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Abstract

This paper addresses the problem of foreground extrac-
tion using active illumination and graph-cut optimization.
Our approach starts by detecting image regions that are
likely to belong to foreground objects. These regions are
constituted by pixels where the difference in luminance
for two differently illuminated images is large. The fore-
ground objects are segmented by graph-cut optimization us-
ing those regions as a seed and using a energy function
based on probability distributions derived from both input
images and their difference. Several light sources and dif-
ferent illumination schemes can be used to mark the fore-
ground. Our method has only two scalar parameters which
can be set once for a wide variety of scenes.

1 Introduction

Image segmentation is an important problem in Com-
puter Vision. A special case of the general segmentation
problem is the foreground/background image segmentation,
in which a binary classification is applied to an image that
has a perceptual background/foreground separation.

Given a single image, some additional knowledge has
to be given to the solver as an initial clue of what is back-
ground or foreground. Figure 1 shows the intrinsic ambigu-
ity in determining the foreground for a general image. Other
examples of ambiguity are scenes with more then two dis-
tinct planes of information, where the classification of each
plane as background or foreground is a matter of interpreta-
tion.

In practice, the information is usually disambiguated ei-
ther by user interaction or by the acquisition of additional
information about the scene such as previous calibration

Figure 1. Ambiguity: the decision on whether
the central circle is background or fore-
ground is a matter of interpretation.

of the background, defocusing, analysis of movement and
other techniques most of them benefiting from analyzing a
collection of images.

In this work we propose the use of active lighting to in-
sert a priori clues to solve the segmentation problem [22].
In order to do that, we introduce a light source that illumi-
nates the foreground objects to be segmented more strongly
than the background. The information derived from this dif-
ference in illumination replaces the indication of object and
background pixels by the user. These initial clues are then
used as seeds for a graph-cut minimization algorithm to ob-
tain a high quality segmentation.

The paper is organized as follows: previous work is pre-
sented in the next section; in section 3 the segmentation
problem is addressed and our active approach to the prob-
lem is presented; in section 4 the objective function is de-
rived; in section 5 we present the segmentation results while
conclusions and future work are discussed in the final sec-
tion.



2 Related work

2.1 Active lighting

is a familiar tool to the 3D photography community. The
most commonly adopted setup uses a projector as the light
source that communicates with the camera, as in [22].

In recent works, camera flash was explored to enhance
image quality. [6], [17] have proposed the use of bilateral
filter to decompose a flash/non-flash pair of images and then
recombine them appropriately; both authors have to deal
with shadows produced by the flash. Multiple images with
flash positioned in different locations among them is used
to extract object borders in [18] and a non-photo realistic
rendering is then applied to the images. Our work differs
from these previous works since it explores a light source,
especially positioned to illuminate only the foreground ob-
jects to be segmented, that stays in a fixed position between
shots; while its intensity is modulated, but not turned off,
what do not produces shadows inconsistencies.

2.2 Foreground segmentation

There are two main branches of research in this area: one
branch assumes that image acquisition can be controlled to
produce images that are automatically segmented, while the
other analyzes a given image without any assumption about
image formation. In the first approach the clues are decided
a priori and the segmentation is automatic whereas in the
latter the initial clues for solving the problem are inserted
by the usera posteriori.

An example of a priori information widely adopted is
chroma key [24]. Recently much work has been done in
proposing segmentation methods that defines clues a pos-
teriori intending to minimize user intervention. In most
cases the user has to indicate coarsely the foreground and
the background pixels [19],[25] as initial restrictions for a
minimization process.

2.3 Image segmentation by graph cuts

The problem of image segmentation is a special case of
a pixel labeling problem. It can be modeled as an optimiza-
tion problem, which consists of computing the best image
segmentation among all possible image segmentations sat-
isfying a set of predefined restrictions.

Many approaches found in the literature model the prob-
lem of image segmentation as a problem that requires the
minimization of certain cost functions. Some of these meth-
ods, for example, those based onshortest paths[15] and
snakes[11], [5] are limited to 2D applications, where the
segmentation boundary is determined by a 1D curve. Other
approaches, as those based onlevel set methods[16] and

normalized cuts[23], compute only approximated solu-
tions, which can be arbitrarily far from the global optimum.

Recently, Graph-Cut Minimization became widely used
in image segmentation [1], [19], [4]. In the next sections,
we briefly review the basis for these methods.

2.4 Energy minimization in vision

One of the most usual applications of energy minimiza-
tion in Computer Vision is to solvepixel labeling prob-
lems, which generalize problems as stereo and motion, im-
age restoration and segmentation.

In pixel labeling problems the goal is to find a labeling
f : P 7→ L, that maps a set of pixelsP to a set of labelsL,
which minimizes some energy function. This energy func-
tion typically has the form

E(f) =
∑
p∈P

Dp(fp) +
∑

p,q∈N
Vp,q(fp, fq), (1)

whereN ∈ P × P is a neighborhood system onP.
Dp(fp) is a function based on the observed data that mea-
sures the cost of assigning labelfp to p andVp,q(fp, fq) is
an spatial smoothness term that measures the cost of assign-
ing labelsfp andfq to adjacent pixelsp andq.

Energy functions likeE are, in general, very difficult to
minimize, as they are non convex functions in large dimen-
sion spaces. When these energy functions have special char-
acteristics, it is possible to find their exact minimum using
dynamic programming. Nevertheless, in the general case, it
is usually necessary to rely on general minimization tech-
niques, like Simulated Annealing [7], which can be very
slow in practice.

An interesting property of a graph cutC is that it can be
related to a labelingf , mapping the set of verticesV−{s, t}
of a graphG to the set{0, 1}, wheref(v) = 0, if v ∈ S,
andf(v) = 1, if v ∈ T . This labeling defines abinary
partitioningof the vertices of the graph.

2.5 Energy minimization by graph cuts

Graph cut optimization was proposed as an efficient way
to minimize a larger class of energy functions than those
that can be minimized by dynamic programming. It has
become very popular in the area of early vision, and has
been successfully used to solve many different problems as
image restoration [4], [3],[8], stereo and motion [4], [3],
[9], [20], [21], image synthesis [14], multi camera scene
reconstruction [12] and image segmentation [10], [2].

The optimality of graph cut minimization methods, con-
sidering labeling problems, depends on the number of la-
bels and the exact form of the smoothness termV . In [8]
is proved that the method yields global minimum solutions
when the problem is a binary labeling problem, while in



[9] proved that, for labeling problems with arbitrary num-
ber of labels, it is possible to compute global minimal, if the
smoothness term is restricted to a convex function.

In most cases, it is necessary to preserve boundary dis-
continuities, which is not possible by using a convex func-
tion as the smoothness penalty term in the energy function.
In general, the minimization for energy functions that pre-
serve discontinuities by graph cut minimization can only
produce approximate solutions. In [4] Boykov et al pro-
posed a graph cut based algorithm, named Expansion Move
Algorithm, that is able to compute a local minimum for dis-
continuity preserving energy functions. They proved that
this local minimum lies within a small multiplicative factor
(equal to 2) of the global minimum.

The early proposals that used graph cut optimization as
a method for energy minimization required the construction
of a specific graph for each particular problem. In [13] is
introduced a general scheme for graph cut minimization of
energy functions that belong to the class of regular func-
tions. In our work, the graph cut optimization algorithm
used is based on such formulation.

3 Active illumination

Active illumination can be combined with graph-cut op-
timization to perform the segmentation of foreground re-
gions. We call thisactive segmentation, meaning the use
of a light sources to illuminate only the objects to be
segmented leaving the background essentially unchanged.
Thus, the light source works as a substitute to the user, act-
ing on the scene to indicate object and background seed el-
ements automatically. This pre-segmentation provides the
color distribution of each region, that can be used in a graph-
cut optimization step to obtain the final segmentation.

In Fig. 2 the active approach is illustrated. Fig. 3 il-
lustrates another example where the character was actively
illuminated. In this case the background is composed of
some specular elements (the leaves) creating a difficult sce-
nario to the non-optimized method (as can be observed in
next section).

3.1 Graph-cut optimization

The initial seed obtained by the active approach de-
scribed above gives us important clues about the regions
that are likely to belong to the background and foreground
of the scene. Based on these clues, it is possible to compute
the desired segmentation by minimizing an energy function.
If this energy function is chosen in such a way that some
regularity properties hold, then it is possible to minimize it
efficiently by graph cut optimization methods.

As in [3] and [2], the energy function that we use is a
discontinuity preserving energy function, obtained in the

Figure 2. (upper-left) and (upper-right) are the
input images differently illuminated by vary-
ing the camera flash intensity between shots,
(lower) is the difference thresholded image.

Figure 3. Input images differently illuminated.

context of a Maximum a Priori Markov Random Field es-
timation. It is defined in terms of a set of pixelsP, a set
of pairs of neighboring pixels in a neighborhood systemN
and a binary vectorA = (A1, A2, .., A|p|), whereAp is the
assignment of pixelp either to 0 (background) or 1 (fore-
ground).

The energy function has the form of the following cost
function:

E(A) = λ
∑
p∈P

Rp(Ap) +
∑

{p,q}∈N

B{p,q} · δ(Ap, Aq) (2)

This energy function is defined in terms of aregional
term, that measures the fitness of a region to the background
or foreground of the scene, and aboundary term, which
penalizes discontinuities in the label assignment while pre-



serving those that are associated to features of the image.
The first term is aregional termthat measures how the in-
tensities of the pixels of the image fit into intensity models
(for example, obtained by a histogram) of the background
and foreground. The second term is aboundary term, which
penalizes discontinuities in the label assignment while pre-
serving those that are associated to features of the image.
CoefficientB{p,q} > 0 can be interpreted as a penalty for
spatial discontinuity of the labels assigned to neighboring
pixelsp andq. B{p,q} should be large when pixelsp andq
are similar, and close to zero whenp andq are very differ-
ent, so that feature discontinuities are preserved. Theλ ≥ 0
constant is used to specify the relative importance of the
regional term versus the boundary properties term.

The energy function proposed in our model is mini-
mized by a graph cut optimization algorithm that follows
the scheme proposed in [13]. Differently from [2], which is
mainly interested in interactive segmentation, our approach
does not rely on hard constraints. The regions determined
by the active illumination thresholding are used as seeds to
the graph cut optimization. However, their labels can be
modified as the process is executed. Another important dif-
ference is that we work in theLabcolor space.

In the next section we describe in detail the energy func-
tion that models the binary segmentation problem of energy
minimization by graph cuts.

4 The objective function

The objective function is based on probability distribu-
tions of color values in three regions: background, fore-
ground object and boundary. They are defined assuming
the following:

• Most actively illuminated pixels belongs to the fore-
ground objects. Note that the influence of active illu-
mination on the background can lead to wrong overall
segmentation;

• The actively illuminated regions capture the object fea-
tures, that is, they contain all color information neces-
sary to distinguish foreground objects from the back-
ground;

• Regions corresponding to moving objects in the scene
represent a small fraction of the scene;

• Color differences in Lab space are sufficient to define
relevant object/background boundaries.

The challenge is to define probability distributions that
approximate the real distribution of the expected segmenta-
tion regions. For the background region, we employa priori
distributions of the luminance differenceLI2 − LI1 . Color

histograms from the seed regions are used to build a color
distribution function for the foreground region.

These distributions, together with a boundary likelihood
function based on distances in Lab space, are the basis of
the cost function to be proposed.

4.1 Composing the cost functions

The goal is to find the labelsX = {xp, p ∈ I1}, where
xp is 0 if p is background or 1 ifp is foreground, that min-
imize an objective functionE(X). The regional term of the
energy function is defined as:

C(xp) =
{

− log(pO(p)), if xp is 1 (foreground)
− log(pB(p)), if xp is 0 (background)

(3)
The boundary term, for neighboring pixelsp, q is−|xp−

xq| log pR(p, q). Thus the final objective function is

E(X, σL, σC) =
∑

p ∈ I1

C(xp)−
∑

p,q ∈ I1

|xp−xq|·log pR(p, q),

(4)
where pointsq are those in the 8-connected neighborhood
of p.

We turn now to the definition of pB(p), pO(p) and
pR(p, q). We start by discussing how to infer foreground
sites from the input data. With the above assumptions, high
values of the luminance difference|LI2(p) − LI1(p)| in-
dicate foreground pixelsp, whereLI1(p) and LI2(p) are
the luminance channels of the transformed imagesI1 and
I2. However, it cannot be stated that low values of that
difference indicate background pixels since there may be
parts of foreground objects that are not actively illuminated
(like shadow areas). Thus, the luminance difference does
not characterize completely foreground and background el-
ements.

Luminance difference for background pixels can be
modeled by a gaussian distribution, with density

pB(p) =
1√

2πσL

exp(
−|LI2(p)− LI1(p)|2

2σ2
L

), (5)

whereσL is the standard deviation of the luminance differ-
ences, illustrated in Fig. 4.

High pB(p) values do not necessarily indicate thatp is
background but pixels with small pB(p) values are likely to
belong to the foreground. The set of foreground pixels are
then defined asO = {p | pB(p) < t}, wheret is a small
threshold. We fixt = 0.05 since the parameterσL can be
adjusted.

The color histogram of the foreground pixels determine
the object probability function. For simplicity, we use a 3D
histogram for the Lab components with uniform partition.



Figure 4. Images of background probabilities.
Darker pixels have smaller probabilities (left)
σL = 15 (center) σL = 25 (right) σL = 35.

Let nbL, nba andnbb be the number of predefined bins for
each lab component. All pointsp ∈ O, with normalized
color componentsL1(p), a1(p) andb1(p), are assigned to a
bin k with coordinates

(bL1(p) ∗ nbL)c , ba1(p) ∗ nbac , bb1(p) ∗ nbbc)

The object distribution function is then defined as

pO(p) =
nk

nO
(6)

wherenk is the number of pixels assigned to the bink and
nO is the number of pixels in the object regionO, illustrated
in Fig. 5.

To construct the histogram information only one image
is considered and it will depend on each situation. In our
experimentsL1(p), a1(p) andb1(p) are the color compo-
nents from the image correspondent to the lowest projected
ρ value. Another consideration is that it may be difficult to
determine the number of bins for each component. The bins
that distinguish relevant color groups when the partition is
uniform. If the number of bins is too small, wide ranges are
mapped in few bins. If there are too many bins, frequencies
tend to be small everywhere. In our experiments, the object
pixels are sufficient to populate a histogram withnL=32,
na=64 andnb=64 bins.

Figure 5. Object probabilities: darker pixels
represents smaller probabilities. (left) σL =
15, (center) σL = 25 and (right) σL = 35.

Finally, the likelihood function for neighboring bound-
ary pixels is given by

pR(p, q) = 1 − exp(
−(||Lab(p)− Lab(q)||)2

2σ2
C

), (7)

whereLab(p) denotes the color at point p andσC is the
standard deviation of theL2-norm of the color difference,
illustrated in Fig. 6. The effect of this term is that, if the col-
ors of pixelsp andq are close in the Lab space, their connec-
tion is unlikely to cross a foreground-background border.

Figure 6. Image of boundary probabilities
taking the maximum value of a 8-connected
neighborhood. Darker pixels have smaller
probabilities (left) σC = 5 (center) σC = 15
(right) σC = 25.

According to [13], an energy function ot the form

E(x1, x2, · · · , xn) =
∑

p

Ep(xp) +
∑
p6=q

Ep,q(xp, xq)

, where eachxp is a 0-1 variable, can be minimized by
means of a minimum graph-cut when it is regular, that is,
satisfies the inequality

Ep,q(0, 0) + Ep,q(1, 1) ≤ Ep,q(0, 1) + Ep,q(1, 0).

In our case, whenxp = xq, we haveEp,q(0, 0) =
Ep,q(1, 1) = Ep,q(0, 1) = Ep,q(1, 0) = 0. On the other
hand, ifxp 6= xq, thenEp,q(0, 1) = Ep,q(1, 0) = 0 and
Ep,q(0, 1) = Ep,q(1, 0) = − log(pR(p, q) ≥ 0, since
0 ≤ pR(p, q) ≤ 1. Hence, the proposed energy function
is regular.

5 Method and results

The main steps of our active segmentation method are
illustrated in Fig. 7. Two input images are acquired as de-
scribed in the following section. We apply a low-pass filter
to the input images in order to reduce noise. Next, the in-
put colors are transformed into the Lab color system. This
perception-based color space is desirable for two reasons:
we need to cluster regions with small perceived color vari-
ations and we want to explore the orthogonality between
luminance and chromaticity information in Lab space. Our
goal is to have perceptually homogeneous regions, with the
segmentation boundaries preferably located where high Lab
color differences occur.

Active illumination is explored to attribute weights to the
pixels that are used in the energy minimization by graph
cuts. For the optimization step, a graph where the nodes are



Figure 7. The proposed active foreground ex-
traction method.

the pixels and the edges form a 8-connected neighborhood
is created. The object and background color distributions
are used to compute the cost of assigning a object or back-
ground label to each node. The boundary distribution is
used to compute the cost of having an object/background
transition for each edge.

Initially, all points belonging to the estimated object re-
gion are labeled as foreground. All other points are labeled
as background. A min-cut/max-flow algorithm is used to
find the global minimum

X̂ = arg minX E(X, σL, σC) (8)

Only some object regions can be determined before the
optimization step. Usually, seeds for both the foreground
and the background are used, which implies that histograms
for both classes are available. The seed pixels are not al-
lowed to have their label changed. In our case, there is no
guarantee that the estimated object region is correct. Fur-
thermore, thea priori background distribution (Eq. 5) is
not fully precise. Equation 8 is then defined in such a way
that the original labels may be changed during optimization.

A modified version of the energy minimization software
was used in our implementation. Basically, the constraint
that the original seeds must be kept was removed. The result
is an image mask for foreground pixels.

The parameterσL determines the number of pixels in the
initial object region. Lower values result in more pixels as
shown in Fig. 4. Depending on the object material, it is re-
markable that even small variations of the illumination can
be detected by luminance differences. On the other hand,
objects with highly specular, transparent or with complex
structure materials are hard to be detected. This is the case
of the hair in the images of Fig. 3. The object member-
ship probabilities in the hair region (Fig. 5) show how the
number of initial pixels affects the color distribution.

Figure 8. Segmentation results of the images
in Fig. 3 for several values of σL with σC = 10.
Compare with Fig. 4. (left) σL = 15 (center)
σL = 25 (right) σL = 35.

Fig. 8 shows the segmentation results for several values
of σL ∈ [15, 20]. It is harder to segment the hair asσL

assumes higher values. This happens when the pixels with
high probability of this region are not enough to populate
the histogram.

Figure 9. Segmentation results for the images
in Fig. 3 for several values of σC with σL = 20.
Compare with Fig. 6. (left) σC = 5 (center)
σC = 15 (right) σC = 25.

ParameterσC controls how the image borders constrain
the expansion or contraction of the object clusters during
optimization. If its value is low, the difference of probability
between the highest and lowest gradient values is high. As
a result, the segmentation tends to be more fragmented and
well aligned with high color variation areas. If the value
of σC is high, the probabilities tend to vary more slowly,
resulting in a smoother segmentation.

Segmentation results varyingσC are shown in Fig. 9.
Note that small background regions appear like holes inside
the hair whenσC = 5. Higher values ofσC tend to classify
these holes as foreground. As explained above, high values
of σC smooth the segmented clusters.

In Figure 10 the segmentation result related to the input
images shown in Figure 2 are presented. Observe the dif-
ference in the segmentation continuity when we vary the
system parameters. In Figure 11 another example of input
images and its segmentation is illustrated.

6 Conclusions

In this paper we introduce a new method for the segmen-
tation of a scene into foreground and background regions.



Figure 10. (upper)Boundary probabilities
with σC = 5. The resultant segmentation us-
ing different parameters: (lower-left) σL = 25,
σC = 10, (lower-right) σL = 15, σC = 5.

The method is based on active illumination and employs
graph cut optimization to segment the image.

The key idea exploited in our method is that light varia-
tions can be designed to affect objects that are closer to the
camera. In this way, a scene is lit with two different inten-
sities of an additional light source that we callsegmentation
light source. By capturing a pair of images with such illu-
mination, we are able to distinguish between objects in the
foreground and the scene background.

The main technical contributions of this work are the
concept of foreground / background segmentation by active
lighting and the design of a suitable energy function to be
used in the graph cut minimization.

The method is fully automatic and does not require user
intervention to label the image. Moreover, the energy func-
tion has only two parameters that must be specified: the
standard-deviations of the normal background and bound-
ary distributions. These parameters can be tuned only once
for a wide variety of images with similar light setup.

Concerning the operating range of the method, we point
out that the active light source positioning is crucial to the
method. It can be positioned in order to illuminate only
the object to be segmented without affect the background.
The discussion of how far the background should be for the

Figure 11. Input images and the final segmen-
tation mask.

method to work is relevant only when the light source is af-
fecting the background. In this case, background distance
is dependent of sensors sensitivity, usually 3 stops of light
intensity decay is enough for our method to segment cor-
rectly.

The quality of the masks produced by our method is, in
general, quite good. Some difficult cases may arise when
the objects are highly specular, translucent or have very low
reflectance. Because of its characteristics, this method is
suited for applications in which the user can control the
scene illumination, for example in studio situations and/or
using a flash/no-flash setup.

We remark that the additional information resulting from
capturing two images of the same scene can be used also for
other purposes, such as extending the dynamic range of the
image and color correction.

This method can be naturally extended to active segmen-
tation of video sequences. All that it is required for this pur-
pose is a synchronized camera/projector system. We have
already implemented the active segmentation for video [22]
without performing the optimization step. The obtained re-
sults were quite good and easely implemented in real time.
In this paper we give emphasis to the optimization of the
obtained initial segmentation. As future work we intend to
include the optimization step in our video implementation.
To do this we need to enhance the performance of the graph-
cut optimization. The video implementation is also a good



reason to use active light instead of simple background sub-
traction.
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