GPU-Based Cell Projection for Interactive Volume Rendering

Ricardo Marroquim

André Maximo

Ricardo Farias

Claudio Esperanca
Universidade Federal do Rio de Janeiro - UFRJ / COPPE
{ricardo, andre, rfarias, esperanc} @lcg.ufrj.br

Abstract

We present a practical approach for implementing the
Projected Tetrahedra (PT) algorithm for interactive volume
rendering of unstructured data using programmable graph-
ics cards. Unlike similar works reported earlier, our method
employs two fragment shaders, one for computing the tetra-
hedra projections and another for rendering the elements.
We achieve interactive rates by storing the model in texture
memory and avoiding redundant projections of implementa-
tions using vertex shaders. Our algorithm is capable of ren-
dering over 2.0 M Tet/s on current graphics hardware, mak-
ing it competitive with recent ray-casting approaches, while
occupying a substantially smaller memory footprint.

1. Introduction and Related Work

Volume rendering is a technique used for inspecting
medical images, geological visualization, fluid simulation,
among other applications. The input is a three-dimensional
scalar field representing a particular attribute for each point
of a given volume, such as density, heat, velocity, etc. The
scalar field is usually mapped to color and opacity com-
ponents by means of a so-called transfer function. In this
work we are interested in scalar fields presented as tetrahe-
dral decompositions of the volume so that field samples cor-
respond to the mesh vertices.

Many algorithms for direct volume rendering have
been proposed in the past, e.g. cell projection, ray cast-
ing and sweep-plane. Our approach is based on the Pro-
jected Tetrahedra (PT) technique introduced by Shirley
and Tuchman [17]. An overview of their method is pre-
sented on section 2. Almost at the same time, Max et
al. [12] also implemented an early version of the cell pro-
jection algorithm. Since then, much work has been ap-
plied to improve the quality and performance of the
method.

Williams and Max [24] describe an exact optical model
for volume rendering. However, due to computational lim-
its, it is impractical for interactive use.

Stein et al. [18] developed a new volume rendering ap-
proximation using 2D texture mapping. This method at-
tenuated the artifacts produced by linearly approximating
the non-linear opacity effects. These artifacts, called Mach
bands, were reported first by Max et al. [11].

Rottger et al. [16] improved Stein’s results by using 3D
textures and generalized it for non-linear transfer function.
The textures map the ray-integration of a cell as a function
of the ray’s entry and exit values, and the distance trav-
eled through a tetrahedron. In a later work, motivated by
the relative scarcity of hardware support for 3D textures,
Rottger describes an alternative implementation using 2D
textures [15]. This idea was further generalized by Engel et
al. [3] by proposing a pre-classification technique where the
non-linear transfer function is integrated in a pre-processing
step.

Lum et al. [10] proposed a faster method to compute
the pre-integration. This work also introduced lighting ef-
fects that produced more accurate rendering while produc-
ing fewer artifacts.

Moreland and Angel [13] introduced the partial pre-
integration technique, where the pre-computation is not de-
pendent of the transfer function and thus can be stored
for future uses. This not only allows much faster pre-
computation, but also allows dynamic changes in the trans-
fer function.

Farias et al. [5] proposed a software memory efficient
sweeping algorithm. Even though it is not hardware-based,
it is very suitable for parallelization.

The PT algorithm has grown in importance in recent
years due to the advance of programmable graphics hard-
ware. Wylie et al. [25] adapted the Shirley and Tuchman al-
gorithm to programmable graphics hardware using the ver-
tex shader. By creating a basis graph, he was able to rede-
fine the different projections classes in a manner that one
vertex shader could treat them all in the same way. How-
ever, the algorithm is very redundant, as each cell projec-

tion computation is repeated five times. Also, an approxi-
mate color is used due to limited number of operations sup-
ported for vertex programs at that time.

The use of programmable graphics card was further ex-
plored by Weiler et al. [22], as an extension of their earlier
View Independent Cell Projection algorithm (VICP) [20].
They eliminate Wylie’s redundancy problem by scan con-
verting the tetrahedra in hardware. They described both
a vertex and a fragment implementation, however, at that
time, fragment processors were not sufficiently advanced to
fully support their proposal.

Kraus et al. [8] have investigated the removal of render-
ing artifacts in perspective mode, and improved the accu-
racy of the tetrahedral coloring by applying a logarithmic
scale for the pre-integration table and floating-point color
buffers. Much of the artifacts were reduced by using tex-
tures with 16 bits per component.

Espinha and Celes [4] propose a new hardware-based
ray-casting (HARC) algorithm, introduced by Weiler et
al. [21]. They implement the HARC algorithm using par-
tial pre-integration. Their algorithm achieves high quality,
fast volume rendering and allows interactive modification
of the transfer function. However, as it is based on the ray-
casting technique, the memory consumption is high since it
needs auxiliary data structures to traverse the tetrahedra.

On the other hand, one drawback of the PT algorithm
is the need of a visibility ordering of the cells. This prob-
lem has been specifically addressed on other references,
e.g. [1, 2, 18], and is not focused in this paper. Our main
contribution resides on a high performance realization of
the PT algorithm, which is done almost entirely on GPU,
allowing interactive visualization of tetrahedral meshes. In
particular, our implementation performs on a par with re-
cently reported ray-casting algorithms while being signifi-
cantly more thrifty in memory usage.

Our algorithm is split into two main steps: update and
rendering. The first step computes the view-dependent data
by projecting the tetrahedra in screen coordinates. The ren-
dering step simply draws the projected tetrahedra by inter-
polating the scalar values computed for each vertex using
a texture-based transfer function as support. Details of the
two-step implementation are given in Section 3. Section 4
presents experimental comparison between our implemen-
tation and recent algorithms. Finally, in Section 5, conclu-
sions and future work directions are provided.

2. Projected Tetrahedra Algorithm

In a nutshell, the PT algorithm consists in projecting the
tetrahedra to screen space and composing them in visibility
order. Each projected tetrahedron is decomposed into tri-
angles, and an approximation of the ray integral is used to
compute the vertices’ color and opacity values. When ras-

=

Class 3 Class 4

Figure 1. The different classifications of the
projected tetrahedra.

terizing the primitives, an absorption illumination model is
used to compute the pixels’ color by summing the contribu-
tions of every semi-transparent triangle in back-to-front or-
der.

The tetrahedra’s projected shape is classified into one of
four possible cases as depicted in Figure 1. It should be
noted that classes 3 and 4 are degenerated cases of classes 1
and 2. Each projected class requires a different decomposi-
tion into triangles. For instance, class 1 produces three dif-
ferent triangles while class 2 produces four.

For each projection, the thick vertex is defined as the en-
try or exit point of the ray segment that traverses the max-
imum distance through the tetrahedron. All other projected
vertices are called thin vertices. For class 2 projections, the
thick vertex is the intersection between the front and back
edges, while for the other classes it is one of the projected
vertices. The scalar values of the ray’s entry and exit points
(sy and sp) are determined by interpolating the scalars of
the thin vertices. The distance traversed by the ray segment
is the thickness [of the cell.

Referring to the volume density optical model proposed
by Williams and Max [24], the color and opacity at each
fragment are computed by interpolating the values sy, sp
and [of the triangle’s vertices. For each fragment, the color
is computed by evaluating the chromaticity and extinction
coefficient (7) of the transfer function at the average inter-
polated value # The opacity, on the other hand, is esti-
mated by

a=1—¢T. (1)

The opacity at the thin vertices, for example, is zero since
the thickness at these points is also zero (the ray does not
traverse any distance).

Finally, the pixels are composited in back-to-front order,
and, for each new color added to the frame buffer, the new
final color is computed by:

Iyew = Color + (1 - Alpha) x I, 2)

where [is the previous color stored in the frame buffer, and
Color and Alpha are the interpolated scalar and thickness
values.

3. A Two-GPU Pass Approach

Our algorithm is divided in two main parts and, conse-
quently, in two different shaders. In the first step, all data is
processed per tetrahedron, that is, the projection class, the
thick vertex properties, and the z coordinate of the tetrahe-
dron’s centroid are computed. The second step interpolates
the vertices’ scalar values to compute color and opacity val-
ues for each fragment.

To speed up the rasterization process, we make use of
vertex arrays and the primitives are drawn as triangle fans.
To draw each fan correctly the order and number of ver-
tices must be determined in the first step and passed on to
the second, as described later.

3.1. Projecting the Tetrahedra

id\/o idy, le YV]_

idy, | idy, Zy; | Sy

One RGBA element of the
Tetrahedral Texture

Vertex Texture One RGBA element of the
Lookup Vertex Texture

Figure 2. Vertex data retrieval in the first frag-
ment shader. Each texel of the Tetrahedral
Texture contains the indices of its four ver-
tices in the Vertex Texture.

The first fragment shader computes the scalar value at
the thick vertex, the cell’s thickness and centroid, deter-
mines the vertex order and number of triangles in the fan.
All data used in this shader is stored in GPU memory by
creating three different RGBA textures: the Tetrahedral Tex-
ture, the Vertex Texture and the Classification Texture. The
first two textures have 32 bits per component and the third
has 8 bits per component. Textures are passed as uniform
variables, meaning that they are global constants to all frag-
ments.

The coordinates of each vertex and associated scalar
value are stored in the Vertex Texture as a RGBA texel: the
RGB fields store the x, y and z coordinates and the A field
stores the scalar s.

The Tetrahedral Texture stores one tetrahedron per texel,
each of which contains four values which are used for re-

trieving the four vertices of the tetrahedron from the Ver-
tex Texture, as illustrated in Figure 2. These two texture
lookups eliminate the need for vertex attributes and reduce
the data transfer overhead from CPU to GPU. Even though
we add the cost of texture fetching, it is still faster than pass-
ing attributes.

To execute the fragment shader once per tetrahedron,
the Tetrahedral Texture is rendered as quadrilateral with the
same size as the screen space, so that the number of texels
is equal to the number of pixels (approximately the number
of tetrahedra). This method is often used in so-called Gen-
eral Purpose GPU (GPGPU) algorithms [6].

The vertices are then projected to screen coordinates and
the projection class is determined by means of four tests de-
scribed below. This classification process is very similar to
Wylie’s [25] method, except that we also treat degenerate
cases. In addition, our method avoids computational redun-
dancy by performing the tests once per tetrahedron rather
than once per vertex.

Each test is an evaluation of a cross product computed
with the projected vertices vg, vy, V2, Us:

vecl = v1 — vy
vec2 = vy — Vg
vecd = vz — vy
vecd = v1 — Vg
vech = v1 — vg

testl = sign((vecl x vec2
test2 = sign((vecl x vec3
test3 = sign((vec2 x vec3
testd = sign((vecd x vech

N2

z)+1
z)+1
z)+1
z)+1

Figure 3. Tests performed in fragment shader
for projection classification. The GLSL built-
in function sign returns -1, 0 or 1 depending
on whether the argument is less than, equal
to or greater than zero, respectively.

The test results are used in a texture lookup operation
to determine the class of the projection. The 1-dimensional
Classification Texture is loaded in the fragment shader and
contains a ternary truth table with the different test result
permutations. On top of Wylie’s 14 cases, we have added
24 class 3 cases and 12 class 4 cases. Each texel thus repre-
sents a singular case and contains the correct order to com-
pute the intersection vertex. Since it is a ternary truth table,
there are three different possible results for each test:

0 ifcross.z <0
test; = 1 ifcross.z =0 3)
2 ifcross.z >0

Figure 4. One example for each projection
class. From top to bottom: classes 1, 2, 3, and
4. The left column illustrates the tetrahedron
in 3D space and the viewing ray intersecting
it at the thick vertex v;. The scalar value is de-
fined as s, for each projected vertex v;, while
sy and s, are the values at the ray’s entry and
exit points, respectively. On the right, the pro-
jected tetrahedron.

Figure 4 depicts one example case for each projection
class. In the first case (of class 1), sy = s,, and s; is com-
puted by a trilinear interpolation of s, s,, and s,,. In

the second case (of class 2), the thick vertex v; is the in-
tersection of the two interior segments, and the scalar val-
ues sy and sp are computed by interpolation on segments
vov; and vov3, respectively. The third case (of class 3) has
S§ = Sy, and sy is computed by interpolating s, and s,,.
In the fourth case (of class 4) sy and s, are equal to s,, and
Sy, Tespectively.

The degenerate cases are perceived when one or more of
the tests yield a value of 1. If one test returns 1, then it is a
class 3 case, if two tests return 1, then it is a class 4 case.
For these cases most intersection and interpolation compu-
tations can be skipped or replaced by simpler operations. If
more than two tests return 1 all four points were projected
onto a line, therefore the original model contains degener-
ate tetrahedra and this projection is discarded. Identifying
this degenerated cases is important since not treating them
can lead to artifacts in the resulting image.

The fragment data is output by using multiple render tar-
gets (MRT) with two framebuffer color attachments. Each
attachment is a 2D RGBA texture with 32 bits per compo-
nent. The first output texture contains the intersection vertex
coordinates z,,, and y,, (used only for class 2 tetrahedra),
the tetrahedron’s centroid z. and the index of the Ternary
Truth Table idrrr. The second output texture contains s ¢,
Sp, the thickness [and the number of vertices of the trian-
gle fan count. This scheme is depicted in Figure 5.

Framebuffer O

Tetrahedral| .] _ ;
Texture | | The Xoi | Yoi | Ze |idTTT
vertex || First Step | MRT
Fragment Framebuffer 1

T Shader s s
Texture f b ! cnt

Rp—
GPU
Memory

+CT 33—

ACcTACO

R R

vro O

Figure 5. Fragment shader input/output
scheme, where TTT is the Ternary Truth Ta-
ble.

3.2. Sorting

One of the bottlenecks of the Cell Projection algorithm
is the need to sort the cells in visibility order before render-
ing. As mentioned in Section 3.1, the first fragment shader
computes the centroids of the tetrahedra and passes these
values to a CPU algorithm which sorts them in depth or-
der. In fact, only the z coordinate of each centroid in nor-
malized projected space is used by the sorting algorithm.

Two sorting algorithms are used in our implementation:
a quicker but less precise bucket sort is used whenever

the viewing transformation is changing, whereas a standard
O(nlogn) merge sort algorithm is employed for still frames.

The bucket sort is based on slabs perpendicular to the
viewing vector, i.e., the tetrahedra are divided into groups
(around 20 of them) so that all tetrahedra in a given group
have roughly the same depth with respect to the viewer. This
means that all tetrahedra within a group may be rendered in
any order with little impact on the correctness of the final
image. The slabs themselves are visited in back-to-front or-
der as usual.

On the other hand, when the user is not manipulating the
model, a standard merge sort is used in order to obtain an ac-
curate depth ordering of the centroids. Experimental results
indicate that this procedure introduces distortions in the an-
imation which are not perceived by the naked eye.

It must be mentioned, however, that sorting the centroids
is not guaranteed to produce 100% correct results in all
cases. If this level of accuracy is needed, a more sophisti-
cated approach should be used for ordering the tetrahedra,
such as the Williams’ MVPO [23] or the k-buffer of Calla-
han et al. [1].

3.3. Rendering the Primitives

Color Array
‘ Co, | Co, < CGins | Ciy | Cig | Ci; | Ciy | Ciz |Giviy | > Con-1), |Cin-1)3
Tetrahedron i
Vertex Array
‘ Vo, | v, Vins| Uiy | Dip | Uiy | Uin | Uiy [Tiety -1, V113
)T<
Indices i | ido id1 id2 id3 ida ids
Counti=5
Count Array ——

cnto | enty cntiq| cnti |cntia cntuz|cntn

Figure 6. Array data structure. The indices il-
lustrate a class 1 case, where the correct or-
der to draw tetrahedron i is v;, —v;, —v;; —v;;, —
v;,- Note that v,, is the thick vertex and its co-
ordinates are copied to v;,.

The second fragment shader renders the triangle fans
with the optimized OpenGL function glMultiDrawEle-
ments. This function has an index and a count array as
arguments which reference global arrays storing vertex co-
ordinates and a color values (see Figure 6).

The vertex and color arrays are grouped in five ele-
ments per tetrahedron: the thick vertex plus the four origi-

nal vertices. These two arrays are mostly constants, for each
change in the view direction only the position and color of
the thick vertices are updated.

Each vertex array element contains the coordinates
{z,y,z} of the vertex. The color array contains val-
ues {s £ 5bs [} for each vertex, rather than actual colors,
which will be computed on-the-fly by the second frag-
ment shader. Notice that, for thin vertices, sy = s;, and
[=0.

To manage the correct vertex order of the triangle fans,
two additional arrays are needed. The indices array is di-
vided into groups, each one with 6 elements which store the
correct vertex order of the fan used to render a tetrahedron.
The cnt array contains the number of vertices in each fan.
Recall that the maximum number of vertices in a fan is six
(cases of class 2). All the arrays used are updated in CPU
by using the data retrieved from the first shader. Note that
for the it" primitive, group indices; is used only up to po-
sition cnt;. See Figure 6 for further details.

Figure 7. The interpolation values for the
class 1 case shown in Figure 6. Note that, ex-
cept for the thick vertex, all others are ren-
dered with the original values of the color ar-
ray.

When the second shader program is processed, frag-
ments will correspond to linearly interpolated vertex colors.
Each final fragment color is computed as described in Sec-
tion 2 using the values {s, s, {} linearly interpolated from
one thick vertex and two thin vertices. An interpolation ex-
ample is shown in Figure 7.

The transfer function table is passed as a 1D texture to
the shader in order to determine the final color and opac-
ity values of each fragment. For the simple average scalar
method, where s = Sf;rs” , the lookup operation using s re-
turns a RGBA texel where RGB is the final color and A is
the extinction coefficient 7.

To compute the final opacity value we make use of an-
other 1D texture. This texture contains sample values ob-
tained with Equation 1, that is, Tex1D(u) = e~ %, for u
sampled over interval [0, 1]. The lookup is done by pass-
ing u = 7l to obtain the final exponential opacity value.

Our experiments show that using this 1D texture is slightly
faster than computing the exponential function in the frag-
ment shader.

3.4. Partial Pre-Integration

In order to improve the ray integration approximation,
and thus the image quality, the average scalar method is re-
placed by the partial pre-integration approach [13].

In the pre-integration method, the ray integral is com-
puted for different values of {s¢, sp,!} and stored in a table.
These values are used to determine the color of the frag-
ment by performing a single lookup operation. However,
since the pre-integration table is computed using the trans-
fer function, every time it changes the table must be recom-
puted. Depending on the resolution of the table this can be
a expensive operation.

The partial pre-integration approach overcomes this dis-
advantage by computing a table which is independent of the
transfer function. This 2D 1 table was computed by More-
land et al. [13] and made available for downloading. Since
it does not depend on any attribute of the visualization, it is
pre-compiled within our implementation.

In the second fragment shader, the RGBA colors associ-
ated with sy and s; are retrieved from the transfer function,
and, together with the thickness value, are used to compute
the indices of the 1 table. The values retrieved from this ta-
ble are then used to compute the final fragment color.

The partial method is understandably slower than merely
using the average value of s as per the original PT method
of Shirley and Tuchman. This decreased performance is ac-
ceptable, however, since it is less prone to under-sampling
errors [4]. Moreover, with partial pre-integration, instead of
full pre-integration, we are able to change the transfer func-
tion interactively. Every time the function is modified by the
user, the lookup texture needs to be reloaded, but this can be
done with very little overhead.

4. Results

In the previous sections, we have described an imple-
mentation of the PT algorithm using fragment shaders. Our
prototype was programmed in C++ using OpenGL 2.0 with
GLSL under Linux. Performance measurements were made
on a Intel Pentium IV 3.6 GHz, 2 GB RAM, with a nVidia
GeForce 6800256 MB graphics card and a PCI Express 16x
bus interface.

The data sets used were: the Blunt Fin (blunt) and Lig-
uid Oxygen Post (post) from NASA’s NAS website [14] and
converted to tetrahedra; the Combustion Chamber (comb)
from the Visualization Toolkit (Vtk) [7]; the Spx from
Lawrence Livermore National Lab [9]; and the Fuel Injec-
tion and Brain tomography from [19]. Table 1 further spec-

| Dataset || # Vertices | # Tet | fps | K tet/s |

Spx 29K I3K | 9532 | 1233.2
Blunt 40K 187K | 11.30 | 2119.7
Comb 47K 215K | 9.32 | 2005.4

Post 110K 513K | 449 | 23844
Spx2 150K 828K | 3.04 | 2526.9

Fuel 262K 1.5M | 149 | 2246.0
Brain 950K 55M | 046 | 2560.8

Table 1. Data set sizes and average times.
Two different Spx data sets were used. Note
that models with few elements have lower
tet/s due to the overhead of changing be-
tween shaders many times in one second.

ifies the number of vertices and tetrahedra for each data set,
and the average fps and tet/sec. Six models rendered with
our algorithm are shown in Figure 9.

| Algorithm/Dataset | Blunt | Post |

GPU CP for Int. VR 11.30 fps | 4.49 fps
GATOR 4.07 fps | 1.51 fps
HARC 4.47 fps | 8.63 fps
HARC PPI 4.94 fps | 5.93 fps
VICP 5.20fps | 1.93 fps

Table 2. Time comparison of different volume
rendering algorithms.

The timings are given in tetrahedra per second (tet/s) us-
ing a 5122 pixel viewport and considering that the
model is constantly rotating. Table 2 compares our al-
gorithm (GPU-Based CP for Int. Vol. Rend.) with the
following algorithms: GATOR — GPU Accelerated Tetra-
hedra Renderer [25], VICP - View-Independent Cell
Projection (in GPU) [22], HARC - Hardware-Based
Ray-Casting [21] and HARC PPI — HARC using Par-
tial Pre-Integration [4]. Figure 8 illustrates a graph of the
average rendering time of the Oxygen Post data set for dif-
ferent screen resolution sizes.

Furthermore, our implementation requires less bytes per
tetrahedron than the compared Ray-Casting algorithms,
which require storing heavy data structures in GPU mem-
ory. Our approach requires 16 bytes per element of the
tetrahedral and the vertex textures. Considering an aver-
age of 4 tet per vertex, we have 20 bytes/tet. This means
that one million cells occupy roughly 20 MB of GPU mem-
ory. In contrast, HARC PPI [4] requires 96 bytes/tet, while
the original HARC implementation requires 144 bytes/tet.

2600

o 2400
2 e v \,7
®
[K\\\\
~

2200
£
3 -
o
§
E 2000
(e} m 400x400
5 + 600X600
o 1800 ¥ 800x800

. /

16 32 48 64 80 96 112 128

Animation time (in secs)

Figure 8. Average performance (in K tet/s) by
animation time (in seconds) of the Oxygen
Post data set for different resolutions.

5. Conclusions and Future Work

We have presented a Cell Projection Volume Rendering
method that takes full advantage of modern graphics hard-
ware. The implementation ! achieves rates over 2.0 M Tet/s
with high quality images, and, at the same time offers inter-
active control over the transfer function.

Differently from previous PT algorithms, our method in-
curs in no major bus transfer overhead since it keeps the
whole model stored in the graphics card texture memory.
Even though this may represent a limitation for very large
models, modern hardware can have up to 1 GB of graph-
ics memory. On the other hand, by not keeping any auxil-
iary data structure in texture memory, the space allocated
per tetrahedron is very low. As a case in point, we were
able to visualize a model with 5.5 million tetrahedra using
a fairly limited board with 256 MB of graphics memory.

The visibility ordering remains the true drawback of the
algorithm. By using an approximate sorting method during
the interaction, the volume can be viewed with no perceptu-
ally significant visual artifact, as discussed in Section 3.2. In
the future, we plan to implement a more precise sorting al-
gorithm using shaders, such as the k-buffer of Callahan et
al. [1].

It should be noted that current graphics architectures do
not allow for manipulating data structures in GPU memory
directly. Such facilities are being planned for next genera-
tion hardware. This might permit the use of Vertex Buffer
Object extensions to render the tetrahedra’s data directly to
the vertex array, thus eliminating the only major computa-
tion currently done in CPU, i.e., the thick vertex data up-
date (computed in the first shader) of the vertex and color
arrays.

1 Source code can be downloaded from
http://www.lcg.ufrj.br/Projetos/volumerender

6. Acknowledgments

We would like to thank Rodrigo Espinha and Waldemar
Celes for providing us with their implementation of HARC
algorithm using the partial pre-integrations. We also ac-
knowledge the grant of the first author provided by Brazil-
ian agency CNPq (National Counsel of Technological and
Scientific Development).

References

[1] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva.
Hardware-assisted visibility sorting for unstructured volume
rendering. IEEE Transactions on Visualization and Com-
puter Graphics, 11(3):285-298, May/June 2005.

[2] J. Comba, J. T. Klosowski, N. L. Max, J. S. B. Mitchell, C. T.
Silva, and P. L. Williams. Fast polyhedral cell sorting for in-
teractive rendering of unstructured grids. Computer Graph-
ics Forum, 18(3):369-376, 1999.

[3] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shad-
ing. In HWWS °0I: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hard-
ware, pages 9-16, New York, NY, USA, 2001. ACM Press.

[4] R. Espinha and W. Celes. High-quality hardware-based ray-
casting volume rendering using partial pre-integration. In
SIBGRAPI ’05: Proceedings of the XVIII Brazilian Sympo-
sium on Computer Graphics and Image Processing, page
273. IEEE Computer Society, 2005.

[5] R. Farias, J. S. B. Mitchell, and C. T. Silva. Zsweep: an effi-
cient and exact projection algorithm for unstructured volume
rendering. In VVS ’00: Proceedings of the 2000 IEEE Sym-
posium on Volume visualization, pages 91-99, New York,
NY, USA, 2000. ACM Press.

[6] M. Harris. General-Purpose computation using Graphics
Hardware, 2004. http://www.gpgpu.org/.

[7] Kitware. The Visualization Toolkit VTK, 2006.
http://public.kitware.com/VTK/.

[8] M. Kraus, W. Qiao, and D. S. Ebert. Projecting tetrahedra
without rendering artifacts. In VIS ’04: Proceedings of the
conference on Visualization '04, pages 27-34, Washington,
DC, USA, 2004. IEEE Computer Society.

[9] LLNL. Lawrence Livermore National Laboratory, 2006.
http://www.lInl.gov/.

[10] E. Lum, B. Wilson, and K.-L. Ma. High-quality light-
ing and efficient pre-integration for volume rendering. The
Joint Eurographics-IEEE TVCG Symposium on Visualiza-
tion 2004, 2004.

[11] N. Max, B. Becker, and R. Crawfis. Flow volumes for inter-
active vector field visualization. In VIS '93: Proceedings of
the 4th conference on Visualization ’93, pages 19-24, 1993.

[12] N. Max, P. Hanrahan, and R. Crawfis. Area and volume co-
herence for efficient visualization of 3d scalar functions. In
VVS ’90: Proceedings of the 1990 workshop on Volume vi-
sualization, pages 27-33, New York, NY, USA, 1990. ACM
Press.

T .-

(b)

(©)

(d)

(e)

®

Figure 9. Datasets : Post (a), Spx (b), Blunt (¢), Comb (d), Fuel (e), Brain (f).

(13]

[14]

[15]

[16]

(7]

(18]

K. Moreland and E. Angel. A fast high accuracy volume ren-
derer for unstructured data. In VVS '04: Proceedings of the
2004 IEEE Symposium on Volume visualization and graph-
ics, pages 13-22, Piscataway, NJ, USA, 2002. IEEE Press.
NASA. NASA Advanced Supercomputing (NAS) Division,
2006. http://www.nas.nasa.gov/.

S. Roettger and T. Ertl. A two-step approach for interac-
tive pre-integrated volume rendering of unstructured grids.
In VVS '02: Proceedings of the 2002 IEEE Symposium on
Volume visualization and graphics, pages 23-28, Piscataway,
NIJ, USA, 2002. IEEE Press.

S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated vol-
ume and isosurface rendering based on cell-projection. In
VIS ’00: Proceedings of the conference on Visualization 00,
pages 109-116, Los Alamitos, CA, USA, 2000. IEEE Com-
puter Society Press.

P. Shirley and A. A. Tuchman. Polygonal approximation to
direct scalar volume rendering. In Proceedings San Diego
Workshop on Volume Visualization, Computer Graphics, vol-
ume 24(5), pages 63-70, 1990.

C. Stein, B. Becker, and N. Max. Sorting and hardware as-
sisted rendering for volume visualization. In A. Kaufman
and W. Krueger, editors, 1994 Symposium on Volume Visual-
ization, pages 83-90, 1994.

(19]
(20]

(21]

(22]

(23]

(24]

[25]

VolVis. Volume Visualization, 2006. http://www.volvis.org/.
M. Weiler, M. Kraus, , and T. Ertl. Hardware-based view-
independent cell projection. In VVS ’02: Proceedings of the
2002 IEEE Symposium on Volume visualization and graph-
ics, pages 13-22, Piscataway, NJ, USA, 2002. IEEE Press.
M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
ray casting for tetrahedral meshes. In VIS ’03: Proceedings
of the 14th IEEE conference on Visualization 93, pages 333—
340, 2003.

M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based
view-independent cell projection. IEEE Transactions on Vi-
sualization and Computer Graphics, 9(2):163-175, 2003.

P. L. Williams. Visibility-ordering meshed polyhedra. ACM
Trans. Graph., 11(2):103-126, 1992.

P. L. Williams and N. L. Max. A volume density optical
model. In 7992 Workshop on Volume Visualization, pages
61-68, 1992.

B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahe-
dral projection using vertex shaders. In VVS ’02: Proceed-
ings of the 2002 IEEE Symposium on Volume visualization
and graphics, pages 7-12, Piscataway, NJ, USA, 2002. IEEE
Press.

