
Curvature-driven Modeling and Rendering of Point-Based Surfaces

João Paulo Gois1, Eduardo Tejada2, Tiago Etiene1, Luis Gustavo Nonato1,
Antonio Castelo1 and Thomas Ertl2

1University of São Paulo 2University of Stuttgart
{jpgois,etiene,gnonato,castelo}@icmc.usp.br {tejada,ertl}@vis.uni-stuttgart.de

Abstract

In this work we address the problem of computing point-
based surface approximations from point clouds. Our ap-
proach is based on recently presented methods that define
the approximated surface as the set of stationary points for
an operator that projects points in the space onto the sur-
face. We present a novel projection operator that differs
from the defined in previous work in that it uses principal
curvatures and directions approximation and an anisotropic
diffusion equation to ensure an accurate approximation to
the surface. We show how to estimate the principal curva-
tures and directions for point clouds and discuss the use-
fulness of the curvature information in the context of point-
based surface modeling and rendering.

1 Introduction

Point-based methods for modeling and rendering sur-
faces from point clouds have been addressed by various
authors lately [15]. Alexa et al. [5, 6] and Zwicker et
al. [24] presented point-based surface approximation meth-
ods that define the approximated surface as the set of sta-
tionary points for an operator that projects points in the
space onto the surface. Both approaches approximate the
surface locally by finding a polynomial approximation to
the surface on a local orthonormal coordinate system near
the point to be projected. Zwicker et al. made use of the
weighted least-squares method both for finding the local
coordinate system and the local polynomial approximation
to the surface. On the other hand, Alexa et al. used mov-
ing least-squares to find the local coordinate system and
weighted least-squares to calculate the polynomial approx-
imation. These approaches present a number of interesting
features, such as the fact that the approximated surfaces are
meshless and low-frequency noise free.

We propose a novel projection operator for computing
point-based surfaces based on the approximation of prin-
cipal curvatures and directions and an anisotropic diffu-

Figure 1. Rendering of the point-based sur-
face approximation for the Dragon dataset
obtained with the projection procedure pro-
posed in this work.

sion equation. We use the curvature information to define
the local polynomial as a non-complete quadratic function
without loosing accuracy in the local approximation. The
anisotropic diffusion equation is used to define the point on
the surface where such quadratic polynomial is calculated.
The anisotropy in this equation helps us preserve the ge-
ometry of the original surface since this equation is based
on directional curvatures. Therefore, we show how to esti-
mate the curvature at any point on the surface, which is a
further contribution of our approach since the curvature is
useful for the analysis of both quantitative and qualitative
characteristics of the surface [23]. For this, we modified the
curvature estimation method by Huang and Menq [13] to
introduce weights in order to improve the robustness of the
method. This weights were carefully constructed and are
specific to our problem.

The fact that the local approximation is defined as a non-
complete quadratic polynomial can help decrease the pro-

cessing time of algorithms that perform intersection com-
putations such as ray-tracing. For rendering the surfaces de-
fined by our operator, we use the ray-tracing algorithm for
point-based surface developed by Adamson and Alexa [2].
We describe how the intersection computation must be
modified to fit our projection operator and use this ray-tracer
to demonstrate the quality of the approximations obtained
(see Figure 1 for an example). We compare the results ob-
tained using the method presented with the results obtained
using moving least-squares as in the work by Alexa et al.

2 Related work

As mentioned before, Alexa et al. [5, 6] and Zwicker
et al. [24] developed approaches based on projection op-
erators for generating point-based approximated surfaces
from point clouds. Based on this work, Amenta and Kil
performed an analysis of both the weighted and the mov-
ing least-squares strategies, presenting interesting results
about their domain [8]. Such results were used by Te-
jada et al. [22] to define a ‘predictor-corrector’ projection
scheme for extracting point-based surfaces from volumet-
ric data. Amenta and Kil also proposed an alternative ap-
proach based on an integral formulation [8]. Adamson and
Alexa [1] defined an implicit function for approximating
surfaces from point clouds based on the work by Alexa et
al. [5].

Although these methods are able to deal with low fre-
quency noise, they can fail when high frequency noise and
outliers are present in the data. Fleishman et al. [10] pro-
posed a robust point-based strategy based on the statisti-
cal framework known as forward-search. Such strategy is
able to deal with high frequency noise and to detect sharp
corners. Reuter et al. [19] presented a method based on
the enriched reproducing kernel particle approximation for
preserving sharp corners with equally good results as the
obtained by Fleishman et al. Although both methods work
well even for noisy data, they have a high computational
cost and require user interference.

Curvatures and principal directions estimation for regu-
lar grids and polygonal meshes has been extensively studied
in both the qualitative and the quantitative cases. Maltred
and Daniel [17] presented a survey on classical work on cur-
vature estimation and a classification based on the require-
ments and constraints of the methods described. Although
there are many methods for estimating principal curvatures
and directions, almost all of them need a mesh. Only re-
cently, effective methods to estimate curvature information
directly from point sets were presented [4, 23, 16, 13].

Tong and Tang [23] presented a robust curvature es-
timation method based on adaptive curvature tensors by
means of tensor voting. In addition, they presented an
analytical comparison with classical and efficient methods

with respect to their input (point clouds or mesh mod-
els), their requirements (geometrical measures) and their
outputs (quantitative or qualitative estimations). Lange
and Polthier [16] adapted the well known mesh-oriented
method by Taubin [21] to the point cloud context. In their
work, the authors used such adapted method together with
an anisotropic diffusion equation for removing noise from
point clouds without smoothing sharp corners.

Huang and Menq [13] proposed a curvature estimation
method built upon the least-squares scheme and the Eu-
ler’s theorem from differential geometry. Although the
method was proposed to locally optimize unstructured sur-
face meshes, it is also suitable for point clouds. We derive
our method from this work, since it can be easily adapted to
support weighting functions, which is an important condi-
tion for the quality of the models generated by point-based
techniques.

3 Weighted and moving least-squares

Traditionally, authors describe point-based techniques
by means of minimizations of squared sums [24, 6, 19]. We,
on the other hand, opted for describing our method based
on the normal equation approach [20]. To that end, we de-
scribe first the traditional formulation of weighted and mov-
ing least-squares for polynomial approximation for sake of
understanding and continuity in the description.

Let us consider a finite set of n points P = {pi =
(xi, yi, zi) : pi ∈ R

3}. We aim at building a function f

that best approximates P . The standard least-squares for
solving such task minimizes the following overdetermined
system:

[B][C] = [Z] ⇐⇒











b(p1)
b(p2)

...
b(pn)

















c1

...
cm






=











z1

z2

...
zn











, (1)

where b(pi) is the application of pi = (xi, yi) on a ba-
sis of functions b and ci are the coefficients of the poly-
nomial approximation determined in function of zi. For
instance, if we want to approximate P by a plane, we
choose b = [1 x y]. On the other hand, if we want to ap-
proximate P by a complete quadratic polynomial, we use
b = [1 x x2 y y2 xy].

Both the weighted and the moving least-squares methods
are formulated by multiplying a weighting matrix to both
sides of System 1 in order to force some points to have more
influence on the solution. Let us consider the weighting

2

matrix build upon the set P :

[W] =











w(p, p1) 0 · · · 0
0 w(p, p2) · · · 0
...

... · · ·
...

0 0 · · · w(p, pn)











, (2)

where we choose w as a monotonically decreasing function
such that w(p, pi) → 0 when ||p − pi|| → ∞. Thus, points
near p have more influence than distant points. The overde-
termined system with weights becomes:

[W][B][C] = [W][Z]. (3)

Therefore, the normal equation, which is the one that
minimizes the sum of the squared differences between the
left and right sides of System 3, is given by:

([W][B])t[W][B][C] = ([W][B])t[W][Z] ⇐⇒

⇐⇒ [B]t[W]2[B][C] = [B]t[W]2[Z]. (4)

The main mathematical difference between weighted
least-squares and moving least-squares is basically due to
p. In the case of point-based surfaces approximated using
least-squares methods, if p is an estimated fixed point, Sys-
tem 4 becomes linear and the problem turns into a weighted
least-squares formulation where unicity of the solution can
be ensured. On the other hand, if p is unknown (as well as
the coefficients in [C]), System 4 becomes non-linear turn-
ing into a moving least-squares formulation where unicity
of the solution cannot be longer ensured.

The least-square scheme to estimate principal directions
and curvatures presented in the next section is developed
using also the normal equation. However, our formulation
is built upon Euler’s theorem and the weighting function is
no longer monotonically decreasing.

4 Principal directions and curvatures com-
putation

The directional curvatures at a point p on a smooth sur-
face M are defined in terms of the curvatures of smooth
curves on M containing p. The minimum and maxi-
mum directional curvatures computed from the curves are
called principal curvatures and their respective directions
are called principal directions. One important result is that
principal directions are orthogonal at p [9].

The Euler’s theorem from differential geometry states
that every directional curvature in p ∈ M can be described
as a function of its principal directions and curvatures [9].
More formally, let us define the principal directions and cur-
vatures at p as ν

p
1 and ν

p
2 , and κ

p
1 and κ

p
2 respectively. The

Euler’s theorem states that the curvature at p in the direction
µ is given by:

κp(µ) = κ
p
1 cos2(α) + κ

p
2 sin2(α), (5)

where µ = cos(α)νp
1 + sin(α)νp

2 .
Let us consider the approximated tangent plane T in

p, where we define a local orthonormal coordinate system
{t1, t2} with origin in p (Figure 2). We compute the projec-
tions p̃i on T of the neighbors pi of p, defining the direc-
tions νi. By sorting such directions counterclockwisely, we
obtain the angles θi from t1 to p̃i. Let us also denote by βi

the counterclockwise angle from the principal direction ν
p
1

to νi.
PSfrag replacements

β5

T

M

p

p̃1

p̃2

p̃3

p̃4

p̃5
ν

p
1

ν
p
2

ν1

ν2

ν3

ν4

ν5

t1

t2

Figure 2. Estimating directional curvatures
on the approximated tangent plane at p.

We can approximate the directional curvature by:

kp(νi) ≈
2 < np, %

i >

< %i, %i >
, (6)

where np is the normal vector at p and %i = pi − p for pi in
the neighborhood of p. This discrete directional curvature
has been used in several other methods for curvature esti-
mation [13, 16, 21, 23]. The following nonlinear overdeter-
mined system is obtained from the Euler’s theorem and the
directional curvatures approximation (Equation 6):











cos2(β1) sin2(β1)
cos2(λ2) sin2(λ2)

...
...

cos2(λm) sin2(λm)











(

κ
p
1

κ
p
2

)

=











κp(ν1)
κp(ν2)

...
κp(νm)











, (7)

where λi = β1 + δβi and δβi = βi − β1 = θi − θ1.

3

In order to obtain a linear system, we follow the work
by Huang and Menq [13] and set γ1 =

κ
p
1
+κ

p
2

2 , γ2 =
− cos(2β1)(k

p
2 − k

p
1) and γ3 = sin(2β1)(k

p
2 − k

p
1), pro-

ducing the following overdetermined linear system:










1 1 0
1 cos(2δβ2) sin(2δβ2)
...

...
...

1 cos(2δβm) sin(2δβm)















γ1

γ2

γ3



 =











κp(ν1)
κp(ν2)

...
κp(νm)











.

(8)

Therefore, the normal equation for System 8 becomes:




















m

m
∑

i=1

ci

m
∑

i=1

si

m
∑

i=1

ci

m
∑

i=1

(ci)
2

m
∑

i=1

cisi

m
∑

i=1

si

m
∑

i=1

cisi

m
∑

i=1

(si)
2

























γ1

γ2

γ3



 =





















m
∑

i=1

κ̂i

m
∑

i=1

κ̂ici

m
∑

i=1

κ̂isi





















,

(9)
where ci = cos(2δβi), si = sin(2δβi) and κ̂i = κp(νi).
Thus, the principal directions and curvatures are straight-
forwardly obtained from γi, 1 ≤ i ≤ 3.

Although Huang and Menq state that the method is ro-
bust for noisy data, we only achieved robustness for our
problem by adding suitable weights. To that end, we de-
fined the weights wi = (w(||pi − p||))2, where w is an
“M”-like function. For our problem we used:

w(x) = x2ςe−
x2

h2 , (10)

where ς ∈ N
∗ and h is a smoothing parameter [6]. That

way, we modified the normal equation as in the following
expression:





















m
∑

i=1

wi

m
∑

i=1

wici

m
∑

i=1

wisi

m
∑

i=1

wici

m
∑

i=1

wi(ci)
2

m
∑

i=1

wicisi

m
∑

i=1

wisi

m
∑

i=1

wicisi

m
∑

i=1

wi(si)
2

























γ1

γ2

γ3



 =





















m
∑

i=1

wiκ̂i

m
∑

i=1

wiκ̂ici

m
∑

i=1

wiκ̂isi





















. (11)

The use of an “M”-like function is very important to ob-
tain good results with our method. This is due to the fact

that the directional curvatures obtained by Equation 6 are
dependent on the position of the points and their normal
vectors [13]. Figure 3 depicts an example showing how a
small perturbation in the position of point p, represented
by a square, can produce a quite different solution with the
original method by Huang.

Figure 3. Results from the method by Huang
and Menq [13]. A small perturbation in the
position of the point can produce consider-
ably different curvature and direction approx-
imations (represented by the arrows).

In the “M”-like function, x2ς controls the influence of the
points close to p on the solution. The larger ς is, the smaller
the region around p which will have significant influence
in the solution is. The exponential member of the func-
tion maintains the same behavior of the traditional Gaussian
function [7]. We present examples of graphs of this function
in Figure 4 with different parameter values.

Unlike a Gaussian weight, usually employed in previous
work [5, 6, 24, 1, 7], the “M”-like function is able to solve
the problem depicted in Figure 3. This will be shown in the
next section after the description of the surface approxima-
tion procedure.

5 Projection and rendering procedures

As mentioned before, traditional point-based surface ap-
proximation techniques define the approximated surface for
a given point cloud as the set of stationary points for a care-
fully designed projection operator. This way, the input point
cloud can be re-sampled by projecting a sufficiently large
number of points from its neighborhood onto the approxi-
mated surface. With this procedure a dense sampling that
covers the image space consistently can be obtained.

In this section we describe a new projection operator
derived from the theory discussed in the previous section
on the estimation of principal directions and curvatures by
means of weighted least-squares. For this, we make use of a
result from differential geometry which states that a surface
can be defined locally (in the neighborhood of p) by:

gκ(ξ, η) =
1

2

(

κ
p
1ξ

2 + κ
p
2η

2
)

, (12)

where (ξ, η) is in the local coordinate system defined by the
principal directions at p. However, this local approximation
is valid only for points on the surface. This fact does not

4

Figure 4. Examples of “M”-like function graphs. From left to right: h = 2 and ς = 1, h = 1 and ς = 1,
and h = 1 and ς = 2.

allow us to define a polynomial at a point near (but not on)
the surface as done in previous work [6, 24]. In order to
avoid this problem, we use a scheme to move points near the
surface onto it. The scheme we use for this was proposed
by Lange and Polthier [16] for removing noise by moving
the points in a point cloud. The authors make use of an
anisotropic diffusion equation, which is useful to preserve
sharp corners.

Let us consider the diffusion equation:

∂p

∂t
= λ∆p, (13)

where ∆p =
(

∂2
p

∂x2 + ∂2
p

∂y2 + ∂2
p

∂z2

)

is the Laplacian of p, λ

is the diffusive term and p is the position of p at time t [12].
We approximate the Laplacian by the umbrella operator:

∆̃p =
1

Ω

m
∑

i

ωi · (pi − p), (14)

where ωi = 1
||pi−p||2 and Ω =

∑

ωi.
The explicit forward Euler method for discretizing Equa-

tion 13 leads to the traditional iterative Gaussian formula for
smoothing data:

pn+1 = pn + λδt∆̃pn. (15)

It must be observed that λδt must satisfy the time step
conditions [12]. Lange and Polthier modified the traditional
umbrella operator to obtain an anisotropic operator by in-
troducing a suitable real function which offers information
related to the shape of the object. This operator is able to
move a point onto the surface fairly. The anisotropic Lapla-
cian becomes:

∆̃Λpn =
1

Ω

m
∑

i=1

Λi · (pi − pn), (16)

where Λi is a real function which depends on the directional
curvatures (Equation 6) at pn. Lange and Polthier argued

for the use of one of the following functions for a given
threshold ε:

Λi =

{

1, if |κp
n

(νi)| < ε

0, if |κp
n

(νi)| ≥ ε;
(17)

Λi =

{

1, if |κp
n

(νi)| < ε
λ2

λ2+10(|κpn (νi)|−λ)2
, if |κp

n

(νi)| ≥ ε.
(18)

Note that the computational cost increase is not signif-
icant since the point is already close to the surface, which
makes the convergence to the surface fast. Although this
step seems to be negligible, it is very important to ensure
accurate solutions.

PSfrag replacements
gκ

H

l
m

n

o

p

q

r

s

PSfrag replacements

gκ

H
l

m n

o p

q

r

s

Figure 5. Projection scheme based on princi-
pal directions and curvatures.

With this framework, the projection s of a point r onto
the surface can be calculated using the following process
(see Figure 5):

1. Find a quasi-tangent plane H with origin o and nor-
mal l, where o is the weighted mean of the neighbors
of r and l is the weighted mean of the normals at the
neighbors of r.

2. Find the projection q of r onto H.

3. Calculate the normal m at q.

4. Find a point p on the surface by moving q in the direc-
tion of m using the anisotropic diffusion equation.

5

Figure 6. Polynomial approximations obtained (from left to right) without weights, with Gaussian
weights and with the “M”-like function.

5. Calculate the normal n and the principal directions
ν

p
1 , ν

p
2 and curvatures κ

p
1, κ

p
2 at p.

6. Define (νp
1 , ν

p
2 , n) as a local coordinate system and

gκ(ξ, η) = 1
2 (κp

1ξ
2 + κ

p
2η

2) as the local polynomial
approximation to the surface.

7. Transform r to the local coordinate system and find its
projection st onto gκ.

8. The projected point s is the point st in the global coor-
dinate system.

The approximated surface is defined as the set of sta-
tionary points for the projection process described above.
To render the approximated surface, we use the ray-tracing
algorithm proposed by Adamson and Alexa [2], changing
only the projection procedure. Adamson and Alexa defined
a set of enclosing spheres centered at the sample points. The
union of these spheres encloses the approximated surface
completely. The spheres are used to find a first approxima-
tion to the intersection between the surface and the ray. This
approximated intersection is then used in an iterative pro-
cess that projects the intersection onto the surface and cal-
culates the new approximated intersection as the intersec-
tion between the ray and the local polynomial approxima-
tion. If this new intersection lies outside the current enclos-
ing sphere, the next nearest sphere is tested. The process
stops when the distance between the current approximated
intersection and its projection is smaller than a pre-defined
threshold.

A good estimative of the principal curvatures (κp
1, κ

p
2)

and directions (νp
1 , ν

p
2) is of major importance to obtain a

good local approximation to the surface (Equation 12). As
claimed in the previous section, only by introducing suit-
able weights into the curvature estimation we can obtain a
robust approximation. Figure 6 shows the effect of intro-
ducing weights into System 11. As can be seen, a Gaussian
weight does not solve the problem. Therefore, we use the

“M”-like function presented in the previous section. Note,
however, that the “M”-like function is used only for the cur-
vature estimation, whilst a Gaussian weight is used for the
rest of the process.

Figure 7. Ray-tracing of the approximated
surface for the Rocker Arm dataset obtained
with the moving least-squares-based (left)
and the curvature-driven (right) methods.

6 Results and discussion

We implemented the moving least-squares-based surface
approximation method proposed by Alexa et al. [6] to com-
pare the results obtained with their method and the method
we present. Our goal was to be able to obtain a compara-
ble approximation to the surface using a reduced polyno-
mial obtained from the curvature information. Therefore,
we used complete quadratic polynomials in our implemen-
tation of Alexa’s method. In Figure 7 we show the results of
both the moving least-squares-based approximation and the
curvature-driven approximation for the Rocker Arm dataset.

6

Figure 8. Renderings of the Stanford Bunny, Horse and Ant datasets.

In both cases, we used the ray-tracing algorithm by Adam-
son and Alexa [2] to render the approximated surface mod-
ified to use a kd-tree to accelerate the rendering. As can be
seen in the figure, the results are equally good, however our
method is between 1.5 to 2.5 times faster. For these perfor-
mance tests, the models were rendered with no reflection or
refraction effects to a 533 × 400 viewport. More complex
scenes were also rendered and are shown in Figures 1 and 8.

This difference in the processing time is due to the fact
that, although our method makes use of trigonometric func-
tions to construct the normal equation, it only needs to solve
a linear system with three unknowns. This linear system can
be solved using closed formulations. Although our meth-
ods estimates the normals at three different positions during
point projection, this does not represent a bottleneck since
we used weighted normals instead of estimating them using
covariance analysis.

Although a complete quadratic polynomial can better
approximate a larger neighborhood than the non-complete
quadratic polynomial we use, for the local computations in-
volved in our method this latter quadratic polynomial ap-
proximate the surface accurately. Another important advan-
tage of our method is the availability of an explicit charac-
terization of the point-based surface by means of the curva-
ture information. Also, in practical terms, when computing
the local approximation, we discard points for which the
“M”-function has values lower than a threshold. This mini-
mizes the computational cost since we perform less trigono-
metrical operations. Additionally, it reduces the possibil-
ity of numerical instability during the local approximation
computation.

7 Conclusion

As mentioned before, the use of a non-complete
quadratic polynomial for the polynomial approximations
simplified the ray-surface intersection computation. How-
ever, it would be desirable to analyze the performance im-
pact of the principal directions and curvature estimation

process and of the anisotropic diffuse equation (although
we found that this latter process needs few iterations to con-
verge). We plan to introduce acceleration techniques into
the implementation of the ray-tracing algorithm in order to
be able to exploit the simplicity of the intersection compu-
tation.

Besides the potential gain in computation time, the avail-
ability of curvature information is important for a num-
ber of applications [23]. This is a clear advantage of our
method over previous point-based surface approximation
techniques. There are few works in the literature for cur-
vature estimation from cloud of points [13, 23, 16] and so
far (to the extent of our knowledge) there is no work pre-
senting comparisons among these methods. A mathematical
and computational efficiency study of such methods must be
performed.

Although, with our method local characterization of the
surface offered by the principal directions and curvatures is
available, it could be of interest to define global properties,
e.g. the Euler characteristic. For such tasks, we are cur-
rently studying means for incorporating Morse Theory [18]
and Computational Homology [14] into our method. This
information can be useful for elastic simulations and crack
propagation problems [11]. We also intend to use the
anisotropic point-based method by Adamson and Alexa [3]
due to the fact that weights can be defined for each sample
independently with their approach. For this, we are working
on defining such weights based on the principal curvatures.
Also, since the curvatures produce local information about
the object, they can be used for identifying sharp corners.
We intend to exploit this fact to propose a new data struc-
ture that will support the modeling of sharp corners.

Acknowledgments

This work was partially supported by the German
International Exchange Service (DAAD), with Grants
A/04/08711 and A/06/04969, and the State of São Paulo
Research Foundation (FAPESP), with Grant 04/10947-6.

7

References

[1] A. Adamson and M. Alexa. Approximating and intersecting
surfaces from points. In Proc. of Eurographics/ACM SIG-
GRAPH Symposium on Geometry Processing, pages 230–
239. Eurographics Assoc., 2003.

[2] A. Adamson and M. Alexa. Ray tracing point set surface.
In Proc. of Shape Modeling International, pages 272–282,
299. IEEE Computer Society, 2003.

[3] A. Adamson and M. Alexa. Anisotropic point set surfaces.
In Proc. of the International Conference on Virtual Reality,
Computer Graphics, Visualisation and Interaction in Africa,
pages 7–13. ACM Press, 2006.

[4] G. Agam and X. Tang. A sampling framework for accurate
curvature estimation in discrete surfaces. IEEE Transactions
on Visualization and Computer Graphics, 11(5):573–583,
2005.

[5] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. Silva. Computing and rendering point set surfaces.
IEEE Transactions on Visualization and Computer Graph-
ics, 9(1):3–15, 2003.

[6] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin,
and C. T. Silva. Point set surfaces. In Proc. of IEEE Visual-
ization, pages 21–28. IEEE Computer Society, 2001.

[7] N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM
Transactions on Graphics, 23(3):264–270, 2004.

[8] N. Amenta and Y. J. Kil. The domain of a point set sur-
faces. In Eurographics Symposium on Point-based Graph-
ics, pages 139–147. Eurographics Association, 2004.

[9] M. P. D. Carmo. Differential Geometry of Curves and Sur-
faces. Prentice-Hall, 1976.

[10] S. Fleishman, D. Cohen-Or, and C. T. Silva. Robust moving
least-squares fitting with sharp features. ACM Transactions
on Graphics, 24(3):544–552, 2005.

[11] X. Guo, X. Li, Y. Bao, X. Gu, and H. Qin. Meshless thin-
shell simulation based on global conformal parameteriza-
tion. IEEE Transactions on Visualization and Computer
Graphics, 12(3):375–385, 2006.

[12] C. Hirsch. Numerical Computational of Internal and Ex-
ternal Flows, volume 1. A Wiley-Interscience Publication,
1989.

[13] J. Huang and C. H. Menq. Combinatorial manifold
reconstruction and optimization from unorganized point
cloud with arbitrary topology. Computer-Aided Design,
1(34):149–165, 2002.

[14] T. Kaczyrski, K. Mischaikow, and M. Mrozek. Computa-
tional Homology. Springer, 2004.

[15] L. Kobbelt and M. Botsch. A survey of point-based tech-
niques in computer graphics. Computers & Graphics,
28(6):801–814, 2004.

[16] C. Lange and K. Polthier. Anisotropic smoothing of point
sets. Comput. Aided Geom. Des., 22(7):680–692, 2005.

[17] J.-L. Maltret and M. Daniel. Discrete curvatures and appli-
cations : a survey. Tech. Report LSIS.RR.2002.002, Labo-
ratoire des Sciences de l’Information et des Systèmes, 2002.

[18] Y. Matsumoto. An Introduction to Morse Theory. Amer.
Math. Soc., 2002.

[19] P. Reuter, P. Joyot, J. Trunzler, T. Boubekeur, and C. Schlick.
Surface reconstruction with enriched reproducing kernel
particle approximation. In Eurographics Symposium on
Point-Based Graphics, pages 79–87. Eurographics Assoc.,
2005.

[20] C. Shen, J. F. O’Brien, and J. R. Shewchuk. Interpolat-
ing and approximating implicit surfaces from polygon soup.
ACM Transactions on Graphics, 23(3):896–904, 2004.

[21] G. Taubin. Estimating the tensor of curvature of a surface
from a polyhedral approximation. In ICCV ’95: Proceedings
of the Fifth International Conference on Computer Vision,
pages 902–907. IEEE Computer Society, 1995.

[22] E. Tejada, J. Gois, L. Nonato, A. Castelo, and T. Ertl.
Hardware-accelerated Extraction and Rendering of Point
Set Surfaces. In Proceedings of EUROGRAPHICS - IEEE
VGTC Symposium on Visualization, pages 21–28, 2006.

[23] W.-S. Tong and C.-K. Tang. Robust estimation of adaptive
tensors of curvature by tensor voting. IEEE Trans. Pattern
Anal. Mach. Intell., 27(3):434–449, 2005.

[24] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop
3D: an interactive system for point-based surface editing. In
SIGGRAPH : Proc. of Computer Graphics and Interactive
Techniques, pages 322–329. ACM Press, 2002.

8

