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Abstract

Wearable visual sensors provide views of the environ-
ment which are rich in information about the wearer’s lo-
cation, interactions and intentions. In the wearable do-
main, hand gesture recognition is the natural replacement
for keyboard input. We describe a framework combining a
coarse-to-fine method for shape detection and a 3D track-
ing method that can identify pointing gestures and estimate
their direction. The low computational complexity of both
methods allows a real-time implementation that is applied
to estimate the user’s focus of attention and to control fast
redirections of gaze of a wearable active camera. Experi-
ments have demonstrated a level of robustness of this system
in long and noisy image sequences.

1 Introduction

Recent technology allows the implementation of robotic
systems that are light enough to be worn without inconve-
nience to the user. This leads to a wide range of applications
from assistive technologies to entertainment and portable
communication. Wearable active cameras provide views
of the environment which are rich in information about the
wearer’s location, interactions and intentions. But the im-
ages from them present severe challenges because neither
the sensor nor its underlying “platform” is stationary. Com-
pounding these difficulties, most researchers use cameras
that are more or less rigidly mounted to one or other body
part — head, shoulder, chest and hand have all been used
— making the imagery highly dependent on posture.

Mayol [7] developed prototypes for a miniature wearable
active camera, and argued that mounting it at the shoulder
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gives an optimum location measured against field of view,
independence from the wearer’s movements, and, important
in wearable applications, social acceptability. The ability to
redirect the camera also allows switching between sensing
contexts: one context may be foccused on the manipulative
space; another may be the horizon, aligned with gravity;
and a third may be fixated on an independently moving ob-
ject. Such devices require a range of sensing and perceptual
modalities. In [6] inertial and visual cues are used to sta-
bilise gaze by detecting user and image motion. In [14]
slaving the device from head motion is investigated.

In the wearable domain, hand gesture recognition is a
natural replacement for keyboard and mouse-based input.
In [11], for example, a hat-mounted camera is used for a
sign language recognition task, and interestingly performs
better than a wall mounted one, while in [4] a bare hand is
used as a cursor-and-click device for interacting with menus
displayed on a head mounted display. Pointing gestures are
the main form of non-verbal communication, presenting a
major complement to speech in human to human communi-
cation [10].

In this paper, we are interested in using the view from
the wearable camera to detect and track pointing gestures
in order to determine the focus of attention and redirect the
camera. In order to allow natural user interface, it is nec-
essary to use real-time algorithms. To that end, we propose
a coarse-to-fine method for shape detection that is invariant
to translation and rotation, but retains the ability to identify
position and orientation of the pointing hand. Using a cyclic
finite state machine, this detection method is combined with
a fast three-dimensional tracker that is able to refine the pose
estimate and add depth information about the position and
orientation of the hand. Such parameters enrich the ability
of the wearable camera to perform a saccade to the pointed
area in 3D.



2 The Wearable Camera System

The wearable active camera consists of a miniature cam-
era mounted at the end of a serial chain of three motorised
axes. As shown in Figure 1, the device is mounted on a
collar and lies just above the shoulder of the wearer, its lo-
cation was found optimal against a number of criteria. Full
details about the device’s kinematics and spatial layout are
given in [7].

Collar

Robot

1

2

4

3

Figure 1. Wearable Visual Robot: (1) 2-
axis accelerometer, (2) CMOS colour cam-
era, (3) three motorised axes, (4) wireless
video transmitter. The wearable interface
box containing the data transceiver, micro-
controllers and batteries is worn at the hip.

3 Locating Pointing Gestures Robustly

The hand detection algorithm is a coarse-to-fine match-
ing method that is able to find the hand and also to estimate
its pointing direction in the image plane without the need
for scanning all the pixels. The tracking algorithm is es-
sentially that of Harris [2], capable of recovering the rigid
pose of the hand with information of depth and inclination,
which enables the estimation of the pointing direction in the
3D world. The two processes are coupled in a finite state
machine shown in Figure 2.
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The first step in detection consists of skin colour pixel
segmentation. For this, a histogram-based classifier is used
[3] in the chromatic channels of the YCrCb colour space
(CrCb), which makes the method robust to brightness varia-
tions. Conversion from RGB to YCrCb is done by hardware
in the camera. In the training process, skin colour samples
were acquired from 134 facial images, most of which ob-
tained from the Purdue University face detection database
[5]. Background samples were acquired from images ob-
tained with the wearable camera and other images obtained
from the Internet. The CrCb colour space was populated
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Figure 2. Finite state machine for our system.

with these samples and the likelihood of the classes was
modelled using a 2D normalised histogram in this space. To
model unknown colours, a third class with low likelihood
was created, and this was labelled as background. Classifi-
cation is done by maximum likelihood estimation.

If most of the background captured by the wearable cam-
era is dark, then the automatic contrast normalisation of the
camera can produce some saturated blobs in the hand image
for Caucasian users, destroying the colour information in
those regions. To finesse this problem, white saturated pix-
els were classified as skin. This reduces the false negative
classification rate at a cost of increasing the false positive
rate. But this is not critical because our method takes the
global shape into account. If most of the hand silhouette is
apparent, our method is able to locate it.

Noise is usually present in the images obtained from this
wearable robot because an analogue wireless transmitter is
used and the video is interlaced, so motion artifacts are often
present. Such noise can be removed by applying a median
filter with a � � � window, but this is not crucial to the
performance of our hand pose estimation method. Figure 3
shows the results of this method for a challenging image.

��
 ���� ����� ������
��

Techniques for finding objects of a known shape include
the use of 2D correlation, image moments, and specific spa-
tial filters [1]. The first two methods work well when noise
is small and when objects do not vary too much. But several
kinds of distortion happen often in hand images: the hand
can appear as a non-contiguous object due to occlusion and
shadows; it can be in different orientations; other objects
with similar colour and size can be present; and small vari-
ations in the hand shape can occur. To cope with these fac-
tors and with image noise generated by the wireless video
transmission, a robust shape detector is needed.

Since the camera is located on the user’s shoulder, the
variation in the scale of the hand in the image is not ex-
pected to be very large, at least in the first frame of refer-
ence of the pointing gesture sequence. The detector uses
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Figure 3. a) Original colour image; b) skin detection result; c) threshold result; d) combined (OR)
image; e) filtered result.

the local shape descriptor presented in [8]. Given an image
location, � � � rings with different radii centred at this lo-
cation evaluate the skin classification value � of the image
���� at every ��� radians (in this experiment, � � ��), as
shown in figure 4. A positive value (������ ��� � �) in the
curve indicates skin, a negative value (������ ��� � ��) in-
dicates background. For rotation invariance, the descriptor
builds a feature vector � where each element consists of a
similarity measure between each possible pair of response
curves, i.e.,

� � ������ ����� ����� ����� ����� ����� ����� ����� ����� �����
(1)

where ���� is the similarity between the ��-dimensional
curves � and 	. Since the values of ������� are either 1 or
-1, ���� is computed by

���� �
�

��

���
���

�������� 
 (2)

Note that � is invariant to rotation since it is a descriptor
calculated with the shape itself, and invariant to column per-
mutations.

A template � is generated from a training image in which
the user clicks on the metacarpophalangeal joint of the in-
dex finger and on the index finger tip1. This determines
the centre and the orientation of the template, respectively.
Upon application, a new sample vector � is compared with
the template � to determine the similarity ������ to the
shape under search, determined by

������ �
�

�

��
���


�
� � (3)

where � � �	��	�� � ��	, where � is the number of rings
used (here � � �
). Note that ���� � �
� ��. Thus, the
detector is a function that tries to find the position of �� in
the image ����, such that

�
� � �����


�
������ 
 (4)

1For the nomenclature of hand bones and joints, see [12].

The spacing between rings and the number of rings was
determined experimentally. In practice, it was found that
the spacing of 4 pixels between rings and the use of 5 rings
(being 11 pixels the radius of the smallest circle) leads to the
best trade-off between accuracy and computational effort
for ���� ��� images.

In order to speed up the detector, we propose a coarse-
to-fine search method in terms of subsamples of image lo-
cations. In the first stage, a gross search is done and the
similarity is evaluated only one time in each 27 pixels in
the vertical and horizontal directions. Next, a fine search is
done centred on all skin colour pixels in the neighbourhood
of the best location found in the gross search. Once the
position that maximises ������ is found, it is necessary to
stipulate the orientation of the hand in the image plane. This
is done by searching for the orientation � of the template �
that maximises the similarities ����� between the rings that
constitute the template and the located image descriptor.

To save computational time, the matching score ������
is evaluated before moving to a finer stage. If it falls below
a threshold, it is considered that no pointing hand has been
located in the image and the system waits for the next frame.
The same happens after the finest search in order to decide
whether to move to the tracking stage or not. Figure 5 shows
that the detector functions under quite different and severe
image noise.

4 Hand Tracking

The shape detector initialises three degrees of transla-
tional and rotational freedom that most affect image appear-
ance. The other 3 DOFs are set to default values, and all are
passed to an implementation of Harris’ RAPiD tracker [2],
which is able to refine the pose estimation. The idea is that
the user tells the robot that (s)he is performing a pointing
gesture by starting with the hand at a roughly standard dis-
tance from the camera. Next the user can adjust the depth of
the pointing direction and this is identified by this tracker.

Since our aim is to track a single pointing gesture, a
rigid model of the hand is enough. In order to reduce the
computational cost, a simple planar model was used, so
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Figure 4. Extracting and matching the shape descriptor: (a) outdoor view of the hand; (b) the shape
detector locates the pointing gesturem, the direction is indicated by the arrow indicates; (c) the ring
curves where the value 1 indicates skin area and -1 indicates background; blue dashed shows the
template and solid red the current signal after best alignment.

self-occlusion handling is not necessary. This model com-
prises straight edges along which control points�� are dis-
tributed in the model coordinate frame. Given the postu-
lated pose, these are transformed to the camera frame ��

(Figure 6) and projected, via the known intrinsic calibration,
into the image at �.

��� �
���� ���� �
����

As control points lie on edges, it is not possible to search
for the actual correspondence �� and thence to update the
pose by minimising a measure based on ��� � ��. Instead,
as Harris explains [2], the distance minimised is that from
the control point � to the image edge along the edge normal
��, or, more efficiently, along the nearest cardinal direction
��, as shown in Figure 7.

Since the images are binarised on skin colour, finding
edges is trivial. But as the finger is narrow, some care has to
be taken not merely to chose the edge closest to the control
point. In Figure 7, for example, this would be a mismatch.
The edge detector restricts the direction of the edge to be
dependent on the searching direction. Our hand model is a
polygon such that all the lines may lie in between hand and
background pixels. Therefore, considering the clockwise
direction, the search is performed from right to left. The
first value change from 1 (skin) to 0 (background) is taken
as the located edge. This also prevents the tracker fitting to
background edges.

A novel implementation detail is that the size of path for
edge searching �� is set to a value that is proportional to
the speed of the object projected in the image plane. Since
projective geometry is used, the speed of the hand image is
likely to be proportional to the proximity of the hand to the
camera, so � � ������	 ��

, where ����	 ��
is the distance

between the camera and the hand in the previous frame of

the video sequence. The constant � is set to � � ���	�� ,
where ��	�� is the default translation in depth that is used in
the first iteration of the tracker after the detector is executed.

��
 ��� ���
� �������

The mathematics underlying the tracker is found in [2]
and relies on the pose change being small enough such that
the pose update, written as a product of the inter-frame time
and the velocity screw

Æ� � Æ� ��
� ��� ����
�������
�

can be found from a linear system into which each control
point � contributes a row

�
��

�
�
�
��

�
Æ� (5)

where both

�� � ������ � �� � �������

and

�� � �
�

��
�

������ � ���
 
 �����

are determined from image measurement and current pose.
The � � � matrix � depends on transformed depths, and is
defined in [13]. The system is solved for Æ� using singular
value decomposition. Because of the approximate nature
of the linearization, it can be useful to iterate the solution
within each image.

Figure 8 shows a skin colour segmented image over-
lapped by a projection of the five-line planar hand model
showing the control points. Although the model used does
not have a realistic appearance, our experiments have shown
that modelling the finger as a triangle increases the motion
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Figure 5. Challenging images: (a) outdoor
noise image where hand is non-contiguous
(finger striped), response value ������ � 

��;
(b) ghostly finger, ������ � 

��; (c) in-
door image with change in shape (sleeve re-
tracted), ������ � 

��; (d) Non gesturing
hand, ������ � 

��. The video noise in (a)
and (b) is encountered at the limits of the
wireless transmitter’s range.

constraints along the finger axis, also making it more robust
to rotations in depth. This compensates the lack of edges
on the wrist, which were not included because the user is
not restricted to wear a long-sleeved shirt or a bracelet. The
simplicity of this model speeds up projection calculations.

��� ���
���
�� �����
��

To monitor the tracking performance, the norm of the
residual ����� before pose update could be used. But when
an edge is not located, it is not included in the residual to
avoid perturbation in the pose update computation, which
this means that the value of ����� does not reflect the success
of the tracker. We chose to used a cost function that depends
on the actual distance between the located edges � and the
projected lines � of the model after the pose update. Using
homogeneous coordinates, each point can be modelled as
a vector � � �
� �� ���, and the lines are defined by � �
��

����
�, which is equivalent to the following determinant:

� �

������
� � �

�� ��� �

�� ��� �

������
� (6)
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Figure 6. The hand and camera coordinate
frames.
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Figure 7. Searches are made from the pro-
jected control point � in the cardinal direction
�� closest to the unit edge normal ��.

where ��� and ��� are two points that lie in �. The distance
�
�� between line �
 and point �� can be written as:

�
�� �
�
�
� �
�

��
� � ����

(7)

Our cost function is defined by the sum of all the distances
� between all the found edges and their respective lines:

� �
�

��

�
�
��

�
�� � (8)

where � is the total number of control points in the whole
model, and � is the worst case constant, defined by � �
��, which is the number of pixels in the path for searching
edges. When no edge �
 is located in the searching path for
a control point, �
�� is set to � .

The cost function result is employed in order to deter-
mine if the tracker has lost the hand and the detector needs
to be called. The function is also used to verify if the track-
ing results are good enough to be used to perform a camera
movement toward the target. A second condition for that is
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Figure 8. (a) Projection of our hand model
(black line), search paths (segments with a
triangle indicating the end of the search),
control points (circles) and found edges (‘*’).
(b) Representation in the camera coordinate
frame of the hand model projected in the im-
age in (a). The units are in millimetres and
the � axis is the camera axis.

the stability of the hand in the space. If the change of pose
��Æ��� is below a given threshold for 1 second, the camera
can be redirected to the target direction.

5 Results

The experiments described here were performed on a
video sequence of 1104 frames grabbed from the wearable
camera in an office environment with no illumination con-
trol and with a cluttered background. An approximate of the
ground truth trajectory was generated from mouse clicks on
three points of the hand. The Nelder-Mead nonlinear min-
imisation algorithm [9] was employed to recover the 3D
pose of the hand from the mouse clicks.

The plots in figure 9 show the pose estimation results

(thick curves) with time (in frames) in comparison with the
ground true estimative (thin curves) for four degrees of free-
dom. When the cost function indicated a bad pose esti-
mate, the hand detector was invoked. The circles illustrate
the frames where this happened. Cost function results are
shown in figure 10.
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Figure 10. Cost function results for the ex-
periment shown in Figure 9. The dashed line
is the threshold used to indicate whether the
tracker is lost, and the circles indicate when
the hand detector was called.

These results show that the estimates of parameters par-
allel to the image plane (�
, �� and ��) are good match to
the ground truth data, but the same is not observed for the
depth parameters (e.g. ��). However this does not neces-
sarily imply that the pose estimated by the tracker lacked
quality. In fact, the estimate of ground truth data was not
reliable for depth parameters because we used only three
mouse-clicked points in a single view without sub-pixel ac-
curacy. It was difficult to choose more points to be clicked,
as the hand texture is plain. A better estimate of the ground
truth would be obtained if multiple views were available for
the same sequence. The above can be verified in the video
sequence that demonstrate the results, available from our
web page (see title page).

The same video sequence was used to evaluate our ap-
plication for redirecting the wearable camera by perform-
ing saccades. The results are plotted in figure 11, which, for
clarity, shows only the estimated pose and the ground truth
in the frames where the re-directing process was called. The
wearable camera’s saccade and location of object of inter-
est is assumed to take 1s, after which the wearable camera
moves back to detecting the hand. Figure 12 shows the cost
function with time, indicating when the hand detector was
invoked (circles) and when the redirecting process could be
executed (asterisks).
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Figure 9. Results of the integrated system (thick curves) showing the detector calls (circles) and the
ground truth estimate (thin curves). The space is measured in millimetres, angle in radians and the
time in frames.

6 Conclusions

This paper presented a method for detecting and track-
ing a specific hand shape — pointing — with applications
of estimating the focus of attention or controlling the gaze
direction of a wearable active camera. This enhances user-
robot interaction and enables the recognition of an impor-
tant non-verbal communication gesture.

We combined a 2D shape detector and 3D tracker using a
finite state machine. Criterion functions for both the detec-
tor and the tracker were used to automatically monitor their
result in order to change the state in the finite state machine.

The detection method performed a coarse to fine search
in the image using a simple shape descriptor that is invariant
to rotation and a matching method to estimate orientation.
It provided an initial estimate of the planar pose parameters.
To refine the estimate and provide the depth parameters, we
employed a 3D tracking method which uses control points
on the edge of the hand silhouette.

Our experiments have shown that a simple rigid planar
model of the hand lead to acceptable tracking results with
low computational cost.
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