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Abstract

A good shape descriptor is necessary for automati-
cally identifying landmarks on boundaries. Our method
of boundary shape description is based on the notion of c-
scale, which is a new local scale concept, defined at each
boundary element. From this representation we can extract
special points of interest such as convex and concave cor-
ners, straight lines, circular segments, and inflection points.
The results show that this method gives a complete descrip-
tion of shape and allows the automatic positioning of math-
ematical landmarks, which agree with our intuitive ideas of
where landmarks may be defined. This method is applicable
to spaces of any dimensionality, although we have focused
in this paper on 2D shapes.

1 Introduction

Shape description plays a fundamental role in com-
puter vision and pattern recognition, especially in the fields
of automatically defining landmarks, shape analysis, im-
age segmentation, and registration. The concept of shape
can be defined as information that is invariant to the ge-
ometrical transformations of rotation, scaling, and transla-
tion [5]. Shape representations must be unique, complete,
and should be able to reflect the differences between simi-
lar objects while abstracting from detail and keeping the
basic features. Although many methods for shape descrip-
tion exist, there is none that could be labeled as a gene-ral
method, in the sense that they are usually application de-
pendent. According to [20] and [15], the existing meth-
ods can be classified into contour-based and region-based
approaches. The contour-based class is based on the use

of the shape boundary whereas region-based methods in-
clude the inside of the shape to do the analysis. Most com-
mon techniques for contour-based approaches consist of
shape signatures [18] [4], boundary moments [16], polygo-
nal and curve decomposition [11] [12] [1], Fourier descrip-
tors [18] [2], chain code representation [6] [8] [7], syntactic
analysis [9] [10], and shape invariants using boundary prim-
itives [14] [17]. This paper describes a new contour-based
descriptor.

Let the shape of a 2D object be represented by its exter-
nal boundary B. The elements bi of B will be called bels
(an abbreviation for “boundary elements”) or points from
now on. An important class of methods for characterizing
shapes uses the curvature estimated at each bel. To estimate
the curvature of a digital boundary, three main approaches
have been used [19]: orientation-based, derivative-based
and osculating circle-based. In orientation-based methods,
the curvature is estimated by the change of slope of the tan-
gent at each point of the boundary in a certain direction,
using chain codes to approximate the boundary and differ-
ent tangent estimations. The derivative-based approach in-
volves calculating the curvature based on derivatives. To
achieve this, the boundary is approximated by second order
curves such as splines to obtain a parametric definition of
the curve. Then, the curvature is estimated using

κ =
x′′y′ − x′y′′

(x′2 + y′2)
3
2
. (1)

In this case, the curvature is calculated on sampled points
of the approximated boundary, and the results should be
mapped again to the digital boundary using interpolation
or averaging [13]. For the osculating circle approach, af-
ter smoothing, the boundary is fitted by a circular disc of a
certain radius. Then, the curvature is computed using the



inverse of these radii at each bel. To avoid digital effects, in
all these curvature estimators, some continuous approxima-
tion is attempted when estimating the tangents at the bound-
ary, or when the boundary is approximated to obtain a para-
metric definition, or when a circle is fitted to a smoothed
boundary. This may introduce errors in the boundary or
even in the shape. In this paper, we present a method of es-
timating curvature without modifying the boundary, taking
into account the digital effects and noise, and considering
scale in curvature calculation, to obtain a complete descrip-
tion of shapes with different levels of detail. Furthermore,
a byproduct of our method is that a shape can be repre-
sented by characteristic points or landmarks. Landmarks
can be anatomical, mathematical, or pseudo-landmarks [5].
Manual description of shapes is a tedious and error prone
task. The curvature at each bel can be a good indicator for
positioning these landmarks. In this paper, we aim to de-
scribe shapes automatically using mathematical landmarks
obtained after a scale-based curvature estimation process.

We first present a theory for local curvature scale esti-
mation in Section 2. In Section 3, we propose a method for
shape description using local curvature scale. In Section 4,
we extend this method for landmark selection. In Section 5,
we demonstrate the utility of these methods based on shape
examples drawn from different areas. Our Conclusions and
future work are stated in Section 6.

2 Local Curvature Scale: c-scale

We define local curvature scale segment or c-scale seg-
ment at any point b on a boundary B as the largest connected
set of points of B connected to b such that no point in that set
is farther than t from a line connecting the two end points
of the connected set of points.

Let b1, ..., bn be the points (or bels) defining a bound-
ary B. We will associate with each point b = bi its c-scale
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Figure 1. c-scale estimation.

segment C(b). This set is an indirect indicator of the cur-
vature at b. To determine C(bi), we progressively examine
the neighbors, first the set of points bi−2, bi, bi+2, then the
set bi−3, bi−2, bi, bi+2, bi+3, and so on (Fig. 1). At each ex-
amination, we calculate the distance of the points in the set
from the straight line connecting the two end points of the

set. If the maximum distance of these points from the line
is greater than a threshold t, we define the c-scale segment
C(b) of b as the last set of connected points found for which
the distance was still within the threshold. The c-scale value
we assign to bi, denoted Ch(b) is the chord length corre-
sponding to C(b), which is the length of the straight-line
segment between the end points bb and bf of C(b). If Ch(b)
is large, it indicates small curvature at b, and if it is small, it
indicates high curvature. c-scale values are very helpful in
estimating actual segments and their curvature independent
of digital effects.

Relation Between c-scale Value Ch(b) and
Radius r

We will now arrive at the actual arc length A(b) at b cor-
responding to the c-scale segment C(b) from a knowledge
of Ch(b) and by assuming that C(b) locally represents a cir-
cular arc. Let b be a point on a circular arc A. Any segment
joining the two ends of the circular arc is a chord P2P3 of a
circle C with radius r and centre o. The radius and centre of
the circle can be obtained using the following chord prop-
erty: the perpendicular bisector of a chord passes through
the centre of a circle. If we trace the perpendicular bisector
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Figure 2. Geometric properties of the chord
in a circle.

of the chord, we divide the chord into two equal segments.
Let h be one of these segments and s the distance between b
and the middle point of the chord. A right triangle of sides
h, s and u can then be defined (Fig.2), so u =

√
s2 + h2.

If we trace a right triangle P1P2b, then, we can calculate r
using Thales theorem:

cos θ =
s

u
=

u

2r
, (2)



and
r =

u2

2s
=

s2 + h2

2s
. (3)

In our case, we have h =
Ch(b)

2
. If we substitute h in (3),

we obtain the expression we were looking for r.

r =
4s2 + Ch(b)2

8s
. (4)

Relation Between c-scale Ch(b) and Arc
Length A(b)

The perimeter of a circle is defined as: P = 2πr. There-
fore, the length of a circular arc A(b) with an angle 2α at
the centre (Fig. 2) is given by

A(b) =
2πr

360
· (2α) =

πrα

90
. (5)

From tanα =
h

r − s
=

Ch(b)
2(r − s)

, the relation between the

chord and the arc length is

A(b) =
arctan

( Ch(b)
2(r−s)

)
πr

90
. (6)

Relation Between c-scale Ch(b) and Curva-
ture κ(b)

The curvature κ of a circular segment of radius r is

κ =
1
r

. Therefore, the relationship between curvature and
c-scale value is:

κ(b) =
8s

4s2 + Ch(b)2
, (7)

where Ch(b) represents the length of the chord of the os-
culating circle matching the c-scale segment C(b) at b, and
s is the distance between the mid-point of the arc and the
mid-point of the chord.

Orientation

The orientation at each point b is generally defined as the
angle Ψ in degrees between the tangent to the boundary at
b with respect to the x-axis. In our digital setting, we as-
sume the tangent at b to be a line at b parallel to the chord
connecting the end points bb and bf of the c-scale segment
C(b) at b. The boundary is followed anticlockwise, the in-
side of the object being on the left of the boundary at any
bel b. Using the chords found previously for each bel, we
calculate the unit vector u of the chords in the direction of
the boundary (Fig. 3). u has two components: the direction
cosines ux, uy . From the direction cosines, we can write
down the orientation at b as
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Figure 3. Orientation using direction cosines.

Ψ(b) =
{

360− arccos(ux(b)) if uy < 0
arccos(ux(b)) if uy > 0.

(8)

For a variety of reasons, it is better to measure the orien-
tation with respect to the starting point b1 as

O(b) = Ψ(b)−Ψ(b1). (9)

To have a continuous orientation along the boundary, we
need to detect the discontinuities caused if we change from
360◦ to 0◦ and vice versa, keeping track of how many turns
the chord continuously makes. This way we can also de-
scribe shapes such as spirals that have several turns and rep-
resent the real angle at each point of the boundary that may
be greater than 360◦.

Relation Between Orientation O(b) and Cur-
vature

Curvature is defined as the rate of change of the slope
of the tangent at each point on the boundary. Therefore,
this is the exact definition of the first derivative O′(b) of the
orientation O(b). Using O′(b) we find that the orientation
of the boundary is also reflected in the curvature obtained,
and therefore, we have more information than using only
the magnitude of the curvature. Using this approach we
can locate special points of interest. Local positive max-
ima of O′(b) will correspond to convex corners, local neg-
ative minima to concave corners, constant zero curvature to
straight lines, constant non-zero curvature to circular seg-
ments, and zero crossings to inflection points. This way we
have a whole description of the boundary using O′(b).



Example

The above theory is now illustrated using an example
shape in Fig.4. This shape is constructed from theoretical
functions. It includes different parts such as a rotated rect-
angle, circular arcs of different radii (convex and concave),
and a sine wave. The starting point of the boundary b1 is
represented in the figure by a cross. The boundary is ori-
ented and follows the direction of the arrow, leaving always
the inside of the object to the left. The order of the bels is
defined using this direction, and the coordinates of the bels
are computed by using the functions that define the differ-
ent sections. To this shape, we apply our c-scale calculation

Figure 4. A general shape formed by straight
lines, circular arcs, and a sine wave.

method with t = 0.02. This parameter controls the level of
detail or global scale. For digital boundaries, we usually set
t ≈ 3, which works well for all the shapes we tested. This
value of t is able to preserve appropriate boundary details
and at the same time ward against digitization noise. The
values of the chord lengths (i.e., c-scale) for each bel are
represented in Fig.5.
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Figure 5. The c-scale value Ch(b) along the
boundary for the shape in Fig. 4 starting with
b1 at origin.

Due to the symmetry of the c-scale method, each straight
segment on the boundary corresponds to a peak in the Ch(b)

plot, and the location of the peak corresponds to the mid-
point of the segment. Chords of same length are obtained
when we have a circular shape with constant curvature. And
valleys on the Ch(b) plot represent curved regions of the
boundary. Using Equation (6), a representation of the arc
length A(b) ( as shown in Fig.6) can be made. In this case,
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Figure 6. Arc length A(b) and its derivative
A′(b) for the shape in Fig. 4.

A(b) and Ch(b) are very similar, but this may not be the case
for digital boundaries.The orientation of each bel is defined
in degrees. The first element of the boundary will be set
to 0◦ and the rest will be defined with respect to this first
element. The orientation O(b) for each bel of the shape of
Fig.4 is shown in Fig.7, as well as its derivative, O′(b).
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Figure 7. Orientation O(b) and its derivative
O′(b) for the shape in Fig.4.

O′(b) will be very useful for shape description as it con-
stitutes a good estimation of curvature, allowing addition-
ally to distinguish between convex and concave regions in



the boundary. According to Equation (7), we represent the
curvature of the shape under consideration in Fig.8.
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Figure 8. Curvature κ(b) for the shape in
Fig. 4.

Straight lines on the boundary have a curvature equal
to zero, circular regions have constant curvature and sine
waves and corners have high curvature values.

3 A Method of Shape Description Using c-
scale

In this section we present the method of boundary shape
description using c-scale. Given a (digital) boundary B and
a scale parameter t, our goal is to obtain a partition PB of
B into segments, a set sL of landmarks, and a shape de-
scription assigned to every element of PB. The method is
summarized in Figure 9. First, we determine at each point

c-scale
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B

O(b)

Filter
Median

Filter
Median DetermineDetection of V,P

O’(b)

Derivative
First

Valleys and Peaks

Boundary
Features

Landmarks
Shape

Description

Figure 9. The method of boundary shape de-
scription.

b of B the c-scale value Ch(b) from which we estimate arc
length A(b) via Equation 6 and orientation O(b) via Equa-
tion 9. Second, we smooth A(b) and O(b) using a median
filter of width 2w + 1 centered at every element b, where
w is the half width of the window used for filtering, spec-
ified in terms of the number of points considered on either
side of b. We repeat this process n times to get a smoothed
version of A(b), called Af (b). This is necessary only for
digital boundaries. Then, we detect automatically the peaks
and the valleys of Af (b) by using mathematical morphol-
ogy. The peaks correspond to straight line segments in the
boundary and the valleys to curved segments. Mathematical
morphology [16] is based on set theory and provides pow-
erful tools for image analysis. Fundamental operations are

erosion, dilation, opening and closing. An opening consists
of an erosion followed by a dilation. A closing is defined
as a dilation followed by an erosion. A structuring element
defines the size and shape of the transformation to be done.
In our case, we will use a structuring element of size se
applied to the signal Af (b). Opening and closing are the
transformations we need to detect the peaks and the val-
leys of Af (b) (see Fig.10). In particular, to find the valleys,
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Figure 10. Closing and opening for valley and
peak detection in Af (b) for the shape in Fig. 4.

we apply to Af (b) a bottom-hat filtering operation, which
is the difference between Af (b) and its closing. This filter
will extract only the valleys of Af (b). Once we have de-
tected all the valleys in Af (b) we find the minimum value
for each valley detected. These local minima correspond to
the valleys in Af (b) and represent points with high curva-
ture in B. Similarly, to find the peaks, we need a top-hat
filtering operation, which is the difference between Af (b)
and its opening. This will extract only the peaks of Af (b).
These maxima correspond to the peaks in Af (b), which are
the middle points of the straight segments in B. By selecting
a different size for the structuring element, we can vary the
number of valleys and peaks detected. We can avoid spu-
rious valleys and peaks by keeping only peaks and valleys
bigger than a certain value el.

50 100 150 200 250 300 350 400

2

4

6

8

10

b

A
f(

b)

 

 
Af(b)
Peaks
Valleys

Figure 11. Detection of peaks and valleys.



For the example of Fig.4, we used a structuring element
of size 5 for both valley and peak detection. No element
selection was necessary in this case by specifying el. Af-
ter the bottom-hat and the top-hat filtering operation, we
detect the peaks and valleys as shown in Fig.11. Once we
have detected the peaks P and the valleys V in Af (b), we
can locate the landmarks sL on the boundary as shown in
Fig.12 by simply identifying the points where local min-
ima/maxima occurred. We can select the level of detail we

Figure 12. Landmarks denoting the peaks
and valleys of Af (b) for the shape in Fig.4.

want to consider by using two threshold values nP and nV .
nP will be the smallest value in Af (b) from which we want
to consider peaks. nV will be the highest value in Af (b)
from which we want to consider valleys. This is used in
the case that we want to consider only more prominent val-
leys ( corresponding to higher curvature regions) and peaks
(corresponding to lower curvature regions). From O′(b) we
can extract a complete description of each bel in B. Local
positive maxima will correspond to convex corners, local
negative maxima to concave corners, constant zero curva-
ture to straight line segments, constant non-zero curvature
to circular segments, and zero crossings to inflection points.

4 A Method of Landmark Selection

In this section, we present a method of landmark selec-
tion with different levels of detail. The number of land-
marks identified depends on the scale parameter t, the size
of the structuring elements se considered in bottom-hat and
top-hat filtering operations, the elements selected el when
selecting valleys and peaks in Af (b), and on the level of
detail considered using the thresholds nP and nV . We
have several options to select as landmarks on a boundary.
We can consider only the points corresponding to peaks in

Af (b), only to valleys, or both. This can vary depending on
the application. In our case, we are interested in automatic
landmark selection to build a Point Distribution Model for
Active Shape Models [3]. We will use both peaks and val-
leys of Af (b) to describe the shapes. This will be illustrated
in the next section.

5 Results

We have illustrated in the previous section the curve de-
scription process on a mathematical object (Fig.4). In this
section, we will focus on automatic landmark selection and
present the results for digital boundaries of a natural object
and a medical object. We assume that these shapes are ex-
tracted after segmentation of appropriate images.

Natural Object: a Rabbit

The object we want to characterize with landmarks is
presented in Fig.15. In this case, the shape is extracted from
a binary image of a rabbit. To show how we can describe
a shape considering different levels of detail, we will vary
first the scale parameter t.The greater the t value considered
the less number of details we pick from the digital bound-
ary. But t has to be large enough to avoid noise and digital
effects. A value of t around 3.1 works well for most shapes
we have tested.
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Figure 13. Detection of Peaks and Valleys in
Af (b) for t = 2 (top) and t = 3.1 (bottom) for
the rabbit shape.

In Fig.13, we show the plots of Af (b) for the scale values
t = 2 and t = 3.1, both smoothed with the median filter
with parameters w = 3 and n = 2. In these curves, we have



detected the valleys and peaks using a structuring element
of size se = 5 for both peaks and valleys.

From Fig.13 we observe that both curves are roughly the
same and that they differ in a way that enables us to select
more or less number of details on the boundary shape. By
selecting structuring elements of smaller size, we can detect
only sharp valleys or peaks. We notice from Fig.13 that
in some parts we have redundant landmarks because of the
detection of small peaks or valleys. For example, for t =
3.1, we can see at b around 710 that a spurious peak has
been detected. Similarly for t = 2, around the value 625 we
have a peak and a valley corresponding to small variations.
To avoid this, we can use the element selection method (cf.
Section 4) and consider only the peaks and valleys obtained
that are greater than a value el. In this case, if we set t =
3.1, el = 1 for peak and valley detection, we will keep all
the valleys and peaks bigger than this value and the result
will be as in Fig.14.
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Figure 14. Detection of Peaks and Valleys in
Af (b) for t = 3.1, with el = 1 and se = 5 for the
rabbit shape.

We can also use different element selections for peaks
and valleys.

a. b.

Figure 15. Landmarks on the boundary of a
rabbit shape for different t: a. t = 2, b. t = 3.1.

Fig.15.a shows the landmarks detected for t = 2, el = 1

and se = 5. In Fig.15.b, the landmarks are located using
t = 3.1, el = 1 and se = 5. We can select the appropriate
configuration of parameters depending on the application
for the automatic selection of landmarks of shapes.

Medical Object: the Talus Bone of the Foot

We have applied our method to the talus bone (Fig.16.b)
segmented from an MR foot image (Fig.16.a). From this

a. b.

Figure 16. The talus bone of the foot in a MR
image.

segmented image we have extracted the contour to locate
landmarks automatically. In this case we want to illus-
trate how to select details keeping only higher peaks, which
correspond to the middle point of straight segments in the
boundary, and lower valleys, which correspond to regions
of the boundary that have higher curvature. This can be
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Figure 17. Peaks and Valleys in Af (b) for the
talus bone of Fig.16.

selected using the parameters nV and nP presented in Sec-
tion 3. To see the effect of this selection, we calculate Af (b)



using t = 3.1, w = 2 and n = 2. Then, we detect valleys
and peaks using a structuring element of size se = 5 and
without doing any element selection (el = 0). The peaks
and valleys detected can be seen in Fig.17.

We select nV = 20 and nP = 27 as thresholds (cf.
Fig.17). Fig.18.a represents the shape without selection of

a. b.

Figure 18. Landmarks on the talus shape for
t = 3.1: a. without and b. with selection via
nP and nV .

landmarks whereas Fig.18.b shows the selection of land-
marks using nV and nP . Only high curvature regions and
very low curvature regions were selected.

6 Conclusions

In this paper, a new theory and method for shape descrip-
tion and automatic landmark selection based on the novel
concept of c-scale are presented. This approach produces a
complete, simple and new boundary shape description with
numerous potential applications. For each boundary ele-
ment b, the arc length of homogeneous curvature regions is
estimated as well as the orientation of the tangent at b. This
method is different from previous methods of curvature es-
timation and can be directly applied to digital boundaries
without requiring prior approximations of the boundary. It
is also capable of handling different levels of shape detail.
We have shown that this method is useful for shape descrip-
tion as well as automatic landmark selection. This work fo-
cuses on 2D shapes but it can be extended to shapes of any
dimensionality. In future work, we will use this method to
build automatically Point Distribution Models for creating
Active Shape Models (ASMs) [3] toward the goal of organ
modeling and segmentation.
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