
Tree-Pruning: A New Algorithm and Its Comparative Analysis with the
Watershed Transform for Automatic Image Segmentation

Paulo A.V. Miranda
LIV – Institute of Computing – UNICAMP
C.P. 6176, 13084-971, Campinas, SP, Brazil

paulo.miranda@ic.unicamp.br

Felipe P.G. Bergo
LIV – Institute of Computing – UNICAMP
C.P. 6176, 13084-971, Campinas, SP, Brazil

felipe.bergo@ic.unicamp.br

Leonardo M. Rocha
DECOM – FEEC - UNICAMP

C.P. 6101, 13083-970, Campinas, SP, Brazil
leorocha@decom.fee.unicamp.br

Alexandre X. Falcão
LIV – Institute of Computing – UNICAMP
C.P. 6176, 13084-971, Campinas, SP, Brazil

afalcao@ic.unicamp.br

Abstract

Image segmentation using tree pruning (TP) and water-
shed (WS) has been presented in the framework of the im-
age forest transform (IFT)— a method to reduce image pro-
cessing problems related to connectivity into an optimum-
path forest problem in a graph. Given that both algorithms
use the IFT with similar parameters, they usually produce
similar segmentation results. However, they rely on dif-
ferent properties of the IFT which make TP more robust
than WS for automatic segmentation tasks. We propose
and demonstrate an important improvement in the TP al-
gorithm, clarify the differences between TP and WS, and
provide their comparative analysis from the theoretical and
practical points of view. The experiments involve automatic
segmentation of license plates in a database with 990 im-
ages.

1 Introduction

The image forest transform (IFT) has been proposed as
a general tool for the design of image processing opera-
tors based on connectivity [7]. Image segmentation is one
of its most important applications, where it covers both
boundary- [8, 4] and region-based paradigms [14, 1, 12, 13].
In the latter, the IFT provides several algorithms for wa-
tershed segmentation [10, 11], including the differential
IFT [5] which allows to compute a sequence of watershed
transforms (segmentation corrections) in sub-linear time.

The IFT interprets an image as a graph whose nodes are
the pixels and whose arcs are defined by an adjacency rela-
tion between pixels. The cost of a path in the graph is given
by a suitable path-cost function. Given seeds inside and out-

side an object, a watershed transform by IFT [10, 7], assigns
a minimum-cost path from the seed set to each pixel such
that each seed becomes root of an optimum-path tree com-
posed by its most strongly connected pixels. The resulting
optimum-path forest consists of two sub-forests with dis-
tinct labels: object and background. In this case, the object
is separated from the background by competition among in-
ternal and external seeds. A failure (“leaking”) occurs when
an object seed conquers background pixels or vice-versa.

More recently, tree pruning was proposed as a potential
solution for the leaking problem [6]. The main idea is to
use only internal seeds and let the leaking occurs at a first
moment by computing an IFT with the same adjacency re-
lation and path-cost function of a watershed transform. In
this case, the competition among internal seeds make object
and background connected by a few optimum paths (leaking
paths) which cross the object’s boundary through its most
weakly connected parts (leaking pixels). The identification
of the leaking pixels and subsequent pruning of their sub-
trees define the object as the remaining optimum-path for-
est.

In [6], the authors discuss two approaches for leaking
pixel detection. One is interactive where the user can visu-
ally identify leaking pixels and select them with the mouse
pointer. This visual identification is, unfortunately, a draw-
back in 3D segmentation. The other is automatic, but it
relies on an ad-hoc parameter that is difficult to be adjusted
in real applications.

In this paper we propose a solution that exploits the
topology of the forest for automatic detection of leaking
pixels. Our algorithm is free of ad-hoc parameters and aims
at reducing image segmentation to the selection of a few
seeds inside the object. These aspects favor automatic solu-

tions for segmentation when the object’s location can be de-
tected by some preprocessing (e.g., by statistical approaches
such as the one proposed in [15]).

The watershed transform (WS) may be sensitive to the
location of the external seeds in heterogeneous background.
On the other hand, if we only consider internal seeds and all
pixels in the image’s border as external seeds, WS and tree
pruning (TP) usually produce similar results. This moti-
vates a comparison between both approaches for automatic
segmentation. We also discuss interactive segmentation
using these approaches, and evaluate them and the previ-
ous TP algorithm [6] for automatic segmentation of license
plates, using a database with 990 images.

It is important to note that the whole segmentation pro-
cess involves two tightly coupled tasks: delineation and
recognition [8]. Delineation aims at defining the precise
spatial extent of an object in the image while its approxi-
mate location (e.g., seed estimation) is a recognition task.
Recognition also involves other cognitive tasks, such as to
verify the correctness of a segmentation result or to iden-
tify a desired object among candidate ones. TP and WS are
likely to outperform higher level approaches [9, 3, 2, 15]
in delineation, but the other way around may be verified in
recognition. In this sense, these methods should comple-
ment each other for more effective image segmentation.

Section 2 reviews the IFT for region-based image seg-
mentation. The watershed transform and the new version
of tree pruning are described in Sections 3 and 4. We pro-
vide a comparative analysis between them in Section 5, and
present conclusions and future work in Section 6.

2 Background

Tree pruning (TP) and watershed (WS) algorithms rely
on a preprocessing step which estimates seeds and com-
putes a gradient-like image. In this paper we use only the
magnitude of the Sobel’s gradient for all examples and ex-
periments, but gradient-like images usually require some
preprocessing which is application-dependent. Preprocess-
ing is also important for automatic seed estimation, but in
interactive segmentation, seeds can be simply selected by
the user with the mouse’s pointer. TP requires seeds inside
the object and WS requires internal and external seeds.
Gradient condition:

Ideally, a gradient-like image in WS should assign higher
values to pixels on the object’s boundary than to pixels in-
side and outside the object. TP relies on similar condition,
except that the lower pixel values outside the object are re-
quired only in a small neighborhood around the object’s
boundary.

Both approaches can be implemented for multidimen-
sional images, and in the case of multi-parametric images

(such as colored images), the parameters can be taken into
account to create a gradient-like image as described above.

2.1 Image Foresting Transform for WS and TP

A gradient-like image Î is a pair (DI , I) where DI ⊂ Z2

is the image domain and I(p) assigns to each pixel p ∈ DI

a scalar value.
In the image foresting transform (IFT), a gradient-like

image is interpreted as a graph (DI , A) whose nodes are
the pixels in DI and whose arcs are defined by an adja-
cency relation A between pixels [7]. We are interested in
4- or 8-connected relations for 2D region-based image seg-
mentation (see examples in Figures 1a and 1b).

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 3333333333 1111111111 3333333333 0000000000 1111111111 0000000000 0000000000 0000000000 7777777777 0000000000

0000000000 2222222222 1111111111 0000000000 0000000000 0000000000 1111111111 0000000000 1111111111 3333333333 0000000000

0000000000 0000000000 0000000000 7777777777 9999999999 8888888888 9999999999 9999999999 0000000000 1111111111 0000000000

0000000000 2222222222 0000000000 8888888888 0000000000 0000000000 0000000000 9999999999 0000000000 0000000000 0000000000

0000000000 0000000000 0000000000 9999999999 0000000000 0000000000 0000000000 7777777777 0000000000 1111111111 0000000000

0000000000 0000000000 1111111111 8888888888 0000000000 0000000000 0000000000 8888888888 0000000000 0000000000 0000000000

0000000000 2222222222 0000000000 8888888888 9999999999 4444444444 9999999999 6666666666 1111111111 0000000000 0000000000

0000000000 0000000000 2222222222 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 3333333333 2222222222 0000000000 0000000000 0000000000 0000000000 1111111111 0000000000 3333333333 0000000000

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 3333333333 2222222222 0000000000 1111111111 0000000000 0000000000 1111111111 0000000000 3333333333 4444444444

2222222222 3333333333 1111111111 3333333333 0000000000 1111111111 0000000000 0000000000 0000000000 7777777777 6666666666

1111111111 2222222222 1111111111 0000000000 0000000000 0000000000 1111111111 0000000000 1111111111 3333333333 8888888888

1111111111 0000000000 0000000000 7777777777 9999999999 8888888888 9999999999 9999999999 0000000000 1111111111 0000000000

0000000000 2222222222 0000000000 8888888888 0000000000 0000000000 0000000000 9999999999 0000000000 0000000000 2222222222

1111111111 0000000000 0000000000 9999999999 0000000000 0000000000 0000000000 7777777777 0000000000 1111111111 0000000000

0000000000 0000000000 1111111111 8888888888 0000000000 0000000000 0000000000 8888888888 0000000000 0000000000 1111111111

0000000000 2222222222 0000000000 8888888888 9999999999 4444444444 9999999999 6666666666 1111111111 0000000000 0000000000

0000000000 0000000000 2222222222 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 3333333333 2222222222 0000000000 0000000000 0000000000 0000000000 1111111111 0000000000 3333333333 3333333333

2222222222 3333333333 0000000000 1111111111 0000000000 0000000000 1111111111 0000000000 4444444444 2222222222 4444444444

(a) (b)
0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 3333333333 1111111111 3333333333 0000000000 1111111111 0000000000 0000000000 0000000000 7777777777 0000000000

0000000000 2222222222 1111111111 0000000000 0000000000 0000000000 1111111111 0000000000 1111111111 3333333333 0000000000

0000000000 0000000000 0000000000 7777777777 9999999999 8888888888 9999999999 9999999999 0000000000 1111111111 0000000000

0000000000 2222222222 0000000000 8888888888 0000000000 0000000000 0000000000 9999999999 0000000000 0000000000 0000000000

0000000000 0000000000 0000000000 9999999999 0000000000 0000000000 0000000000 7777777777 0000000000 1111111111 0000000000

0000000000 0000000000 1111111111 8888888888 0000000000 0000000000 0000000000 8888888888 0000000000 0000000000 0000000000

0000000000 2222222222 0000000000 8888888888 9999999999 4444444444 9999999999 6666666666 1111111111 0000000000 0000000000

0000000000 0000000000 2222222222 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 3333333333 2222222222 0000000000 0000000000 0000000000 0000000000 1111111111 0000000000 3333333333 0000000000

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 7777777777 6666666666

4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 8888888888

4444444444 4444444444 4444444444 7777777777 9999999999 8888888888 9999999999 9999999999 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 8888888888 0000000000 0000000000 0000000000 9999999999 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 9999999999 0000000000 0000000000 0000000000 7777777777 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 8888888888 0000000000 0000000000 0000000000 8888888888 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 8888888888 9999999999 4444444444 9999999999 6666666666 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444

4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444 4444444444

(c) (d)

Figure 1. (a-b) Two 8-connected image
graphs where the numbers indicate the pixel
values and the shaded area is the object
with one internal seed (white dot). Exter-
nal seeds on the image’s border are selected
only in (a). (c-d) The respective optimum-
path forests using Eq. 1.

A path in the graph is a sequence of adjacent pixels and a
path-cost function c assigns to each path π a path cost c(π).
A path π is optimum if c(π) ≤ c(τ) for any other path τ
with the same destination of π.

For both WS and TP, the cost c(π) of a path is defined as
the maximum gradient value of its pixels, when π starts in a
set S of seed pixels; and as infinity cost otherwise.

c(π) =
{

max∀p∈π{I(p)} if org(π) ∈ S
+∞ otherwise

(1)

where org(π) is the origin of path π.

2

Marker imposition [14, 1, 10] is important in most situ-
ations and it is implemented by setting I(p) to 0 for pixels
p ∈ S.

The IFT assigns one optimum path from S to every pixel
p ∈ DI . These paths form an optimum-path forest rooted
in S which is stored in a predecessor map P— a function
that assigns to each pixel p /∈ S its predecessor P (p) in
the optimum path from S or a marker nil when p ∈ S (see
examples in Figures 1c and 1d).

TP exploits the topology of the forest in Figure 1d while
WS separates object and background by labeling the trees
of the forest in Figure 1c. Therefore, the IFT algorithm pre-
sented next computes at same time an optimum-path forest
in P and a label map in L, being the former useful for TP
and the latter applicable for WS.

2.2 The IFT algorithm for TP and WS

Let S = So ∪ Sb be the union of two sets of seed pix-
els, such that So and Sb contain only object and background
seeds, respectively. Then, Sb is empty for TP and WS re-
quires Sb not empty. For the purpose of comparison, we are
only interested in the case where Sb is the image’s border
for WS. However, as we will discuss in Section 5, pixels
strategically selected outside the object play an important
role in interactive segmentation.

Algorithm 1 – IMAGE FORESTING TRANSFORM FOR
WS AND TP

INPUT: Gradient-like image Î = (DI , I), adjacency re-
lation A, seed sets So and Sb.

OUTPUT: Optimum-path forest P and label map L.
AUXILIARY: Cost map C, priority queue Q, and variable cst.

1. For all p ∈ DI , set P (p)← nil and C(p)← +∞.
2. For all p ∈ So, set C(p)← I(p), L(p)← 1, and insert p in Q.
3. For all p ∈ Sb, set C(p)← I(p), L(p)← 0, and insert p in Q.
4. While Q is not empty, do
5. Remove from Q a pixel p such that C(p) is minimum.
6. For each q such that (p, q) ∈ A and C(q) > C(p), do
7. Compute cst← max{C(p), I(q)}.
8. If cst < C(q), then
9. If C(q) �= +∞, remove q from Q.
10. Set P (q)← p, C(q)← cst, L(q)← L(p).
11. Insert q in Q.

Algorithm 1 runs in linear time if Q is implemented as
described in [4]. Lines 1–3 initialize maps and insert seeds
in Q. The main loop computes an optimum path from S to
every pixel p in a non-decreasing order of cost (Lines 4–11).
At each iteration, a path of minimum cost C(p) is obtained
in P when we remove its last pixel p from Q (Line 5). Ties
are broken in Q using first-in-first-out (FIFO) policy. That
is, when two optimum paths reach an ambiguous pixel p

with the same minimum cost, p is assigned to the first path
that reached it. The rest of the lines evaluate if the path that
reaches an adjacent pixel q through p is cheaper than the
current path with terminus q and update Q, C(q), L(q) and
P (q) accordingly.

The label propagation in L assigns 1 to pixels that be-
long to the trees rooted inside the object and 0 to pixels of
the trees rooted in the background. In WS, it is expected
that the object be defined by image components with label
1, which can be directly obtained from L. TP requires to
identify leaking pixels in P to prune all subtrees rooted in
the background. We discuss these approaches next.

3 The watershed transform

Clearly, WS solves segmentation by seed competition for
object and background pixels. It also allows simultaneous
multiple object segmentation by modifying Algorithm 1 to
propagate a distinct label per object.

Considering the path-cost function c and the gradient
condition for WS (Section 2), the external seeds will reach
background pixels through optimum paths whose costs are
strictly lower than the costs of optimum paths rooted at in-
ternal seeds. The same is true for object pixels with respect
to the internal seeds, because any path which crosses the
object’s boundary will have higher costs. Pixels on the ob-
ject’s boundary, however, may be conquered by internal or
external seeds depending on the tie-breaking policy in Q
(i.e., we may also give preference to object seeds).

(a) (b)

(c) (d)

Figure 2. (a-b) Two gradient images showing
a license plate and an MR-wrist bone as in-
terest objects. (c-d) The respective results of
WS for one internal seed (white dot) and ex-
ternal seeds on the image’s border.

WS will work whenever the optimum paths rooted at ob-

3

ject and background meet each other at the object’s bound-
ary. This may happen even when the gradient condition is
not fully satisfied (Figure 2). When the object contains in-
ternal boundaries (holes, components, basins), WS may re-
quire multiple internal seeds and the location of these seeds
may be important (e.g., at least one internal seed should be
outside the letters of the plate in Figure 2c).

4 Tree-pruning segmentation

The IFT computes optimum paths in a non-decreasing
order of cost. Therefore, in the gradient condition for TP,
the optimum paths from So will reach object pixels before
background pixels. Moreover, if a pixel p is the only one
with lowest value I(p) on the object’s boundary, then all
pixels around the object will be reached by leaking paths
with minimum cost I(p), which pass through the leaking
pixel p (pixel (6, 8) in Figure 1d). By connectivity, the rest
of the background will be also conquered by leaking paths
that pass through p. The same property can be verified when
there are multiple leaking pixels, which can be automati-
cally detected as follows.

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 1111111111 0000000000

2222222222 1111111111 1111111111 1111111111 0000000000 0000000000 3333333333 1111111111 2222222222 0000000000 0000000000

4444444444 1111111111 1111111111 0000000000 0000000000 0000000000 0000000000 6666666666 0000000000 1111111111 0000000000

6666666666 1111111111 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 7777777777 1111111111 0000000000

8888888888 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 8888888888 1111111111 0000000000

9999999999 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 9999999999 1111111111 0000000000

0000000000 10101010101010101010 0000000000 0000000000 0000000000 0000000000 40404040404040404040 0000000000 10101010101010101010 3333333333 0000000000

0000000000 1111111111 10101010101010101010 0000000000 0000000000 40404040404040404040 0000000000 0000000000 15151515151515151515 1111111111 0000000000

0000000000 3333333333 5555555555 16161616161616161616 17171717171717171717 1111111111 22222222222222222222 17171717171717171717 1111111111 1111111111 0000000000

0000000000 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 3333333333 1111111111 1111111111 0000000000

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 1111111111 0000000000

2222222222 1111111111 1111111111 1111111111 0000000000 0000000000 3333333333 1111111111 2222222222 0000000000 0000000000

4444444444 1111111111 1111111111 0000000000 0000000000 0000000000 0000000000 6666666666 0000000000 1111111111 0000000000

6666666666 1111111111 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 7777777777 1111111111 0000000000

8888888888 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 8888888888 1111111111 0000000000

9999999999 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 9999999999 1111111111 0000000000

0000000000 10101010101010101010 0000000000 0000000000 0000000000 0000000000 40404040404040404040 0000000000 10101010101010101010 3333333333 0000000000

0000000000 1111111111 10101010101010101010 0000000000 0000000000 40404040404040404040 0000000000 0000000000 15151515151515151515 1111111111 0000000000

0000000000 3333333333 5555555555 16161616161616161616 17171717171717171717 1111111111 22222222222222222222 17171717171717171717 1111111111 1111111111 0000000000

0000000000 1111111111 1111111111 1111111111 1111111111 1111111111 1111111111 3333333333 1111111111 1111111111 0000000000

0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000

(a) (b)

Figure 3. (a) The numbers indicate the de-
scendant count in B for each pixel (except
for the root) of the forest computed in Fig-
ure 1d. (b) After pruning, the remaining forest
defines the object.

Let B ⊂ DI be the image’s border. All paths that reach
B must pass through some leaking pixel (Figure 1d). We
compute the number of descendants that every node (except
the roots) of the forest has in B to obtain a descendant map
D (Figure 3a). This map is different from the one presented
in [6]. By following backwards any optimum path in P
which has terminal node in B, the first occurrence of the
maximum descendant count is at a leaking pixel (e.g., pixel
(6, 8) in Figure 3a). This property occurs at the object’s
boundary thanks to the FIFO policy of Q. After leaking,
the gradient condition makes ambiguous the pixels in the
neighborhood outside the object, ramifying the leaking path
into several branches. This ramification drastically reduces
the descendant count for pixels of the subtrees rooted at the

leaking pixels [6]. We can then repeat the procedure for all
nodes in B to detect all leaking pixels, and define the object
by removing their subtrees from the forest (Figure 3b).

(a) (b)

(c) (d)

Figure 4. (a-b) The same gradient images of
Figures 2a and 2b, but overlaid by the de-
scendant map D (brighter leaking paths). (c-
d) The respective results of TP for the same
internal seeds (white dots) shown in Fig-
ures 2c and 2d.

Algorithm 2 computes the descendant map D. For each
node in B, the algorithm traverses its optimum path back-
wards to its root, incrementing the descendant count along
the path.

Algorithm 2 – DESCENDANT MAP COMPUTATION

INPUT: Optimum-path forest P and set B.
OUTPUT: Descendant map D.

1. For all p ∈ DI , set D(p)← 0.
2. For each pixel p ∈ B, do
3. Set q ← p.
4. While P (q) �= nil, do
5. Set D(P (q))← D(P (q)) + 1, and q ← P (q).

The descendant map D is used to detect the leaking pixel
associated to each node in B. For every backwards path
from B to its root, the first pixel with maximal value in D
is a leaking pixel. The set Lk of leaking pixels is computed
by Algorithm 3.

Algorithm 3 – LEAKING PIXEL DETECTION

INPUT: Optimum-path forest P , descendant map D, and
set B.

OUTPUT: Set Lk of leaking pixels.

1. For each pixel p ∈ B, do

4

2. Set q ← p, set dmax ← −∞.
3. While P (q) �= nil, do
4. If D(q) > dmax Then set dmax ← D(q), r ← q.
5. Set q ← P (q).
6. Set Lk ← Lk ∪ {r}.

Similar results can be obtained with TP for the examples
of Figure 2 (see Figure 4). Note that TP requires two main
conditions: (i) the optimum paths to object pixels must not
pass through the background and (ii) the optimum paths that
reach the set B must pass through all leaking pixels. The
gradient condition (Section 2) plays an important role, but
the method may work even when it is not satisfied. The
comments about seed location and multiple seeds for WS
are equally applied to TP.

5 Comparative Analysis

Consider the same gradient-like image and internal seeds
So for watershed transform (WS) and tree pruning (TP).
Additionally, WS uses the image’s border as external seeds
Sb and TP uses the image’s border B to extract topological
information (descendant map D) from the forest. There-
fore, the role of the image’s border is very different in these
approaches.

The methods will produce similar results (Figures 2
and 4) whenever optimum paths from Sb and So meet each
other at the leaking pixels. However, the heterogeneity of
the background (Figure 5a) may create tie-zones (plateaus
of cost) for WS whose costs are greater than or equal to the
leaking pixel values (tie-zones appear as white pixels in Fig-
ure 5b). Depending on the tie-breaking policy, the segmen-
tation line could be anywhere on these plateaus (Figure 5c).
Since tree pruning does not depend on the costs of the op-
timum paths outside the object, but only on the topology of
the forest, it is much less susceptible to the heterogeneity of
the background (Figure 5d).

When automatic segmentation fails, the immediate alter-
native is interactive segmentation. The user can add inter-
nal and external seeds in WS to correct results by running
subsequent IFTs in a differential way [5]. A similar proce-
dure is possible in TP, but instead of external seeds, the user
adds external pixels to the set B and Algorithms 2 and 3
are re-executed to identify missed leaking pixels. A failure
in leaking pixel detection is possible because seed compe-
tition among leaking paths may also prevent some path that
crosses a leaking pixel to reach the set B. This leaking pixel
can be detected by adding any pixel of the leaking region to
B, which is simpler and more efficient to do in the 3D case
than the interactive procedure described in [6]. By doing
that, we are essentially extracting more information from
the topology of the forest to correct segmentation. Note

(a) (b)

(c) (d)

Figure 5. (a) A synthetic gradient-like image,
where the heterogeneity of the background is
given by a random external noise. (b) Water-
shed tie-zones in white. (c-d) Respective seg-
mentation results by WS and TP for a same
internal seed (white dot).

that, we will need to re-execute the IFT in TP only when we
add more internal seeds.

In theory, one may think that TP will require less user
involvement in interactive segmentation than WS. Figure 6,
for example, shows that TP requires less number of inter-
actions than WS to correct segmentation. TP also allows a
variant of the Algorithm 3 to correct leaking pixel detection,
whenever the leaking pixel is detected outside the object.
This is possible in the case of true or false external bound-
aries as shown in Figure 7. Figure 7b shows the result of TP
for an internal seed (white dot). Similar result is obtained
with WS for a different reason. A false external boundary
was detected in TP because there was a single leaking path
passing through one leaking pixel of each boundary: the ob-
ject’s boundary and the external false boundary. In WS, the
external boundary was detected because it fails the WS gra-
dient condition. This problem with nested boundaries can
be corrected in TP but not in WS. In TP, we can iteratively
search backwards along the optimum path from the detected
pixel to its root for the next pixel whose gradient value is
maximum (Figure 7c). The only alternative in WS is to re-
execute the method by taking the false external boundary as
external seed set. In this case, however, it will fail because
the first detected boundary and the object’s boundary have
a part in common (Figure 7d).

In practice, it is difficult to say which approach is bet-
ter for interactive segmentation when the automatic leaking
pixel detection fails. There are also examples where seed
selection in WS seems to be more robust than seed and B-
pixel selection in TP. Figure 8 illustrates an example with
touching fragments where the left one is the object of inter-

5

(a) (b)

(c) (d)

Figure 6. (a) Gradient image where the house
is the desired object. (b-c) Segmentation re-
sults with WS and TP with a same seed and
B-pixel selection, respectively. (d) Watershed
tie-zones in white.

(a) (b)

(c) (d)

Figure 7. (a) Gradient image of archaeological
fragments. (b) A false external boundary de-
tected by TP. Similar result is obtained in WS.
(c) The result can be corrected in TP without
B-pixel selection, (d) but the same is not pos-
sible with WS.

est. Both methods can separate the fragments with internal
and external pixel selection close to the touching part (Fig-
ures 8a and 8b). However, TP fails when we move the inter-
nal seed to the center of one fragment (Figure 8c) while WS
works for any positions of the internal and external seeds
(Figure 8d).

Therefore we decided to compare WS and TP in the con-
text of automatic segmentation, where TP with automatic

(a) (b)

(c) (d)

Figure 8. Touching fragments where the left
one is the desired object. (a-b) Segmentation
results with TP and WS, respectively. (c) TP
fails when we move the internal seed to the
center. (d) WS works for any positions of the
internal and external seeds.

detection of leaking pixels is also compared with the previ-
ous version. For the experiments, we have chosen the seg-
mentation of license plates. They essentially evaluate the
sensitivity of the methods with respect to the heterogene-
ity of the background in a real situation where the gradient
condition is not fully satisfied for WS and TP.

5.1 Experiments with license plates

The experiments used 990 images (352 × 240 pixels)
from a database of license plates. We wish to find the pre-
cise location and spatial extent of the plates (Figure 9a). We
have chosen this application because the ground truth for
the plates is easy, due to its known shape. The magnitude
of the Sobel’s gradient is used (Figure 9b) and seed selec-
tion is a difficult task, because any attempt to estimate seeds
inside a plate is likely to find seeds in other parts of the im-
age. Therefore, a natural strategy is to run the methods for
each seed set, score the candidate objects, and choose the
one with the best score. The score of an object can be ob-
tained based on shape features, since the plates are slightly
deformed rectangles.

Seed selection. Seed selection aims at isolating some pix-
els inside the plate. We have defined a common procedure
for all approaches, which is based on some parameters that
are learned by inspection. Pixels of the plate’s number can
be usually enhanced by thresholding the image at 30% of its
maximum intensity (Figure 9c). This threshold is reduced
to 15% when no plate is detected. To get seeds inside the
plate, we apply an erosion with a disk of radius 5.0, fol-

6

lowed by a dilation with a disk of radius 7.0 (Figure 9d),
and consider the components in Figure 9c which do not be-
long to Figure 9d. This choice of parameters is justified
by the fact that 93% of the plates appear with similar sizes
around 2936 pixels. The larger dilation radius was chosen to
avoid seeds over the border of the plate. We also eliminate
components that touch the image’s border and components
with less than 6 pixels. Seeds in the top region of the im-
age (30% of the height) are rejected since there is no license
plate there. The resulting components are finally dilated by
a disk of radius 1 and labeled with a distinct number (Fig-
ure 9e). This last dilation was used to reduce the number of
seed sets (connected components).

(a) (b)

(c) (d)

(e) (f)

Figure 9. (a) Original image with the result
of TP. (b) Gradient image. (c) Image (a) af-
ter thresholding. (d) Image (c) after erosion
and dilation. (e) Image of labeled seeds. (f)
The best rectangles for three false candidate
objects.

Object score. During the plate’s election we rejected can-
didate objects with less than 1200 pixels or more than 8200
pixels, since the size of the plates varies from 1559 up to
7753 pixels. To compute the score for the remaining candi-
dates we first find the best fit rectangle. To guarantee rota-
tion invariance, we determine the object’s major semi-axis
by principal component analysis. Then starting at its ge-
ometric center, we go along the major semi-axis in both

Error Correct
Scoring Method

TP 28 (2.8%) 39 (3.9%) 923 (93.23%)
WS 43 (4.3%) 65 (6.6%) 882 (89.09%)

PTP(T=1%) 66 (6.7%) 149 (15.0%) 775 (78.28%)
PTP(T=2%) 78 (7.9%) 68 (6.9%) 844 (85.25%)
PTP(T=5%) 79 (8.0%) 74 (7.5%) 837 (84.54%)

Table 1. Number of errors due to object scor-
ing and each method, and the number of cor-
rectly segmented plates.

orientations, alternately and at same time, until we reach
the background in some orientation. The same process
is repeated to the orthogonal semi-axis. These boundary
points give us all necessary information to trace a rectan-
gular model. Figure 9f shows three of these rectangles for
false candidates.

Considering each fitted rectangle as a pseudo “ground
truth”, we define FN as the percentage of false negatives—
the number of pixels that belong to the ground truth, but
have been classified as background, divided by the num-
ber of ground-truth pixels— and FP as the percentage of
false positives— the number of pixels classified as object,
but that belong to the background, divided by the number
of ground-truth pixels. Then, we compute a score SC for
the corresponding object based on FP , FN , and the aspect
ratio R of the rectangle, as follows.

SC = (1.0 − min{1.0, FP + FN}) · W (2)

W =




1.0 if 2.4 ≤ R ≤ 3.0,
exp

(−(2.4 − R)2/3.0
)

if R < 2.4,
exp

(−(3.0 − R)2/3.0
)

if R > 3.0.

where the interval [2.4, 3.0] was chosen in between the min-
imum and maximum expected aspect ratios of the plates.

Results. Table 1 summarizes the experimental results for
each method, where TP denotes the new tree pruning and
PTP is its previous version, implemented as described in [6]
where T is an ad-hoc parameter. TP correctly detected 923
(93.23%) license plates out of 990. In spite of the use of ad-
hoc procedures for seed estimation, it was possible to esti-
mate some seed set inside the plates in 100% of the cases.
Among the 67 plates not detected by TP, 28 (2.8% of the
database) errors were due to the score process and 39 errors
(3.9% of the database) were due to the TP method. So, we
can still improve this result by using a better score process,
which takes into account, for example, texture information.

We can note that TP was more accurate than PTP for any
fixed value T , because it is difficult to adjust T for a given
application. Table 1 also shows that WS was more sensitive
to the heterogeneity of the background than TP.

7

A recent work [16] has achieved 99.7% of accuracy in a
database where the plates appear as perfect rectangles. We
have tested their method in our database, but the accuracy
was only 5.5% using our matching criterion. On the other
hand, their method could locate 98% of the plates in our
database among the best three candidates. This reduction
in the number of candidates makes attractive a combination
of their approach for seed estimation and tree pruning for
segmentation.

6 Conclusions and future work

We presented an important improvement in tree-pruning
segmentation by introducing a method for automatic leak-
ing pixel detection, which is free of ad-hoc parameters. Our
comparative analysis has shown that our approach is more
robust and can provide automatic image segmentation of li-
cense plates with higher accuracy rate than the previous ap-
proach [6] and the watershed transform [10]. We have also
provided a different solution for interactive segmentation by
tree pruning, which is more suitable to the 3D case than the
previous one [6].

Although ad-hoc procedures were used for seed estima-
tion and object recognition, the accurate results encourage
future works that combine tree pruning with statistical ap-
proaches [15, 3, 2].

Acknowledgments

The authors thank Roberto Lotufo for the database, and
CNPq (Proc. 302427/04-0), FAPESP (Proc. 05/59808-0 and
Proc. 03/13424-1), and CAPES for the financial support.

References

[1] S. Beucher and F. Meyer. The morphological ap-
proach to segmentation: The watershed transforma-
tion. In Mathematical Morphology in Image Process-
ing, chapter 12, pages 433–481. Marcel Dekker, 1993.

[2] T. Cootes, G. Edwards, and C.J.Taylor. Active appear-
ance models. In European Conference on Computer
Vision (ECCV), volume 2, pages 484–498, 1998.

[3] T. Cootes, C. Taylor, D. Cooper, and J. Graham.
Active shape models – their training and applica-
tion. Computer Vision and Image Understanding,
61(1):38–59, 1995.

[4] A. Falcão, J. Udupa, and F. Miyazawa. An ultra-
fast user-steered image segmentation paradigm: Live-
wire-on-the-fly. IEEE Trans. on Medical Imaging,
19(1):55–62, 2000.

[5] A. X. Falcão and F. P. G. Bergo. Interactive volume
segmentation with differential image foresting trans-
forms. IEEE Trans. on Medical Imaging, 23(9):1100–
1108, 2004.

[6] A. X. Falcão, F. P. G. Bergo, and P. A. V. Miranda. Im-
age segmentation by tree pruning. In XVII Brazilian
Symposium on Computer Graphics and Image Pro-
cessing (SIBGRAPI), pages 65–71. IEEE, Oct 2004.

[7] A. X. Falcão, J. Stolfi, and R. A. Lotufo. The image
foresting transform: Theory, algorithms, and applica-
tions. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 26(1):19–29, 2004.

[8] A. X. Falcão, J. K. Udupa, S. Samarasekera,
S. Sharma, B. E. Hirsch, and R. A. Lotufo. User-
steered image segmentation paradigms: Live-wire and
live-lane. Graphical Models and Image Processing,
60(4):233–260, 1998.

[9] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Ac-
tive contour models. Intl. Journal of Computer Vision,
1:321–331, 1987.

[10] R. Lotufo and A. Falcão. The ordered queue and the
optimality of the watershed approaches. In Math-
ematical Morphology and its Applications to Image
and Signal Processing, volume 18, pages 341–350.
Kluwer, Jun 2000.

[11] R. Lotufo, A. Falcão, and F. Zampirolli. IFT-
watershed from gray scale marker. In XV Brazillian
Symposium on Computer Graphics and Image Pro-
cessing, pages 146–152, Oct 2002.

[12] J. Roerdink and A. Meijster. The watershed transform:
Definitions, algorithms and parallelization strategies.
Fundamenta Informaticae, 41:187–228, 2000.

[13] L.-G. C. Shao-Yi Chien, Yu-Wen Huang. Predictive
watershed: a fast watershed algorithm for video seg-
mentation. IEEE Trans. on Circuits and Systems for
Video Technology, 13:453–461, 2003.

[14] L. Vincent and P. Soille. Watersheds in digital spaces:
An efficient algorithm based on immersion simula-
tions. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 13(6), Jun 1991.

[15] P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. In Intl Conf.
on Computer Vision and Pattern Recognition (CVPR),
volume 1, pages I–511–I–518, 2001.

[16] D. Zheng, Y. Zhao, and J. Wang. An efficient method
of license plate location. Pattern Recognition Letters,
26(15):2431–2438, Nov 2005.

8

