorithm [7] [8] 
assumes that there is some knowledge about the 
bandwidth and iteratively imposes the requirements 
that the signal is band-limited and matches the known 
portion of the signal.  



Let have a spectrum and the region 
where is nonzero. Since is known within 
a region T, the aperture is defined by: 
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The spectral pupil is defined as: 
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So, the algorithm consists on: 
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Where is the first estimation of the 

extrapolated image,  is the estimation at 

iteration n+1, and  is the frequency 
domain constraint operator. The convergence proof of 
this method can be found in [7] [8].  
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The convergence of this method assumes absence of 
noise. So, the algorithm was modified in order that it 
could deal with noise. For each iteration, the 
magnitude of the extrapolated frequencies, found 
beyond the limit , is filtered by a median filter.  Ω

Since the frequency extrapolation, rather than 
spatial extrapolation, is the goal of this work, the 
iteration was changed to: 
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where  is the Fourier transform of the previous 
estimation, MF is a function that apply the median 
filter in the magnitude of , is the Fourier 

transform of the first estimation and the  is the 
restored image at iteration n+1. 
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The modified algorithm constrains the spatial limit in 
order to extrapolate the frequency limit. The original 
method constrains the frequencies to extend the spatial 
limit. 

The median filter was used due to the noise spatial 
characteristic when it is amplified by the restoration 
method. The resulting noise is similar to a salt-and-
pepper noise. This noise behavior was observed in the 

experiments carried out which results are shown in 
section 7.  

The idea of combining a GP step, together with a 
median filter, and an RL step is to restore frequencies 
within and beyond the diffraction limit with 
improvement in noise control. 

 
5. Simultaneous Extrapolation-Restoration 
 

The method proposed here simultaneously applies 
the RL algorithm and the filtered GP algorithm, as 
follows: 
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where RL is the Richardson-Lucy restoration method 
and FGP is the Filtered Gerchberg-Papoulis algorithm, 
modified in order to perform band extrapolation 
(instead of spatial extrapolation). A median filter was 
also added to the algorithm. The objective of the filter 
is to attenuate the noise amplification, since for real 
problems the algorithms result in only noise when the 
number of iterations ∞→n .  

The diagram in Figure 2 shows the algorithm flow. 
The algorithm starts with a RL iteration (1). The result 
of the iteration is transformed to frequency domain (2). 
The spectral pupil constraint is imposed on the original 
image (3), and the extrapolated spectrum obtained is 
added keeping the known signal (4). The image is 
transformed to the spatial domain (5) and the image is 
constrained in space (6). The result of the extrapolation 
step is used as a new estimation to the RL iteration (1) 
and so on. 
 

 
Figure 2. Algorithm diagram 



The first estimation of the image is the same 
described in the Gerchberg-Papoulis method. 

 We expect to observe a smoother result in flat 
areas with a cost of loosing some sharpness on edge 
areas. 

The algorithm stops in a determined number of 
iterations, since the algorithm convergence is not 
assured. 

 
 
6. Experiments 
 

A simulated experiment was carried out using a 
phantom image, with 256x256 pixels. This image was 
blurred by a Gaussian filter size [9x9] and = 16, 
and frequencies beyond one half of the folding 
frequency were cut off [5]. Poisson noise was also 
embedded to the image so that the distorted image 
yields a PSNR (Peak Signal-to-Noise Ratio) of 7.8dB. 
This phantom was built so that we could measure the 
image improvement using numerical evaluation 
methods. High contrast and flat areas were used to 
observe the behavior of noise and the restoration in 
edge areas. The original and degraded phantom images 
are shown in Figure 3. 
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Figure 3. Original image (left); Distorted image (right) 

 

 

Figure 4. Fluorescence microscopy observed image 

An image (Figure 4) obtained from a cell culture 
was also used to perform an experiment, in order to 
observe the behavior of the method with real images. 
Although it is impossible to measure the improvement 
after the restoration, a visual inspection and the 
spectral enhancement can be observed. 

Three iterative methods were used to restore the 
images: (1) Richardson-Lucy; (2) Richardson-Lucy 
with Gerchberg-Papoulis; (3) Richardson-Lucy with 
Filtered Gerchberg-Papoulis. 
 
6.1. Evaluation Methods 
 

The results were evaluated by observing ISNR 
(Improvement on Signal-to-Noise Ratio) and the UIQI 
(Universal Image Quality Index) [17] concerning the 
phantom images.  

The ISNR is given by:  
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where is the degraded image, the original 

image and the restored image. The ISNR 
measures the differences at each pixel from degraded 
and restored images comparing with the original image 
and yielding a number proportional to the 
improvement on pixel similarity sense. 
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where x , y ,  and  are the average and 

variance of the original (

2
xσ 2

yσ
x ) and restored ( y ) images, 

respectively, and xyσ  is the correlation coefficient 

between x  and . The dynamic range of U is [−1, 1]. 
The best value (1) is achieved if and only if 

y
yx = .  

The UIQI is an alternative to the ISNR since it 
models the image distortion as a combination of loss of 
correlation, luminance distortion and contrast 
distortion, comparing the original and processed 
image. The loss of correlation is related to the band 
limit, so we expect to observe a higher UIQI for 
extrapolated images.  

The numerical evaluation methods presented here 
cannot be applied to the real image, since the original 
image is not available. To evaluate the 
restoration/extrapolation of the real image, the 
autocorrelation coefficients, which indicate high 



frequency enhancement, were plotted to observe the 
spectrum spread. The restored images were also 
included to observe the visual quality improvement. 
 
7. Results 
 

The degraded phantom image was restored using 
the three algorithms as described in section 5. The 
ISNR and UIQI results obtained with each method are 
shown in Table 1 for 5 and 30 iterations.  

Figure 5 shows the degraded image and the 
restored images using 30 iterations. The smoothness of 
the result on flat areas can be observed with use of the 
proposed method. 

Figure 6 and 7 shows the ISNR values in terms of 
the iterations. It is interesting to observe in this figure 
the behavior of the ISNR during the restoration 
process. The ISNR drops very sharply with the use of 
RL algorithm without regularization and constraints. 
Using the proposed algorithm based on the filtered GP 
method, the imposition of the filtered estimated part of 
the signal can stop the noise amplification and help the 
restoration algorithm to stabilize the result.  

The real image restoration is shown in the Figure 8 
(using RL method) and Figure 9 (using RL with 
filtered GP method). The image restored with the 
proposed method is visually better. The plotting of 
autocorrelation coefficients is shown in Figure 10. The 
decay of autocorrelation coefficients curve indicates 
the enhancement of the spectrum. The curve decrease 
faster for high frequency enhancement. It is possible to 
see the good results obtained and also a better stability 
while iterations increase. 

Another interesting point is that the noise changes 
within the iterations and “inverted peaks” are observed 
in flat areas. For instance “black peaks” can be 
observed on the white flat area in the RL restoration 
(Figure 5 top right). Since it is similar to a salt-and-
pepper noise, the median filter was used instead of 
others that would just smooth the artifacts. 

Table 1. Restoration results 

Image ISNR UIQI 
Degraded Image - 0.18 
Results with 5 iterations   
Richardson-Lucy 0.81 0.28 
Richardson-Lucy with GP 0.92 0.14 
Richardson-Lucy with Filtered GP 1.04 0.30 
Results with 30 iterations   
Richardson-Lucy -1.23 0.09 
Richardson-Lucy with GP 0.12 0.10 
Richardson-Lucy with Filtered GP 0.38 0.29 

 

 
Figure 6. ISNR for RL iterations 

 

 
Figure 7. ISNR for RL with filtered GP iterations 

 

  

   
Figure 5. Degraded image (top left); Restored 

images with 30 iterations: RL (top right); RL-GP 
(bottom left); and RL with filtered GP (bottom 

right) 



 

 
Figure 8. Restored image using RL with 30 iterations 

 

  
Figure 9. Restored image using RL with filtered GP with 

30 iterations  

 

 
 

Figure 10. Autocorrelation coefficients (dot line: 
original image; dashed line: RL; solid line: RL-Modified 

GP) 
 
 

8. Conclusions 
 

The presence of noise is always a difficult problem 
to overcome. The majority of methods are very 
efficient just in absence of noise. In fact, some of 
methods do not have a convergence proof and when 
there is, the signal is assumed to be noise-free [4] [7] 
[12] [13].  

A modified approach of the Gerchberg-Papoulis 
was used simultaneously with the Richardson-Lucy 
deconvolution to deal with noise. The idea of the 
algorithm was to restore frequencies within the 
passband (with use of the RL method), and also 
beyond it, filtering the results to avoid noise 
amplification.  

Good results on ISNR and UIQI index were 
observed, and also a faster autocorrelation coefficients 
curve decrease, indicating spectral extrapolation. The 
proposed method was able to restore frequencies and 
also contain the noise amplification, performing band 
extrapolation.  

New advances could study the behavior of noise 
while the iterations increase. Also, a future work could 
apply more accurate filters to deal with the noise 
without a loss of sharpness in details. New spatial and 
frequency constraints could also improve the image 
quality and achieve a better extrapolation. 
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