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Figure 1. Compressing the original bunny point set (34834 points), using 1.3, 4.1, 8.5 and 15.3 bits per

vertex: points in the same BSP cell have the same color.

Abstract

This work introduces a new compression scheme for point

sets. This scheme relies on an adaptive binary space par-

tition (BSP) which takes into account the geometric struc-

ture of the point set. This choice introduces geometrical

rather than combinatorial information in the compression

scheme. In order to effectively improve the final compres-

sion ratio, this partition is encoded in a progressive man-

ner, decreasing the number of bits used for the quantisa-

tion at each subdivision. This strategy distributes the ex-

tra cost of the geometry encoding onto the maximal number

of points, compressing in average 15% more than previous

techniques.
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1 Introduction

Geometry processing usually relies on pointwise repre-

sentation of the geometry, either through the vertices of a

mesh or directly on meshless models. In the context of

collaborative or published work, these representations need

to be compacted before being transmitted. On one side,

meshless models, such as raw scans, statistical simulation

or particle interaction models, must be compressed directly

as a point set. On the other side, meshes, built from math-

ematical tools or reconstructed from these point sets, can

be compressed by various means: connectivity–driven com-

pression schemes deduce the geometry representation from

previously transmitted elements, whereas the more recent

area of geometry–driven compression start with compress-

ing the geometry. Direct compression of the point set can

thus improve both mesh and meshless models compression.

This work proposes a new compression scheme for

point sets. As opposed to previous point set compression

schemes, which rely on regular tree decomposition, it uses

a carefully designed BSP decomposition to adapt better to

the coherency of the input data. For example, if the point

set has been measured on a real surface by a scanning tech-

nique, these points contains sequences of points on parallel

planes. If these planes are not parallel to the regular tree

decomposition, previous methods do not extract this redun-

dancy, and thus result in poorer compression ratios.

2 Related works

Among the point sets compression strategies, we can dis-

tinguish the methods inspired by mesh compression, mesh
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Figure 2. Our (quantised) adaptive subdivision captures the structure of the point set.

simplification and spatial subdivision. Although algorithms

of the last category were introduced first, they still provide,

until now, the best compression results for progressive and

lossless compression.

Local mesh encoding. Since the early works of Deer-

ing [3] and Taubin and Rossignac [4], mesh compression

reached impressive results. In particular, compressing the

local adjacency of the mesh triangles became inexpensive,

and it helps in compressing the position of the point through

simple local predictors. This idea grounds the works of

Gumhod et al. [9] and Merry et al. [5], who compute local

spanning trees of the points optimizing the prediction error.

The extra cost of the spanning tree is partly compensated by

the efficiency of these predictors.

Local simplifications. As opposed to the previous meth-

ods which compress exactly the point set, several tech-

niques reduce the complexity of the point set by recursively

removing points from the original point set. These meth-

ods retrieve point sets either at a single reduced resolution,

such as the scheme of Waschbüsch et al. [2], or in multires-

olution, such as the one of Ochotta and Saupe [14]. Fur-

ther work of Krüger et al. [16] optimises the simplification

process to allow compact region and hardware implementa-

tion of this technique.

Lossy space subdivision. The above techniques use the

local structure of the point set to predict or remove the

next vertex to encode. Other strategies compress the whole

point set globally, by subdividing it recursively. The work

of Chen et al. [1], and the various variations of Peng and

Kuo [7, 8, 6] use a lossy octree subdivision scheme which

orders the subdivision by their importance. This scheme

provides quick and inexpensive decompressions of medium

quality, but waste many bits in recovering the original qual-

ity of usual point sets.

Progressive space subdivision. The lossy subdivision

techniques actually intended to optimize the rate/distortion

ratio of progressive octree encodings. These schemes sub-

divide an octree until separating each node, and then encode

the non–empty cells of following the octree hierarchy. The

number of points contained in each cell of the octree is en-

coded explicitly in the work of Gandoin and Deviller [10],

while only the emptiness of each cell is transmitted in the

work of Botsch et al. [15]. A synthesis of those two meth-

ods has been proposed in Lewiner et al. [11] work, as the

first part of a geometry–driven mesh compression.

3 Contributions and overview

This work introduces an efficient compression scheme

for point sets, which relies on a binary space partition (BSP)

adapted to the geometric structure of the point set:

Geometry–aware BSP. Although the space subdivision

techniques provide the best compression ratio, they do not

use the geometric structure of the point set. We propose

here to set the cut planes of each cell of the BSP orthogonal

to the principal direction of the point contained in that cell.

This strategy reflects correctly the structure of the point set,

as shown on Figure 2. Moreover, this choice will intro-

duce geometrical rather than combinatorial information in

the point set compression.

2



Distributed cost. During the compression, this direction

must be encoded in order to transmit the space subdivision,

generating extra bits. In order to distribute this extra cost

onto the maximal number of points, we use a strategy sim-

ilar to Gandoin and Deviller’s work [10], recalled at Sec-

tion 4. They compress explicitly the number of points inside

each cell of the octree, which wastes more bits close to the

root of the octree (it contains all the points) and only one bit

close to the leaves (it contains at most one point). The main

observation is that, compared to Botsch et al. [15], this strat-

egy performs much better, although [15] compresses only a

binary information (emptyness of a cell). We therefore ori-

ented our scheme towards Gandoin and Deviller’s work.

BSP quantisation. In order to factor out the extra cost of

the geometry, we need to send more information at for the

BSP cells close to the root, and less for the one closer to

the leaves. To do so, we propose an adaptive quantisation

of the cell subdivision planes. With no bit transmitted, this

quantisation reduces to a regular octree subdivision. Each

additional bit transmitted then encodes information on the

local statistical deviation of the point set.

BSP encoding. We also use the number of points inside

the cell to encode its emptiness, as in [10], as detailed in

Section 5. Moreover, we shift the subdivision plane in or-

der to divide in almost equally parts the set of points in the

BSP cell. This strategy further reduces the cost of the empti-

ness codification, since it will be accurately predicted. All

together, this technique improves compression ratios in av-

erage by 15%, as described in Section 6.

4 Space Partition Encoding

Among point set compression techniques, the most effi-

cient ones rely on an encoding of a space partition. Aside

from the efficiency advantage, these techniques naturally

work for points in any dimension since space partition are

formulated for generic dimensions. Moreover, the hierar-

chical nature of these partitions allows a progressive encod-

ing: these procedures can traverse the space partition in a

breadth–first manner, and each step traversal increase the

resolution of the previous one.

Recursive compression. The general principle of these

techniques relies on creating a space partition such that each

leaf cell has its size below the numerical precision of the

point set, typically 12 bits per coordinate, and contains only

one point of the set. The compression of the point set then

reduces to the encoding of the space partition, which is es-

sentially a fixed valence tree structure with the geometry of

each cell stored at each node of the tree. The encoding of

this tree is performed through a recursive traversal, which

emits a subdivision symbol at each step. The traversal stops

only when it reached a cell of size below the numerical pre-

cision of the point set.

Subdivision symbols. A subdivision symbol corresponds

to the subdivision of the current cell in subcells. Those sym-

bols encode at the same time the geometry of the subdi-

vision and the repartition of the points inside the subcells.

For some space subdivision schemes such as octrees and 2d

trees, the geometry of the subdivision can be automatically

deduced without specific symbol. In that case, the only in-

formation to encode is the repartition of the points during

the subdivision, and on that point distinguishes the three

closest previous works [15, 10, 11].

Examples The strategy of [15] encodes for each of the

eight subcells whether they are empty or not. This generates

an 8-bits symbol which can be nicely predicted. However,

it wastes 8 bits even when there is only one point in the cell.

The technique of [10] works with binary trees, and en-

codes the number of points contained in one of the two sub-

cells, deducing the number contained in the other one by

difference. This technique has the advantage of encoding

only 1 bit per coordinate when there is only one point left

in the cell, but has a higher cost for the first nodes.

The method of [11] encodes for each subcell whether

it is empty, has a single point or contains more points.

This method improves on [15, 10] for small and medium

size point sets, since it wastes few bits for the first nodes

and maintain 1 bit per coordinate when there is only one

point in the cell. However, our proposal extends [10] rather

than [11].

Partition Subdivision symbol

Geometry Combinatory

[15] octree none 0/+ nodes (×8)
[10] 2d tree none number of nodes

[11] 2d tree none 0,1 or + nodes

Ours BSP cut plane number of nodes

Table 1. Principle of our proposal compared
to the closest previous works.

5 BSP Compression

In computer graphics, point sets usually represent the

geometry of an object. However, the above methods rely

on encoding the combinatory of the point set in their subdi-

vision symbols, which lack of geometric information. We
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Figure 3. Our BSP is constructed in a top–down manner, subdividing according to the local structure
of the point set.

propose to encode information specific to the geometry of

the point set within the subdivision symbols (see Table 1).

The BSP framework provides the basic structure for this

goal, since cuts of the BSP can contain geometric informa-

tion such as principal directions of the point set. Moreover,

since octrees and 2d trees are specific BSP, this framework

extends the above methods.

The main difficulty with this idea consists in maintain-

ing a small number of bits for each subdivision symbol.

The clue is also the interpretation of the efficiency of [10]:

on one hand, although [10] wastes many bits for the first

nodes since it encodes the whole number of nodes instead

of a 0/1/+ symbol. On the other hand, this information

is shared by all the points of the set, and when reaching

lower nodes, the overhead of encoding the number of nodes

shrinks. The balance is globally positive, as proved in [10].

We will use here a similar strategy: the geometric sym-

bols of the cut are encoded with precision for the first nodes,

and as we subdivide the BSP the precision of these symbols

reduces, until not being encoded at all. At that point, the

geometry of the subdivision is automatic, and corresponds

to 2d tree encoding. We can then adopt any of the above

mentioned strategies for the combinatorial subdivision sym-

bols. However, we chose to extend [10] since our analy-

sis came from the study of their algorithm. Moreover, we

will design the BSP in order to distribute almost equally the

points between the subcells. The number of nodes of the

subcell tends to be half of the number of nodes of the cell,

improving the prediction mechanism.

5.1 BSP Construction

Cell geometry. We define our adaptive space decomposi-

tion by a BSP with planar cuts (see Figure 3). We choose

conventionally a unit cube for the root cell. The construc-

tion of the BSP subdivides this cube into two convex poly-

hedrons, assigned to the two sons of the root in the BSP. For

lossless compression, these polyhedrons are further subdi-

vided until their assigned cell fit in a box of size 2−b, where

b is the numerical precision, in bits, of each coordinate of

the point cell. In computer graphics applications, the usual

data precision is b = 12 bits. For lossy compression, the cell

may not be subdivided if it contains less that a few points.

median

PCA

shift

Figure 4. Cell planar cut from the principal

component analysis and the median of the
points

Principal Component Analysis. We define the cut plane

direction using a common statistical technique, known as

principal component analysis (PCA), similarly to [12]. The

PCA is a least square minimization that extracts the main

structure of a statistical data, here the coordinates of the

points contained in a cell (see Figure 4): Given a cell and

the set of points it contains, we compute the covariance ma-

trix of their positions. The eigenvector corresponding to the

greatest eigenvalue of this matrix corresponds to the clos-

est line to the point, which is called the principal direction

of the points. In order to best separate the points, we will

chose the cut plane perpendicular to the principal direction.

Median shift. The PCA thus defines the direction of the

cutting plane, and we can then adjust where to cut the cell
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Figure 5. The quantisation parameters for the cut plane: the quantisation of the optimal plane (left)
moves slightly the plane (middle) by clamping the parameters ϕ, ψ and α.

Algorithm 1 compress( points, cell ): encode the BSP

recursively.

// compute the principal deviation of the points in the cell

1: plane ← PCA
⊥ (points)

2: (ϕ,ψ) ← quantise (plane)

// shift the plane to separate the points into equal parts

3: shift ← median (points, ϕ, ψ)
4: α ← quantise (shift)

// subdivide the cell

5: (cellfront, cellback) ← subdivide (cell, ϕ, ψ, α)

// encode the subdivision and the number of points of the front cell

6: encode (ϕ,ψ, α,#cellfront)

// recurse

7: compress (cellfront) ; compress (cellback)

along that direction. In order to predict efficiently the num-

ber of nodes, we will place the cut at the median of the

points (see Figure 4). We compute this median by project-

ing all the points onto the PCA line, deduce the median of

the resulting 1D data and shift the plane along the PCA line

until it passes through the median.

5.2 Quantization parameters

Plane parameters ϕ and ψ. The cut plane is represented

in the following local frame of the cell: the first axis ~u is

the biggest diagonal of the cell (convex) polyhedron P , the

second axis ~v is the biggest diagonal of the projection of P
along ~u, and the third axis ~w is the vector product ~w = ~u∧~v
(see Figure 5). In this frame, we express the normal ~n of

the cut plane through the angle ϕ and ψ: cos(ϕ) = ~n.~u,

cos(ψ) = ~n.~v. The coordinate of ~n along ~w can be deduced

from the unity of ~n: ~n.~w = ±
√

1 − cos2(φ) − cos2(ψ).
Since the plane is defined without the normal orientation,

we take as a convention that ~n.~w ≥ 0. This orientation

determines whether a subcell is the front or the back one.

Shift parameter α. The shift to the median determines

the constant coordinate of the plane equation. Again, we use

the biggest diagonal PQ of the cell polyhedron to represent

that shift: denoting by O the intersection of the plane with

the diagonal PQ, we define α by:
−−→
PO = α

−−→
PQ.

5.3 Quantization strategy

Bit allocation. Following the strategy deduced from [10],

we will quantise the cut plane parameters with fewer bits

at each subdivision. More precisely, the number of bits nb
allocated for each parameter depends on the number # of

points contained in the cell: nb = ⌊log
2
(#)⌋−k. We chose

k = 7 for α, k = 5 for ψ, and k = 3 for ϕ. Moreover, in

order to avoid degenerated cases, nb is set to zero if the

cell has level below a given maximal value lmax (we chose

lmax = 10 for our experiments).

Parameters quantisation. In order to quantise the cut

plane, we first restrict the values of our parameters. α is

generally a number between 0 and 1, although planes paral-

lel to the diagonal may induce other values. Since this case

has a low probability and may induce degenerated cell cut,

we clamp α into the interval [0.2, 0.8]. We then map it to

[−1, 1] with an inverse quadratic function in order to have

more quantised values close to α = 1

2
.

The plane parameters are treated similarly: we en-

code sin(ϕ) by clamping it into
[

− 1

2
, 1

2

]

. Then cos(ϕ)
is clamped into [−| sin(ϕ)|, | sin(ϕ)|] (since cos2(φ) +
cos2(ψ) ≤ ‖~n‖ = 1). For both parameters we apply the

same apply inverse quadratic function as α.

0 bit quantisation. When the number of bits allowed to

encode the plane is zero, the above scheme cuts the cell

perpendicularly to the diagonal, and at its middle point.

This scheme is efficient in practice, but may not converge

quickly, since the cut may not reduce significantly the vol-

ume of the cell. However, since we aim at encoding a con-
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(a) Level 2. (b) Level 5. (c) Level 8. (d) Level 11.

(e) Level 14. (f) Level 17. (g) Level 20. (h) Level 23.

(i) Level 26. (j) Level 29. (k) Level 32. (l) Level 35.

Figure 6. The size of each cell of the BSP must converge quickly to zero.

stant precision for all the points of the set, we need to re-

duce quickly the size of the cells. We thus change the above

scheme when a cell contains only one point of the set. In

that case, we subdivide it as a regular octree, which is guar-

anteed to converge (see Figure 6).

Prediction. We finally encode these quantised parameters

using a simple arithmetic coder [13], where the initial prob-

ability of the symbols is a Gaussian distribution. This suits

particularly well since the plane parameters were designed

to be close to 0 with high probability. Moreover, the me-

dian cut of the cells increase the probability for the number

of points inside the subdivided cell to be half of the num-

ber of points inside the whole cell. We thus use the same

Gaussian distribution for encoding the number of points in

the front cell.

6 Experiments

We implemented the above method for points in R
3 as

described in the previous section, and resumed in Algo-

#verts Comp. ratio Comp. Decomp.

(bits/vert) time (sec) time (sec)

0 − 1000 21.1975 0.17 0.99

1000 − 5000 19.1819 0.19 3.23

5000 − 10000 17.6372 0.21 6.50

10000 − 20000 16.0554 0.24 11.77

20000 − 50000 14.6821 0.32 20.62

> 50000 14.5613 0.42 35.32

Table 2. Compression ratios and timings on
a hundred classical models of Computer
Graphics, ordered by size.

rithm 1. We obtain compression ratio in average 15% lower

than the previous methods (see Table 3). This validates the

analysis presented here and puts the BSP compression for

point set in front of octree based compression. Our method

is relatively fast in execution (see Table 2) and very robust

in geometric calculus.
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#verts [15] [10] [11] Ours

head camel 777 26.17 24.04 24.29 20.47
dinosaur 927 27.22 25.10 25.05 21.19
horse 927 27.67 25.47 25.31 21.39
pig low 927 26.63 24.65 24.54 20.70
kangaroo 929 26.13 23.93 23.78 20.33
dolphin 979 25.15 23.11 23.00 19.59
ant 1147 23.52 22.03 22.00 18.54
pig 1843 25.64 23.61 23.50 20.07
triceratops 2832 22.08 20.66 20.68 17.30
ellipsoid 3820 23.93 22.62 22.51 19.10
pig high 4999 22.92 21.88 21.81 18.51
chair 5095 23.77 22.87 22.58 19.14

Table 3. Comparison on classical Computer Graphics models, of our method with previous ones

based on space partition encoding (the values are in bits per vertex for 12 bits of precision).

7 Conclusions

This work introduced a new scheme for progressive com-

pression of point sets. It introduces geometry information

in the subdivision scheme, and proposes an efficient method

to distribute the extra cost of coding this information. Fur-

thermore, this geometry information contributes to the point

set compression in such a way that it ends up improving the

final compression ratio.

The improvement on previous lossless compression

methods for point sets advocates for the use of geometry–

driven techniques for mesh compression, since the geom-

etry compression alone tends to be sufficiently efficient.

Moreover, our design of the adapted binary space partition

turned out to be particularly efficient, and may serve for

other applications.
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Figure 7. Adaptive compression of the point set of the happy Buddha model.
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