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Abstract

Critical kernels constitute a general framework settled in
the category of abstract complexes for the study of parallel
thinning in any dimension. It allows to easily design par-
allel thinning algorithms which produce new types of skele-
tons, with specific geometrical properties, while guarantee-
ing their topological soundness. In this paper, we demon-
strate that it is possible to define a skeleton based on the
Euclidean distance, rather than on the common discrete dis-
tances, in the context of critical kernels. We provide the nec-
essary definitions as well as an efficient algorithm to com-
pute this skeleton.
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Introduction

In 1961, H. Blum [4] introduced the notion of medial
axis or skeleton, which has since been the subject of nu-
merous theoretical studies and has also proved its useful-
ness in practical applications. Although originally defined
in the continuous plane using a “grassfire” analogy, the
medial axis can also be defined using the notion of maxi-
mal inscribed ball, in n-dimensional continuous or discrete
spaces [5, 10]. The medial axis is a set of points which is,
by nature, centered in the object with respect to the distance
which is used to define the notion of ball. In the discrete n-
dimensional grid Zn, in order to achieve a certain degree of
rotation invariance, the Euclidean distance between points
of Zn may be used. Nevertheless, even in this case, the
medial axis has not, in general, the same nice properties as
its continuous counterpart. In particular, the properties of
thinness and homotopy (or topology preservation) are lost.

In order to obtain an homotopic skeleton which contains
the medial axis, the use of guided and constrained discrete
homotopic transformations has been proposed by several
authors (see e.g. [7, 13, 12, 6]). Intuitively, the principle of

these methods is to sequentially delete simple points (that
is, points which can be deleted without changing topology)
from the object, taking in first priority the points which are
closest to the background, and preserving the medial axis
points. These approaches suffer from two drawbacks. First,
the result of the method is not uniquely defined: depending
on the order in which points with equal priority are pro-
cessed, different results can be obtained. Second, the ob-
tained skeleton is not thin since it contains the medial axis
which can be “thick” at some places. Let us mention that
some authors considered higher resolution grids in order to
get thinner skeletons (see e.g. [1, 8]), but none of these
works was based on the Euclidean distance.

Recently, G. Bertrand introduced a general framework
for the study of parallel thinning in any dimension in the
context of abstract complexes [2]. A new definition of a
simple point is proposed in [2], based on the collapse op-
eration which is a classical tool in algebraic topology and
which guarantees topology preservation. Then, the notions
of an essential face and of a core of a face allow to define
the critical kernel K of an object X . The most fundamental
result proved in [2] is that, if a subset Y of X contains K,
then X collapses onto Y , i.e., Y is a retraction of X .

In [3], the particular case of 2D structures in spaces of
two and three dimensions is considered. Several new par-
allel thinning algorithms are proposed and compared with
the existing ones, when possible. For example, one of these
new algorithms calledAK2 is proved to preserve the medial
axis (defined with the so-called 4-distance) and is invariant
with respect to π/2 rotations, another one called NK2 pro-
duces a result which is proved to contain the medial axis
and to be minimal for this property. These algorithms have
no equivalent in the literature. Furthermore, the results of
the algorithms proposed in [3] are well-defined, they do not
depend on any arbitrary choice.

In Fig. 1, we motivate the need for a skeleton based on
the Euclidean distance. First, let us notice that the balls for
the 4-distance are squares with sides rotated by π/4 with re-
spect to the main axes (like the rightmost square in Fig. 1).



This explains why the skeleton based on this distance is not
invariant by a rotation of π/4 (see figure). Also, due to
the particular shape of these balls, diagonal branches of the
skeleton appear, even when they correspond to parts of the
contour which are not very salient (see A, B, C, D), whereas
more salient features (see X, Y) do not generate any skele-
ton branch.

The goal of this paper is to provide a definition and an
algorithm for such an Euclidean skeleton. This skeleton
should contain the Euclidean medial axis of the original ob-
ject, thus we also propose a definition of the Euclidean me-
dial axis in the context of cubical complexes embedded in
Zn. This medial axis can be efficiently computed thanks to
an algorithm recently introduced in [11].

Let us emphasize the fact that the same approach is also
valid in 3D. An extended version of this paper will pro-
vide definitions, algorithms and results in both 2D and 3D
spaces.
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Figure 1. Skeleton obtained by the parallel al-
gorithm AK2 [3], this skeleton contains the
(4-distance) medial axis of the shape.

1 Basic notions

We recall briefly in sections 1 and 2, the definitions and
results from [2, 3] which are used in the sequel.

Let Z be the set of integers. We consider the families of
sets F1

0, F1
1, such that F1

0 = {{a} | a ∈ Z}, F1
1 = {{a, a +

1} | a ∈ Z}. A subset f of Zn, n ≥ 2, which is the
Cartesian product of exactlym elements of F1

1 and (n−m)
elements of F1

0 is called a face or an m-face of Zn, m is the
dimension of f , we write dim(f) = m.

We denote by F2 the set composed of all m-faces of Z2,
m = 0, 1, 2. An m-face of Z2 is called a point if m = 0, a
(unit) interval if m = 1, a (unit) square if m = 2.

Let f be a face in F2. We set f̂ = {g ∈ F2 | g ⊆ f} and
f̂∗ = f̂ \ {f}. Any g ∈ f̂ is a face of f , and any g ∈ f̂∗ is a
proper face of f . If X is a finite set of faces of F2, we write
X− = ∪{f̂ | f ∈ X}, X− is the closure of X .

A setX of faces of F2 is a cell or anm-cell if there exists
an m-face f ∈ X , such that X = f̂ . The boundary of a cell
f̂ is the set f̂∗.

A finite set X of faces of F2 is a complex (in F2) if for
any f ∈ X , we have f̂ ⊆ X . Any subset Y of a complex
X which is also a complex is a subcomplex of X . If Y is a
subcomplex of X , we write Y � X .
If X is a complex in F2, we also write X � F2.

A face f ∈ X is principal for X if there is no g ∈ X
such that f ∈ ĝ∗. We denote byX+ the set composed of all
principal faces of X . Observe that [X+]− = X− and thus,
that [X+]− = X whenever X is a complex. In Fig. 2, we
give some illustrations of the notions defined above.

x y
z t (a) (b) (c)

(d) (e) (f)

Figure 2. (a): Four points x, y, z, t of Z2

such that {x, y, z, t} is a 2-face. (b,c): Two
representations of the set of faces
{{x, y, z, t}, {x, y}, {z}}. (d): A set X of
faces in F2, we see that X is not a complex.
(e): The set X+, composed by the principal
faces of X. (f): The set X−, i.e. the closure
of X, which is a complex.

Let X be a complex in F2 and let f ∈ X+. The face f
is a border face for X if there exists one face g ∈ f̂∗ such
that f is the only face of X which contains g. Such a face
g is said to be free for X and the pair (f, g) is said to be a
free pair for X . We say that f ∈ X+ is an interior face for
X if f is not a border face.

Let X be a complex, and let (f, g) be a free pair for X .
The complex X \ {f, g} is an elementary collapse of X .
Let X , Y be two complexes. We say that X collapses onto
Y if there exists a collapse sequence from X to Y , i.e., a
sequence of complexes 〈X0, ..., Xl〉 such that X0 = X ,
Xl = Y , and Xi is an elementary collapse of Xi−1, i =
1, ..., l. If X collapses onto Y , we also say that Y is a
retraction of X .
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2 Critical kernels
Let us briefly recall (for the 2D case) the framework

introduced by G. Bertrand in [2] for thinning, in parallel,
discrete objects with the warranty that we do not alter the
topology of these objects. This method is based solely on
three notions, the notion of an essential face which allows
to define the core of a face, and the notion of a critical face.
Definition 1. Let X � F2 and let f ∈ X . We say that f is
an essential face for X if f is precisely the intersection of
all principal faces of X which contain f , i.e., if f = ∩{g ∈
X+ | f ⊆ g}. We denote by Ess(X) the set composed of
all essential faces of X . If f is an essential face for X , we
say that f̂ is an essential cell for X .

Observe that a principal face for X is necessarily an es-
sential face for X , i.e., X+ ⊆ Ess(X).

In the following, K will denote a subset of X which
plays the role of a constraint set, that is, a set of faces which
must be preserved during the thinning.
Definition 2. Let X � F2, let K ⊆ X and let f ∈ Ess(X).
The core of f̂ for 〈X,K〉 is the complex Core(f̂ , X,K) =

∪{ĝ |g ∈ [K ∪ Ess(X)] ∩ f̂∗}.
Definition 3. Let X � F2, let K ⊆ X and let f ∈ X . We
say that f and f̂ are regular for 〈X,K〉 if f ∈ Ess(X) and
if f̂ collapses onto Core(f̂ , X,K). We say that f and f̂ are
critical for 〈X,K〉 if f ∈ Ess(X) and if f is not regular for
〈X,K〉.
If X � F2, we set Critic(X,K) = ∪{f̂ | f is critical
for 〈X,K〉}, Critic(X,K) is the critical kernel of X con-
strained by K, and Critic(X, ∅) is the critical kernel of X .

In Fig. 3a, the letters A,B,C,D,E indicate 2-
faces, the letters a, b, c, d, e, f 1-faces, and the let-
ters t, u, v, w, x, y, z 0-faces. The essential faces of
the complex X are highlighted: we have Ess(X) =
{A,B,C,D,E, a, b, c, x, y, z}. The core of Ĉ for 〈X, ∅〉
is the set {x, b, y, z}, the core of D̂ for 〈X, ∅〉 is {y, c, u}.
We can see that a collapse sequence from D̂ to {y, c, u} ex-
ists: e.g., 〈D̂, {v, e, w, f, y, c, u}, {w, f, y, c, u}, {y, c, u}〉.
Thus, the face D is regular for 〈X, ∅〉. On the other hand, it
can be seen that no collapse sequence from Ĉ to {x, b, y, z}
exists: the face C is critical for 〈X, ∅〉. Let K = {v}, the
core of D̂ for 〈X,K〉 is {y, c, u, v}, and we can see that
D is critical for 〈X,K〉. Fig. 3b shows the critical kernel
ofX , and Fig. 3c shows the critical kernel ofX constrained
by K.

The following theorem holds in arbitrary dimension.
Theorem 4 ([2]). Let X � F2, let K ⊆ X . The critical
kernel of X constrained by K is a retraction of X .

3 Euclidean medial axis in F2

The definition of the medial axis in terms of centers of
maximal balls [5] can be used in any metric space, e.g.
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Figure 3. (a): A complex X for the illustration
of the notions of essential face, core and crit-
ical face (see text). (b): The critical kernel
Critic(X, ∅). (c): The constrained critical ker-
nel Critic(X,K), with K = {v}.

a subset G of Zn (a grid) equipped with a distance. Let
G be a subset of Zn, let x and y be two points of G,
we denote by d(x, y) the Euclidean distance between x
and y. For defining and computing the medial axis, it is
in fact sufficient to consider the squared Euclidean distance
d2(x, y) =

∑n
i=1(xi − yi)2.

In most works on discrete medial axis, the whole discrete
grid Zn is taken for G. It means that both object points
and centers of balls must belong to the same set. In the
following, we will consider families of balls which are made
of points of G but not necessarily centered on points of G,
whereG is a subsampling ofZn. This motivates some of the
definitions given in this section, which are slightly different
from the traditional ones.

Let R ∈ N, x ∈ G, the (Euclidean) ball in G cen-
tered on x with (squared) radiusR is defined byB(x,R) =
{y ∈ G | d2(x, y) ≤ R}. Let X ⊆ G, x ∈ X , we de-
note by DX(x) and by D2

X(x) the Euclidean distance and
the squared Euclidean distance, respectively, from x to the
nearest point y ∈ G \X . We say that DX (resp. D2

X ) is the
distance map (resp. squared distance map) of X .

Let X be any subset of G, let x ∈ X , we say that a
ball B = B(x,R) in G is maximal for X (in G) if B is
included inX and maximal for this property, more precisely
if B ⊆ B(y,R′) ⊆ X , with y ∈ G and B(y,R′) being a
ball in G, implies B(y,R′) = B. The (Euclidean) medial
axis of X (in G), denoted by MA(X,G) or simply MA(X)
when no confusion may occur, is the set of centers of all
maximal Euclidean balls for X in G.

In order to define an Euclidean medial axis in F2, we
have to define a distance in such a space, as close as possible
to the Euclidean distance. The easiest way to do so is to
take advantage of a “natural” bijection between F2 and Z2,
defined below.
Definition 5. Let f ∈ F2, let a, b ∈ Z2. We define the bi-
jection Ψ from F2 to Z2, as follows:
if f = {(a, b), (a, b+1), (a+1, b), (a+1, b+1)} (a 2-face),
then Ψ(f) = (2a, 2b);
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if f = {(a, b), (a, b+ 1)} (a vertical 1-face),
then Ψ(f) = (2a− 1, 2b);
if f = {(a, b), (a+ 1, b)} (an horizontal 1-face),
then Ψ(f) = (2a, 2b− 1);
if f = {(a, b)} (a 0-face),
then Ψ(f) = (2a− 1, 2b− 1).
Let F � F2, we define the embedding of F in Z2 as
Ψ(F ) = {Ψ(f) | f ∈ F}.

This correspondence is illustrated in Fig. 4. In all figures
like Fig. 5, a complex F is represented by its embedding
Ψ(F ) (one image point per face).

0

2

1

3

1
0

2

−1
0 1 2 1 30 2−1

Figure 4. Illustration of the bijection Ψ from
F2 to Z2.

Depending on the parity of their coordinates, the ele-
ments of Z2 may represent different kinds of faces. The
following classification will thus be useful in the sequel.
Definition 6. Let i ∈ {0, 1, 2}. We define the set Gi ⊂ Z2

as the set of elements in Z2 with exactly i even coordinates,
more precisely Gi = {(z1, z2) ∈ Z2 | ((z1 + 1) mod 2) +
((z2 + 1) mod 2) = i}.

From Def. 5 and Def. 6, we see that 2-faces are repre-
sented by points of G2 (points with two even coordinates),
1-faces by points of G1, and 0-faces by points of G0.

Let us consider different approaches to define the Eu-
clidean medial axis of a complex F � F2.

The immediate approach consists of taking directly the
Euclidean medial axis of the embedding of F in Z2, that
is, MA(Ψ(F ),Z2). The result, however, is quite noisy and
not useful in practice, as shows Fig. 5a. More precisely, the
embedding of the complex F is made of squares of 3 × 3
points, and thus its contour is “crenelated”. This fact in-
duces many medial axis points in the neighborhood of the
object contour.

A second approach, that produces a better result, consists
of taking the Euclidean medial axis of the embedding of F+

in G2, that is, M = MA(Ψ(F+), G2). As an argument
supporting this approach as well as the following one, let
us observe that a complex is often obtained from a digital
image by identifying each image pixel with a 2-face [3]. In
this particular case, M would correspond to the Euclidean
medial axis of the original image. The result is shown in
Fig. 5b. The drawback of this approach is that it produces a
rather “thick” medial axis.

(a)

(b)

Figure 5. (a): A complex F (in white), and the
Euclidean medial axis of Ψ(F ) (highlighted).
(b): A complex F (in white), and the Euclidean
medial axis of Ψ(F+) in G2 (highlighted).

We propose a third approach, that is to use the exact Eu-
clidean medial axis in higher resolution (H-medial axis), in-
troduced in [11].

Let us analyze further the second approach presented
above. In Fig. 6, a detail of Fig. 5b is shown. In Fig. 6b,
the points ofG2 are symbolized by small squares, and other
points of Z2 by small discs. Note that Ψ(F+) ⊂ G2, and
that MA(Ψ(F+), G2) is based on Euclidean balls in G2

centered on points of G2. For example, in Fig. 6(b), B1

(squares surrounded by a dashed circle) is a maximal ball in
G2 centered on the pointX: it is strictly included inB2, but
B2 is centered on Y which is in G1 and not in G2. Thus, X
belongs to the medial axis.

The idea is to consider a larger number of Euclidean balls
in G2, by using the concept of G2-balls. The G2-balls are
Euclidean balls inG2, centered on any point of Z2, not nec-
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Figure 6. (a): A complex F � F2, with F+ in
gray. (b): The embedding Ψ(F ), with Ψ(F+) in
gray. The dashed circle helps to visualize the
Euclidean ball B1 in G2, made of 9 points and
centered on X, which is maximal for Ψ(F+),
and the solid circle helps to visualize the G2-
ball B2, made of 12 points and centered on Y ,
which is G2-maximal for Ψ(F ). The ball B1 is
also a G2-ball included in Ψ(F+), but not G2-
maximal. (c): A representation of Ψ−1(B1) (in
light gray). (d): A representation of Ψ−1(B2)
(in light gray).

essarily in G2.
Definition 7. Let x ∈ Z2,R ∈ N, theG2-ball centered on x
with (squared) radiusR is the set {y ∈ G2 | d2(x, y) ≤ R}.
Let X ⊂ Z2, we say that a G2-ball B is G2-maximal for X
if B is included in X and maximal for this property, more
precisely if B ⊆ B′ ⊆ X , with B′ being a G2-ball, implies
B = B′.

The family of G2-balls includes all the Euclidean balls
in G2 considered by the previous approach, in addition to
G2-balls centered on points of G1 and G2-balls centered
on points of G0. For example, in Fig. 6b, B2 is a G2-ball
(which is G2-maximal). We can now give the definition of
the H-medial axis.
Definition 8. Let X ⊂ Z2. The H-medial axis of X , de-
noted by HMA(X), is the set of centers of all G2-maximal
G2-balls for X .
Let F � F2. The H-medial axis of F , denoted by HMA(F ),
is defined by HMA(F ) = Ψ−1(HMA(Ψ(F ))).

An efficient algorithm for computing the H-medial axis
in Z2 and Z3, as well as a proof for this algorithm, has been

proposed in [11]. The algorithm uses the same idea as the
one presented in [10] for the exact Euclidean medial axis. It
consists of two basic steps: i) calculate the exact Euclidean
distance transform of X (this can be done with a linear-
time algorithm [9]) and ii) for each point of X , test if it
is the center of a G2-maximal G2-ball. This test is done
efficiently with the help of look-up tables. We invite the
reader to consult the reference [11] for further details on the
implementation of the H-medial axis algorithm.

Let F ∈ F2. The H-medial axis M = HMA(F ) is
shown in Fig. 7a, and the corresponding subcomplex M−
of F is in Fig. 7b. Comparing Fig. 7a with Fig. 5b, one
can observe that the H-medial axis is “thinner” than the Eu-
clidean medial axis of Ψ(F+). For a more precise evalua-
tion of this statement, see [11]. Due to the space between
points of the axis in Fig. 5b, this comparison will be more
evident later, when we present the results of the homotopic
skeletons constrained by these two axes (Fig. 8).

4 New Euclidean homotopic skeleton algo-
rithm

We can now introduce our new algorithm. Before
presenting its final version, we first introduce algorithms
EHSa and EHSb which help to motivate and understand all
the features of algorithm EuclideanHomotopicSkeleton pre-
sented hereafter.

Algorithm EHSa is the simplest one. It is essentially a
parallel algorithm; notice, in particular, that no choice is
made depending on the orientation of the object’s contour.

Notice that all the values of the distance map D2
H are

of the form a2 + b2, where a and b are integers. In the
following, D2 denotes the set of numbers which are the sum
of two square integers.

Algorithm 1: EHSa
Data : F ⊂ F2

Result : F ⊂ F2

H ← Ψ(F );1
compute the squared distance map D2

H ;2
Rmax ← max{D2

H(x) | x ∈ H};3
M ← Ψ−1(HMA(H));4
R← 2;5
while R ≤ Rmax do6

K ← Ψ−1({x ∈ H | D2
H(x) ≥ R}) ∪M ;7

F ← Critic(F,K);8
R← min{r ∈ D2 | r > R};9

Notice that, in this algorithm, the constraint set K needs
not to be a complex. On the other hand, the set F re-
mains a complex during all the execution, by definition of
Critic(F,K).
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(a)

(b)

Figure 7. (a): The Euclidean H-medial axis
of F (highlighted). (b): The complex built
from the Euclidean H-medial axis of F (high-
lighted).

For an efficient sequential implementation, we intro-
duce algorithm EHSb which can be implemented to run in
O(n logn) time, where n = |F |, thanks to appropriate data
structures (a balanced binary search tree forQ, chained lists
for X and C). The characterization of essential and critical
faces is local and can be performed efficiently by using pre-
computed lookup tables.

Compare, in Fig. 8a and Fig. 8b, the relative thinness
of our skeleton and the one obtained with the medial axis
shown in Fig. 5b as constraint set (see also a detail in Fig. 9).

Algorithms EHSa and EHSb usually give satisfactory re-
sults on “small” images, such as the one of Fig. 8. How-
ever, especially for larger images, they do not guarantee that
points of the homotopic skeleton outside the medial axis
are “well centered” in the object. In other words, skeleton
branches may fail to follow lines of steepest slope of the

(a)

(b)

Figure 8. (a): Result of algorithm EHSb (or
EHSa). (b): Result of a variant of algorithm
EHSb taking as constraint set the medial axis
of Ψ(F+) shown in Fig. 5b.

Euclidean distance map.
This drawback has been well analyzed in [12] (see

also [6]), for other thinning algorithms guided by Euclidean
distance maps. In Fig. 10a, we give an illustration of the
problem which may be encountered. A solution to this
problem, which applies both for the 2D and 3D cases, has
been proposed in [6] and can be adapted to the framework
of critical kernels. It consists in defining a priority func-
tion which takes into account both the distance map and an
auxiliary function defined in the neighborhood of each dy-
namically detected skeleton point.

Let x ∈ Z2, we define the neighborhood of x as the set
γ(x) = {y ∈ Z2 | max(|y1 − x1|, |y2 − x2|) ≤ 1}.
Let us define Γ(x) = γ(x) if x ∈ G0 or x ∈ G1; and
Γ(x) = γ(γ(x)) if x ∈ G2. Let x, y ∈ Z2, we define
δ(x, y) = DH(x) + (DH(y)−DH(x))/d(x, y).
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(a) (b)

Figure 9. (a): Zoom on a part of Fig. 8a.
(b): Zoom on a part of Fig. 8b.
The justification of the expression of δ is the follow-

ing. The quantity (DH(y) − DH(x))/d(x, y) represents
the slope, in the distance map, between the point x and the
point y. For a given point x detected as a skeleton point, we
wish to classify the points of its neighborhood in ascending
order of slope, rather than in ascending order of the dis-
tance map values, in order to guarantee that skeleton lines
will follow the steepest slope.

Algorithm 2: EHSb
Data : F ⊂ F2

Result : F ⊂ F2

H ← Ψ(F ) ; K ← F ;1
compute the squared distance map D2

H ;2
M ← Ψ−1(HMA(H));3
Q← {(D2

H(x), x) | x ∈ H};4
while Q 6= ∅ do5

p← min{q | ∃z ∈ H, (q, z) ∈ Q};6
X ← Ψ−1({x ∈ H | (p, x) ∈ Q});7
K ← (K \X) ∪M ;8
C ← {f ∈ X | f is critical for 〈F,K〉};9
F ← (F \X) ∪ C− ;10

Compare the results of algorithms EHSb and Euclidean-
HomotopicSkeleton, for the detailed view of Fig. 10 and
also for the larger image of Fig. 11 and Fig. 12.

Conclusion
Based on recent advances in the domains of parallel ho-

motopic thinning and exact discrete Euclidean transforms,
we proposed in this paper definitions and algorithms for the
Euclidean homotopic skeleton based on critical kernels.

(a) (b)

Figure 10. (a): Zoom on a part of a skeleton
obtained by algorithm EHSb (the skeleton is
in gray, and the H-medial axis is in black).
(b): Zoom on a part of a skeleton obtained by
algorithm EuclideanHomotopicSkeleton.

Algorithm 3: EuclideanHomotopicSkeleton
Data : F ⊂ F2

Result : F ⊂ F2

H ← Ψ(F ) ; K ← F ;1
compute the distance map DH ;2
M ← Ψ−1(HMA(H));3
Q← {(DH(x), x) | x ∈ H};4
R← {(px, x) | x ∈M,px = min{δ(x, y), y ∈5
M ∩ Γ(x)}};
while Q ∪R 6= ∅ do6

p← min{q | ∃z ∈ H, (q, z) ∈ Q ∪R};7
X ← Ψ−1({x ∈ H | (p, x) ∈ Q ∪R});8
K ← (K \X) ∪M ;9
C ← {f ∈ X | f is critical for 〈F,K〉};10
F ← (F \X) ∪ C− ;11
foreach x ∈ C do12

M ←M ∪ {x};13
R← R ∪ {(py, y) | y ∈ Γ(x), py = δ(x, y)};14

The framework of critical kernels allows to design ef-
ficient and topologically sound algorithms for parallel ho-
motopic thinning without arbitrary decisions, leading to a
unique result. The H-medial axis is a medial axis based
on the Euclidean distance in a doubled resolution grid. Af-
ter adapting the H-medial axis to the framework of cubical
complexes, we proposed a thinning algorithm which pre-
serves the H-medial axis and follows the lines of steep-
est slope of the distance map. The skeleton obtained has
the following characteristics: well-defined, homotopic, suf-
ficient for the reconstruction of the original object, cen-
tered with respect to the (exact) Euclidean distance and thus
weakly sensitive to rotations by arbitrary angles, and strictly
invariant to rotations by multiples of π/2. Furthermore it is
thinner than the one obtained by a direct approach, it can be

7



Figure 11. Skeleton obtained by algorithm
EHSb. Notice the detail encircled by a dashed
line, a branch of the skeleton does not corre-
spond to any noticeable contour saliency.

computed efficiently, and it can be easily filtered by prun-
ing the medial axis based on a radius and/or angle criterion
(see [12, 6]) in order to decrease sensitivity to small per-
turbations along the object shape. To our best knowledge,
a skeleton with all these characteristics cannot be found in
the literature.
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Marne-la-Vallée, France, 2005.

[3] G. Bertrand and M. Couprie. New 2d parallel thinning
algorithms based on critical kernels. In Combinatorial
Image Analysis, volume 4040 of LNCS, pages 45–59.
Springer, 2006.

[4] H. Blum. An associative machine for dealing with the
visual field and some of its biological implications’.
Biological prototypes and synthetic systems, 1:244–
260, 1961.

[5] H. Blum. A transformation for extracting new descrip-
tors of shape. In W. Wathendunn, editor, Models for
the Perception of Speech and Visual Form, pages 362–
380. MIT Press, 1967.

Figure 12. Skeleton obtained by algorithm
EuclideanHomotopicSkeleton. Notice the dif-
ference in the encircled region.

[6] M. Couprie, D. Coeurjolly, and R. Zrour. Discrete bi-
sector function and Euclidean skeleton in 2d and 3d.
Image and Vision Computing, 2006. accepted.

[7] E. Davies and A. Plummer. Thinning algorithms: a
critique and a new methodology. Pattern Recognition,
14:53–63, 1981.

[8] A. F. de Souza. Expansão por dilatação e por erosão
visando a extração de esqueletos e contornos em ima-
gens digitais. PhD thesis, INPE, Brazil, 2005.

[9] T. Hirata. A unified linear-time algorithm for comput-
ing distance maps. Information Processing Letters,
58(3):129–133, 1996.
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