
An Exact and Efficient Algorithm for the Orthogonal Art Gallery Problem

Marcelo C. Couto

marcelo.couto@students.ic.unicamp.br

Cid C. de Souza∗

cid@ic.unicamp.br

Pedro J. de Rezende†

rezende@ic.unicamp.br

Institute of Computing

State University of Campinas

Campinas, Brazil

Abstract

In this paper, we propose an exact algorithm to solve the

Orthogonal Art Gallery problem in which guards can only

be placed on the vertices of the polygon P representing the

gallery. Our approach is based on a discretization of P into

a finite set of points in its interior. The algorithm repeat-

edly solves an instance of the Set Cover problem obtaining

a minimum set Z of vertices of P that can view all points

in the current discretization. Whenever P is completely vis-

ible from Z , the algorithm halts; otherwise, the discretiza-

tion is refined and another iteration takes place. We estab-

lish that the algorithm always converges to an optimal solu-

tion by presenting a worst case analysis of the number of it-

erations that could be effected. Even though these could the-

oretically reach O(n4), our computational experiments re-

veal that, in practice, they are linear in n and, for n ≤ 200,

they actually remain less than three in almost all instances.

Furthermore, the low number of points in the initial dis-

cretization, O(n2), compared to the possible O(n4) atomic

visibility polygons, renders much shorter total execution

times. Optimal solutions found for different classes of in-

stances of polygons with up to 200 vertices are also de-

scribed.

1. Introduction and Related Work

The classical Art Gallery Problem originally posed by

Victor Klee in 1973 asked for determining the minimum

number of guards sufficient to cover the interior of an n-

wall art gallery [12]. Soon thereafter, Chvátal established

what became known as Chvátal’s Art Gallery Theorem:

⌊n
3
⌋ guards are occasionally necessary and always suffi-

∗ Partially supported by CNPq – Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico – Grants # 307773/2004-3 and
471460/2004-4 and FAPESP – Fundação de Amparo à Pesquisa do
Estado de São Paulo – Grant # 107/97

† Partially supported by CNPq – Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico – Grant # 201205/2005-0.

cient to cover a simple polygon with n vertices [3]. A sim-

pler proof based on polygon triangulation and on the fact

that this triangulation can be 3-colored was shown by Fisk

in 1978 [10].

Many variations of the art gallery problem have been

studied in the literature. Early on, Lee and Lin [17] proved

that the vertex guards version is NP-hard by reduction from

3-SAT. Their result was extended to point guards by Aggar-

wal [1].

Since these early results, much research on related prob-

lems has been carried out by mathematicians and com-

puter scientists. For broad surveys, the reader is referred to

[18, 21, 25] where comprehensive analysis of many varia-

tions and results on this subject can be found.

In this paper, we study a variation of the classical art

gallery problem, called Orthogonal Art Gallery Problem,

which is an important subclass, due to most real life build-

ings and galleries being orthogonally shaped [25]. This

problem deals specifically with the case where the guards

can only be placed on the vertices of the polygon that de-

fines the outer boundary of the gallery and whose edges are

parallel to the x or y axis.

The earliest major result concerning this problem, due to

Kahn et al. [15], states that ⌊n
4
⌋ guards are occasionally nec-

essary and always sufficient to cover an orthogonal polygon

with n vertices. Their proof is based on quadrilateralization

and on a 4-coloring of the resulting graph.

More importantly, Schuchardt and Hecker proved that

minimizing the number of guards in this variation is also

NP-hard [20], settling a question that remained open for al-

most a decade [19].

Improvements on the efficiency of algorithms that place

exactly ⌊n
4
⌋ guards, such as Edelsbrunner et al. [6] and Sack

and Toussaint [19] who showed a linear time guard place-

ment algorithm for monotone orthogonal polygons as well

as an O(n log log n) time algorithm for arbitrary orthogo-

nal polygons, still do not treat the challenging problem of

minimization.

In this line, as asserted by Urrutia [25], one approach

that has not been sufficiently undertaken in the study of art

gallery problems, is the one of finding algorithms that seek

approximate solutions.

One of the first known results on this topic, due to

Ghosh [11] in 1987, is an O(n5 log n) time approxi-

mation algorithm, that finds a vertex guard set that is

at most O(log n) times the minimum number of vertex

guards needed, regardless of whether the polygon contains

holes or not. Ghosh’s work was later extended by Eiden-

benz (see [7]) who designed approximation algorithms and

heuristics for several variations of terrain guarding prob-

lems.

Recently, Erdem and Sclaroff in [8, 9] and Tomás et al.

in [23, 24] modeled the problem as a discrete combinato-

rial problem and then solved the corresponding optimiza-

tion problem. The results we present here follow this line.

Our Contribution. In this paper, we propose an algo-

rithm to find a solution to the Orthogonal Art Gallery Prob-

lem by solving and refining discretizations of the boundary

polygon. We show that the algorithm always produces a cor-

rect solution and we demonstrate, by a sizeable experimen-

tal analysis of its performance, that this algorithm derives

its notable efficiency from the fact that the number of itera-

tions required to achieve an optimal solution is very small,

together with the fact that we deal with relatively few dis-

cretized points. We also present additional results regarding

its implementation.

2. Preliminaries

In this paper, we address the Orthogonal Art Gallery

Problem in which, given an orthogonal simple polygon that

bounds an art gallery, the goal is to determine the minimum

number and an optimal placement of (vertex) guards so as

to keep the whole gallery under surveillance. In order to es-

tablish a uniform notation, whenever we speak of an n-wall

orthogonal art gallery we are referring to a planar region

whose boundary consists of an orthogonal simple polygon

(without holes), i.e., one whose n edges are parallel to the

x or y axis. Given one such polygon P , we denote by V the

set of vertices of P . A vertex v ∈ V is called reflex if the in-

ternal angle at v is greater than 180 ◦. Whenever no confu-

sion arises, a point in P will mean a point either in the inte-

rior or on the boundary of P .

Given two points x and y in a simple polygon P , we say

that y is visible from x if and only if the closed segment

xy does not intersect the exterior of P . The set V (v) of all

points of P visible from a vertex v ∈ V is called the visibil-

ity region of v. To determine the visibility region of a ver-

tex v we employ the linear time algorithm proposed by Lee

[16] and extended by Joe and Simpson [13, 14].

A set of points G is a guard set for P if for every point

p ∈ P there exists a point g ∈ G such that p is visible

from g. In other words, a guard set for P gives the positions

of stationary guards who can oversee an entire art gallery

of boundary P . Hence, the Orthogonal Art Gallery prob-

lem amounts to finding the smallest subset G ⊂ V that is a

guard set for P .

2.1. The discretized orthogonal art gallery prob-

lem

Approximate solutions to the Orthogonal Art Gallery

problem can be obtained by modeling it as a discrete com-

binatorial problem, the Minimum Set Cover problem, as

shown by Erdem and Sclaroff in [8, 9] and by Tomás et

al. in [23, 24]. Both approaches discretize the polygon P

in some way and then solve the corresponding optimization

problem. The latter uses Constraint Programming to solve

the problem, while the former applies Integer Programming.

In our formulation, we discretize polygon P into a set of

points D(P) and use a simplification model from [8, 9] as

follows.

z = min
∑

j∈V

xj

s.t.
∑

j∈V

aijxj ≥ 1, ∀pi ∈ D(P) (1)

xj ∈ {0, 1}, ∀j ∈ V (2)

where

aij =

{

1, if pi ∈ V (j)
0, otherwise.

xj =

{

1, if j belongs to the solution

0, otherwise.

The set Z = {j ∈ V | xj = 1} is called the solu-

tion set. Constraint (1) states that each point pi ∈ D(P) is

visible from at least one selected guard position in the solu-

tion and the objective function minimizes the cardinality z

of the solution set Z .

Thus, instead of solving the problem based on the entire

polygon P , a discretization D(P) is employed to generate

a small number of constraints in the formulation. Clearly, it

may happen that the solution of the discrete problem does

not form a guard set for P . However, one can think of Z as

an approximation to the original problem whose quality can

be measured by the area of the regions not visible from the

points in Z . Furthermore, the uncovered regions depend on

the choice of the discretization. Among the various possi-

ble methods to discretize P , we focus on and extend the ap-

proach from [8] in which a regular grid is built prior to sam-

pling the polygon. Refining the grid increases its resolution

but also increases the number of constraints in (1). This con-

stitutes an interesting tradeoff between speed and accuracy

for the discrete approximation. The way we address this is-

sue in our algorithm is further discussed below.

2.2. Initial discretization of P

We now describe how we build the first discretization of

P . Consider the regular grid with resolution ∆x×∆y start-

ing at the lower left corner of the bounding box of P , where

∆x = min{|vx − ux|, vx 6= ux : u, v ∈ V } and

∆y = min{|vy − uy|, vy 6= uy : u, v ∈ V }.

The intersection points of this grid that are interior to P

form the initial discretization D(P) of P . Below, we justify

why this is a particularly good choice.

Consider the method developed by Culberson and Reck-

how [4, 5] in which one partitions the interior of P by ex-

tending the two edges adjacent to each reflex vertex within

the polygon until the first boundary edge of P is reached.

These line segments induce a subdivision of P into rectan-

gles, called basic regions of P .

In Figure 1, we illustrate these definitions by showing a

polygon, within a 7× 6 bounding box, whose basic regions

are bounded by segments from the boundary of the poly-

gon and by dashed lines. A regular grid of resolution 2 × 2
whose segments are represented by solid gray lines is su-

perimposed.

Figure 1. Regular grids and basic regions.

In the next proposition, we show that each basic region

contains at least one point from the regular grid.

Proposition 2.1 Let the regular grid D(P) be the dis-

cretization of P with resolution ∆x ×∆y as defined above.

Then, every basic region of P contains at least one point

from D(P).

Proof. Let B be any basic region of P . From its construc-

tion, B is a rectangle with sides ℓx ≥ ∆x and ℓy ≥ ∆y . Let

LL be the lower-left and UR be the upper-right vertices of

B. It follows that URx ≥ LLx + ∆x and URy ≥ LLy + ∆y .

If LL is a vertex of P , let p = LL. Otherwise, let p ∈
D(P) be the closest grid point to LL by the Manhattan (or

L1) distance dominated by LL, i.e., so that px ≤ LLx and

py ≤ LLy (see Figure 2).

Now, from the definitions of ∆x and ∆y , the point q =
(px + ∆x, py + ∆y) is a grid point.

LLp

q

B

UR

Figure 2. Illustration for the proof of Proposition

2.1.

Since LLx < qx ≤ LLx + ∆x ≤ URx and LLy < qy ≤
LLy + ∆y ≤ URy , we have q ∈ B. �

Therefore, every basic region will have non empty in-

tersection with the visibility polygon of at least one vertex

guard from a solution to the discretized formulation, which

makes the regular grid a good starting point to obtain an op-

timal solution.

Finally, we add to D(P) all the vertices in V to form the

complete discretization of the polygon P that we sought.

3. Algorithm

As mentioned earlier, a solution set Z to the discretized

formulation in Section 2 may not always constitute a guard

set for P since there might be regions inside P that are not

visible from any guard in Z .

Definition 3.1 Let I(P, D(P)) be an instance of the dis-

cretized Orthogonal Art Gallery problem with polygon P as

the gallery boundary and D(P) a discretization of P . A so-

lution Z of this instance is called viable if Z is a guard set

for P , i.e.,
⋃

g∈Z

V (g) = P .

Our algorithm overcomes the aforementioned drawback

of the solution to the original discretized formulation and al-

ways produces a viable solution by refining the discretiza-

tion of P whenever it detects that the present solution is

not viable. The following theorem establishes that a solu-

tion thus obtained is also optimal.

Theorem 3.1 Let Z be a solution of an instance

I(P, D(P)) of the discretized Orthogonal Art Gallery

problem. If Z is viable then Z is optimal.

Proof. Due to the fact that Z is a solution of the minimiza-

tion problem I(P, D(P)), Z is optimal as a vertex guard

cover for the set D(P) of points which discretize the poly-

gon P , i.e., z = |Z| is minimal among the cardinalities of

all vertex guard covers of D(P).

Now, let Z∗ be an optimal vertex guard set for P and let

z∗ = |Z∗|. Since Z∗ is also a vertex guard cover for D(P),
we must have z∗ ≥ z. On the other hand, since Z∗ is viable,

it follows that z ≥ z∗. �

Theorem 3.1 states that when the algorithm finds a solu-

tion for the discretized formulation which is viable, that so-

lution is also an optimal vertex guard cover for P , i.e., it is

a guard set for P .

The algorithm is divided into two phases: a Preproces-

sing Phase, where the initial discretization described in Sec-

tion 2 is constructed and the Integer Programming problem

is set up, and a Solution Phase in which the discretized prob-

lem is successively solved and refined until a viable (and op-

timal) solution is found.

3.1. Preprocessing Phase

In order to assemble the formulation outlined in Sec-

tion 2, we start by building a regular grid of resolution

∆x×∆y restricted to the interior of the polygon P , to which

we add the vertices of P , as described in Section 2.2.

Once this discretization is built, we compute which grid

points are located inside the visibility region of each ver-

tex in V , and, then, include these new restrictions in the for-

mulation.

The main steps of the preprocessing phase are summa-

rized in Algorithm 3.1. If the regular ∆x ×∆y grid D(BB)
has m points, the generation of the initial discretization

D(P), in step 3, requires O(mn) time when identifying the

grid points that lie inside P . The total complexity of step 6

is O(n2) [13] and, assuming that m ∈ Ω(n), the full com-

plexity of step 8 is O(nm log n) since point location of each

of the O(m) points of D(P) in a star-shaped visibility n-

polygon can be accomplished in O(log n) time. Hence, the

overall complexity of the preprocessing phase is dominated

by that of step 8.

The result of the preprocessing phase is an Integer Pro-

gramming (IP) formulation for the Set Cover Problem [26]

which, once solved, generates a solution Z that, while not

necessarily constituting a guard set for P , will always cover

all the grid points in D(P).

Algorithm 3.1 Preprocessing Phase

1: BB← bounding box of P ;

2: D(BB)←∆x×∆y regular grid generated as described

in Section 2.2;

3: D(P)← D(BB) ∩ P ;

4: D(P)← D(P) ∪ V ;

5: for each j ∈ V do

6: Compute V (j);
7: for each grid point pi ∈ D(P) do

8: aij ← Boolean(pi ∈ V (j));
9: end for

10: end for

3.2. Solution Phase

In the second phase of the algorithm, starting from the IP

formulation generated in the preprocessing step, we solve

the discretized instance followed by a refinement of the

grid iteratively until the solution becomes viable. This re-

finement is attained by generating one more point in the

discretization for each uncovered region (its centroid) and

by adding the corresponding constraints to the current Set

Cover model. These additional points enhance the regular

grid and lead to a solution closer to a viable one. Algo-

rithm 3.2 outlines the steps executed in the solution phase.

Algorithm 3.2 Solution Phase

1: repeat

2: Z ← solution of I(P, D(P));
3: for each uncovered region R do

4: c← centroid of R;

5: D(P)← D(P) ∪ {c};
6: Add a new row, r, to the set of constraints (1)

corresponding to the new uncovered point c:

arjxj ≥ 1 where, ∀j ∈ V ,

arj ← Boolean(c ∈ V (j));
7: end for

8: until Z is viable

It remains to be argued that Algorithm 3.2 converges, as

it will then follow from Theorem 3.1 that the algorithm is

exact and the solution given is indeed a guard set for P . In

order to determine the worst case for the number of itera-

tions done by the algorithm, we proceed as follows.

Consider the set of all visibility regions of the vertices

in V , whose union, obviously, covers P . The edges of

these visibility regions induce a subdivision of P which is

comprised of what is called atomic visibility polygons, or

AVPs [11] (see Figure 3). Note that in step 3: any uncov-

ered region (witness to the fact that Z does not cover the en-

tire polygon) is necessarily a simple polygon formed by the

union of neighboring AVPs. Furthermore, it follows from

the construction of the AVPs that if the centroid of (or, for

that matter, any point within) an atomic visibility polygon

V is visible from a vertex guard, the entire area of V must

also be.

Figure 3. Atomic Visibility Polygons.

As the visibility region of any vertex can have at most

O(n) edges, the induced subdivision is generated from an

arrangement of O(n2) lines and has a total complexity of

no more than O(n4) faces (or AVPs).

Therefore, an upper bound on the maximum number of

iterations effected by the algorithm is O(n4) and this estab-

lishes the convergence. Of course, in the worst case, each it-

eration can take exponential time as step 2: amounts to solv-

ing an instance of the Set Cover Problem.

Note that if D(P) were built by taking one interior point

from each AVP, the algorithm would halt right after the

first iteration. In this case, the total complexity would be

EXP(n4). On the other hand, by starting with D(P) as de-

scribed in Section 2.2, the complexity of the algorithm is

bound by EXP(n2), provided that the required number of

iterations remains within O(1). In Section 5, we show that

this assumption is true in practice.

4. Experimental Setup

This section presents the experimental setup for perfor-

mance evaluation of our method. For the experiments con-

ducted, we implemented the algorithms described in Sec-

tion 3 along with a visibility algorithm from [13]. The im-

plementation was done in C++ on top of the CGAL 3.2.1,

and used the Integer Linear Programming solver Xpress-

Optimizer v17.01.02. The algorithm was tested on a PC

featuring a Pentium IV at 2.66 GHz and 1 GB of memory.

Three sessions of tests were carried out, one for each of

the three classes of polygons discussed in Section 4.1. Each

session consisted of solving the Orthogonal Art Gallery

problem for multiple instances. In each test, we com-

puted several measures: preprocessing time spent by Algo-

rithm 3.1, execution time and the number of iterations per-

formed by Algorithm 3.2, and the number of guards in the

optimal solution. Lastly, we compiled this information to

show evidence of the efficiency of our algorithm, as is pre-

sented in Section 5.

4.1. Instances

We conducted the experiments on a large number of in-

stances which consisted of n-vertex orthogonal polygons

placed on an n
2
× n

2
unit square grid. These polygons were

generated devoid of collinear edges, in accordance to the

method described in [22].

We generated a total of 10282 sample polygons, each

one having between 8 and 200 vertices, classifiable in three

classes introduced in [24]: random, small area and large

area polygons. See samples in Figure 4. Large area and

small area polygons are the extreme scenarios for the IP ap-

proach in terms of the number of constraints in the model

(see [24]). On one hand, large area polygons give rise to a

very dense initial grid, while small area polygons lead to

very few grid points. Recalling that orthogonal polygons

Figure 4. Sample polygons with 150 vertices: Small

Area, Large Area and Random polygons.

have an even number of vertices, the data set used in our

experiments was obtained thus: (a) 10088 Random poly-

gons: for each k between 8 and 200, we generated k dis-

tinct polygons, with k vertices in each, by applying the algo-

rithm for random orthogonal polygon generation described

in [22]; (b) 97 Small and 97 Large Area polygons: one for

each number of vertices between 8 and 200.

5. Results

We now describe the experimental results that attest to

the efficiency of the algorithm presented in Section 3. The

testing was performed using the instances described in the

previous section. Charts are employed to present plots of

the data that summarize the statistical analysis.

Although we established that in the worst case the num-

ber of iterations of Algorithm 3.2 is bound by O(n4), in Fig-

ure 5 we show a histogram demonstrating that the practical

results are quite impressive for polygons with 200 vertices

or less. Indeed, the Boxplot [2] below reveals that in our ex-

periments the median was only one iteration and that the

third quartile is two. In fact, the algorithm finds an optimal

solution for more than 99% of the instances within three it-

erations. This means that the instances of up to 200 vertices

that need four or more iterations are outliers.

Iteration

O
c
c
u

rr
e

n
c
e

0 2 4 6 8

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0

6108

3469

607

80 14 3 1

0 1 2 3 4 5 6 7 8

Figure 5. Histogram with a Boxplot showing how

often each number of iterations occur.

Figure 6 shows another interesting result about the num-

ber of iterations required to achieve optimal solution to the

test instances. Notwithstanding the claim by Tomás et al.

in [24] that large area and small area polygons constitute ex-

tremal cases, our algorithm vanquishes these, at least in re-

gard to the number of iterations to achieve optimal solutions

— which turns out to be one. A further analysis of Figure 6

also indicates that the growth of the average number of iter-

ations to solve instances of random polygons is linear and

slow growing on n as its linear regression 0.003 ·n+1.1 as-

serts.

Number of Vertices

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
It

e
ra

ti
o

n
s

20 40 60 80 100 120 140 160 180 200

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Large Area Polygons

Small Area Polygons

Random Polygons

Figure 6. Average number of iterations to com-

pletely solve instances of different sizes.

In Figure 7 we plot the average size of the guard sets

as a function of the number of vertices, n. Here, we

have evidence that, as one would expect, the result by

Kahn et al. [15], which states that ⌊n
4
⌋ guards are occasion-

ally necessary and always sufficient to cover an orthogo-

nal polygon of n vertices, gives in practice a fairly distant

upper bound on the average for these polygons. Figure 7

also shows that large area polygons need no more than two

guards in their optimal solutions.

Number of Vertices

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
G

u
a

rd
s

20 40 60 80 100 120 140 160 180 200

0
1

0
2

0
3

0
4

0
5

0

Large Area Polygons

Small Area Polygons

Random Polygons

floor(n/4)

Figure 7. Average size of guard sets.

Timewise, the preprocessing phase, Algorithm 3.1,

presents the behavior indicated in Figure 8, where it be-

comes evident that the large area polygons produce a much

denser regular grid than the other two types of polygons.

The higher growth in this case comes from the fact that,

as the number of vertices of P increases, the combinatorial

complexity of the regular grid grows even faster since the

area of the polygons available for intersections in step 3 of

Algorithm 3.1 is quadratic in n. Thus, the size of the initial

discretization D(P) is Θ(n2) and, according to the com-

plexity analysis done in Section 3, the expected running

time of Algorithm 3.1 for these polygons is O(n3 log n).
The plot for large area polygons in Figure 8 is consistent

with this result.

Number of Vertices

A
v
e

ra
g

e
 P

re
p

ro
c
e

s
s
in

g
 T

im
e

 (
m

s
)

20 40 60 80 100 120 140 160 180 200

0
1

5
0

0
0

3
0

0
0

0
4

5
0

0
0

6
0

0
0

0
7

5
0

0
0

9
0

0
0

0

Large Area Polygons

Small Area Polygons

Random Polygons

Figure 8. Average preprocessing time.

Lastly, Figure 9 shows the amount of time spent in the

solution phase (Algorithm 3.2). For random polygons, the

time taken grows almost linearly on the number of vertices

because the average number of iterations needed to opti-

mally solve those instances is also a linear function of n

(refer back to Figure 6). One also notices that instances of

small area polygons take only a negligible amount of time.

Regarding large area polygons, the performance is hindered

as a consequence of the higher density of the regular grid. A

closer look at the results from the experiment with large area

polygons revealed some interesting facts. Firstly, the solu-

tion phase described in Algorithm 3.2 always halted after

one iteration. Secondly, Xpress, the IP solver used in step 2

of the algorithm, solves only one linear programming relax-

ation. This is because, using its internal heuristics, Xpress

finds a feasible solution for the Set Cover instance which is

proved to be optimal by the dual bound produced by the re-

laxation. As a result, when applied to large area polygons

in our dataset, the solution phase of our algorithm only in-

volved the solution of a linear programming problem with

O(n2) constraints and O(n) variables as well as the com-

putation of the uncovered regions (step 3 of Algorithm 3.2).

This explains why the graph of the running time of our al-

gorithm for large area polygons has a polynomial shape. In

fact, after a thorough investigation using regression analy-

sis, we found that the polynomial that best fits the running

time plot of our algorithm is given by 1.994×10−7n5 −
7.920×10−5n4 +0.01238n3−0.6864n2+16.26n−110.9.

The graph of this polynomial is displayed in Figure 9 and

it should be remarked that even though its coefficients were

obtained by considering only the observations for n rang-

ing from 8 to 140, the resulting curve extrapolates well for

the remaining of the observed range.

Despite the high order of the polynomial, considering

that the Art Gallery problem for Orthogonal polygons is

NP-hard, it is remarkable that, on the average, the most diffi-

cult instances with nearly 200 vertices that we tested could

still be solved to optimality within 97 seconds, with only

10% of that time taken by the solution phase.

Number of Vertices

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
m

s
)

20 40 60 80 100 120 140 160 180 200

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

1
2

0
0

0
Large Area Polygons

Small Area Polygons

Random Polygons

(1.994/10^7)n^5 − (7.920/10^5)n^4 + 0.01238n^3 − 0.6864n^2 + 16.26n − 110.9

Figure 9. Average execution time.

6. Conclusion

We presented an exact and efficient algorithm for the Or-

thogonal Art Gallery problem when guards are restricted

to the vertices of the gallery-bounding polygon. We also

proved the theoretical results necessary to guarantee the

convergence and the exactness of the method. Even though

we presented the algorithm to address polygonal galleries,

the same method can be directly extended to terrains as dis-

cussed in [7].

Our computational tests were performed on a large num-

ber of polygons from three different classes and the results

showed that our algorithm is very efficient in practice: more

than 99% of the instances with up to 200 vertices were

solved in no more than three iterations. In fact, we also ob-

tained computational evidence to support the claim that the

average number of iterations required by the algorithm to

reach the optimal solution in any of those classes of orthog-

onal polygons is a slow linear function of the number of ver-

tices. Furthermore, we were able to solve with a single it-

eration both classes of orthogonal polygons considered to

possess extremal behavior in [24].

The tests also showed that the time spent by our algo-

rithm in order to optimally solve the instances of random

polygons is an almost linear function of the number of ver-

tices; on the other hand, in the case of small area polygons,

the algorithm uses no more than a negligible amount of

time. Lastly, for large area polygons, the growth of the ex-

ecution time as a function of the number of vertices turned

out to be no more than a fifth degree polynomial.

Extensions to the present work will include the study of

geometric properties that could lead to a reduction on the

number of grid points and, hence, to a cutback of the pre-

processing time and, as a consequence, to an improvement

on the overall efficiency. Through further investigations we

also intend to extend the method presented here to the case

where guards can be placed on the interior of the edges of

the polygons. One last obvious generalization is to obtain

similar algorithms for non orthogonal polygons.

References

[1] A. Aggarwal, S. K. Ghosh, and R. K. Shyamasundar. Com-

putational complexity of restricted polygon decompositions.

In G. T. Toussaint, editor, Computational Morphology, pages

1–11. North-Holland, Amsterdam, Netherlands, 1988.

[2] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P. A.

Tukey, editors. Graphical methods for data analysis. The

Wadsworth statistics/probability series. Wadsworth Interna-

tional, Duxbury Press, Boston, 1983.

[3] V. Chvátal. A combinatorial theorem in plane geometry. In

Journal of Combinatorial Theory Series B, volume 18, pages

39–41, 1975.

[4] J. Culberson and R. Reckhow. Dent diagrams: A unified ap-

proach to polygon covering problems. Technical Report TR

87-14, Dept. Comput. Sci., Univ. Alberta, Edmonton, Al-

berta, Canada, 1987.

[5] J. Culberson and R. A. Reckhow. Covering a simple orthog-

onal polygon with a minimum number of orthogonally con-

vex polygons. In Proc. 3rd Annu. ACM Sympos. Comput.

Geom., pages 268–277, 1987.

[6] H. Edelsbrunner, J. O’Rourke, and E. Welzl. Stationing

guards in rectilinear art galleries. Comput. Vision Graph. Im-

age Process., 27:167–176, 1984.

[7] S. Eidenbenz. Approximation algorithms for terrain guard-

ing. Inf. Process. Lett., 82(2):99–105, 2002.

[8] U. M. Erdem and S. Sclaroff. Optimal placement of cam-

eras in floorplans to satisfy task requirements and cost con-

straints. In Proc. International Workshop on Omnidirectional

Vision, Camera Networks and Non-classical Cameras, pages

30–41, 2004.

[9] U. M. Erdem and S. Sclaroff. Automated camera layout to

satisfy task-specific and floor plan-specific coverage require-

ments. Comput. Vis. Image Underst., 103(3):156–169, 2006.

[10] S. Fisk. A short proof of Chvátal’s watchman theorem. In

Journal of Combinatorial Theory Series B, volume 24, page

374, 1978.

[11] S. K. Ghosh. Approximation algorithms for art gallery prob-

lems. In Proc. Canadian Inform. Process. Soc. Congress,

1987.

[12] R. Honsberger. Mathematical Gems II. Number 2 in The

Dolciani Mathematical Expositions. Mathematical Associa-

tion of America, 1976.

[13] B. Joe and R. B. Simpson. Visibility of a simple polygon

from a point. Report CS-85-38, Dept. Math. Comput. Sci.,

Drexel Univ., Philadelphia, PA, 1985.

[14] B. Joe and R. B. Simpson. Correction to Lee’s visibility poly-

gon algorithm. BIT, 27:458–473, 1987.

[15] J. Kahn, M. M. Klawe, and D. Kleitman. Traditional gal-

leries require fewer watchmen. SIAM J. Algebraic Discrete

Methods, 4:194–206, 1983.

[16] D. T. Lee. Visibility of a simple polygon. Comput. Vision,

Graphics, and Image Process, 22:207–221, 1983.

[17] D. T. Lee and A. K. Lin. Computational complexity of art

gallery problems. IEEE Trans. Inf. Theor., 32(2):276–282,

1986.

[18] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford

University Press, 1987.

[19] J.-R. Sack and G. T. Toussaint. Guard placement in recti-

linear polygons. In G. T. Toussaint, editor, Computational

Morphology, pages 153–175. North-Holland, Amsterdam,

Netherlands, 1988.

[20] D. Schuchardt and H.-D. Hecker. Two NP-hard art-gallery

problems for ortho-polygons. Mathematical Logic Quar-

terly, 41:261–267, 1995.

[21] T. C. Shermer. Recent results in art galleries. Proceedings of

the IEEE, 80(9):1384–1399, 1992.

[22] A. P. Tomás and A. L. Bajuelos. Generating random orthog-

onal polygons. In Current Topics in Artificial Intelligence,

volume 3040 of Lecture Notes in Computer Science, pages

364–373. Springer Berlin / Heidelberg, 2004.

[23] A. P. Tomás, A. L. Bajuelos, and F. Marques. Approxi-

mation algorithms to minimum vertex cover problems on

polygons and terrains. In Proceedings of the International

Conference on Computational Science (ICCS 2003), volume

2657 of Lecture Notes in Computer Science, pages 869–878.

Springer Berlin / Heidelberg, 2003.

[24] A. P. Tomás, A. L. Bajuelos, and F. Marques. On visibility

problems in the plane - solving minimum vertex guard prob-

lems by successive approximations. In Proceedings of the

9th International Symposium on Artificial Intelligence and

Mathematics (AI & MATH 2006), 2006. to appear.

[25] J. Urrutia. Art gallery and illumination problems. In J.-R.

Sack and J. Urrutia, editors, Handbook of Computational Ge-

ometry, pages 973–1027. North-Holland, 2000.

[26] L. A. Wolsey. Integer Programming. Wiley-Interscience,

1998.

