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Abstract

In this paper, we present a novel method for estimating
the effective number of independent variables in imaging
applications that require multiple hypothesis testing. The
method increases the statistical power of the results by re-
futing the assumption of independence among variables,
while keeping the probability of false positives low. It is
based on the spectral graph theory, in which the variables
are seen as the vertices of a complete undirected graph and
the correlation matrix as the adjacency matrix that weights
its edges. By computing the eigenvalues of the correlation
matrix, it is possible to obtain valuable information about
the dependence levels among the variables of the problem.
The method is compared to other available models and its
effectiveness illustrated in a case study on the morphology
of the human corpus callosum.

1 Introduction

An important problem related to medical image analysis
is the significance evaluation of the results. The information
obtained from a study must provide enough and significant
evidence to support the hypothesis under investigation. For
example, one may be interested in proving that the shape of
a specific structure or organ is significantly different when
comparing two populations and this is usually accomplished
by hypothesis testing. A problem arises when the imaging
modality provides large amounts of information, placing the
problem in a high-dimensional variable space. Under these
circumstances, the problem may require the simultaneous
testing of multiple hypotheses, which requires special atten-
tion, so as to avoid the consideration of false positive results.
While testing a false hypothesis on a set of 100 variables, at
the significance level of 0.05, it is expected that 5 variables
will show significant when, in fact, they are not. Therefore,
an adjustment on the significance values is required, in or-
der to reduce the probability of Type I error.

Milestones on the theory of multiple comparison correc-

tion are the works of Bonferroni [4] and Sidak [21], who
proposed a classic and conservative method to adjust the
significance values based on the number of hypotheses be-
ing jointly evaluated. The problem about correcting sig-
nificance values is that, while reducing the Type I error, it
increases the Type II error, i.e., it increases the probabil-
ity that a true hypothesis will be considered false, reducing
the statistical power of the analysis. Other less conserva-
tive methods followed the work of Bonferroni, but none of
them presented a suitable solution for dealing with high-
dimensional problems, leading many researches to question
the adequacy of multiple comparison correction [2, 17, 19].

In this work, we present a novel method for multiple
comparison correction based on spectral graph theory. It in-
creases the statistical power of the results in medical imag-
ing applications by refuting the assumption of indepen-
dence among variables, which is usually a premise in other
approaches. We first critically review the main available
methodologies for significance adjustment, showing their
inadequacy on typical problems related to medical image
analysis. The proposed method is then presented and eval-
uated using a real study in image registration, followed by
discussion and conclusions.

2 Multiple-hypothesis testing

The standard and perhaps most conservative method of
adjustment was proposed by Bonferroni [4] (also known as
the Sidak method [21]). If we have a set of n individual
and independent hypotheses being tested at the significance
level α, the probability of improperly rejecting k out of n
hypotheses follows a Binomial distribution:

P (k) =
n!

(n − k)!k!
(1 − α)n−kαk. (1)

In order not to make any false rejections, k must be equal
to zero. The probability of making at least 1 false rejection
can be computed with the aid of (1) as

P (k > 0) = 1 − P (0) = 1 − (1 − α)n. (2)



Since (1−α)n ≈ 1−nα, for small α, if we wish the whole
experiment to have a false positive rate of π, each individual
hypothesis will need to be tested at the level of

α = 1 − (1 − π)1/n ≈ π/n. (3)

The method of adjustment for individual significance level
given by (3) is known as the Bonferroni correction. It is
very conservative in the sense that it reduces the statistical
power of the individual tests, i.e. the probability of cor-
rectly rejecting a false null hypothesis. If we have a set of
n = 100 tests and wish the experiment to be tested at the
level of π = 0.05, each test will have to be tested at a sig-
nificance level α = 0.0005, which is extremely low. There-
fore, many potentially significant results may be uncovered,
increasing the probability of false negatives. The correction
is nevertheless necessary to avoid false positives that would
be expected to appear once in every 20 tests.

A less conservative variation of the Bonferroni correc-
tion considers that, after the first test is performed, the num-
ber of remaining tests reduces to n − 1. The tests may
therefore be taken sequentially, as proposed by Holm [12].
In this approach, the most significant test is adjusted first
and, if it is able to reject the null hypothesis, the process
moves to the next test, now considering α = π/(n− 1). As
soon as one test fails to reject the null hypothesis, all sub-
sequent tests are considered not significant. A variation to
Holm’s method, presented by Simes [22] and Hochberg [11]
starts with the test presenting the largest p-value, taking
n = 1, and goes backwards until a test fails to be rejected.
Hommel [13] also proposes a sequential method based on
the evaluation of ordered tests. Although less conservative
than Bonferroni, the sequential methods of Holm, Simes-
Hochberg and Hommel are still inadequate to applications
such as the ones in medical imaging analysis that usually
involve large number of variables.

The methods derived from the Bonferroni correction aim
to control the false positive rate (FPR) of multiple tests,
i.e., to reduce the fraction of null hypotheses that are erro-
neously called significant. An alternative approach on mul-
tiple comparison proposed by Benjamini and Hochberg [3]
considers the fraction of the false positives over the amount
of tests declared significant. This metric is called the false
discovery rate (FDR). While a FPR α=0.05 means that, on
average, 5% of all tests will be declared significant when
they are not, a FDR δ=0.05 expects that 5% of the tests de-
clared significant (and only those) will be false positives.
More formally, the FPR is the probability of a test being
considered significant, given that the null hypothesis is null,
whether the FDR is the probability of a null hypothesis
being true, given that the test was considered significant.
There is a flavor of the Bayes’ Theorem on the relationship
between both concepts.

The FDR was originally estimated by Benjamini and

Hochberg, by sequentially taking the n tests, ordered from
the smallest to the largest p-value. The k-th test is consid-
ered significant if its p-value, pk is such that pk ≤ δk/n,
where δ is the experiment-wise FDR. The problem with the
FDR estimator is that it still considers the number of tests,
n, to decide on the significance of an individual test. The
first test in the sequence (the one with smallest p-value) will
actually be computed in the same way as with the Bonfer-
roni method. The approach is therefore too conservative for
problems in high-dimensional variable spaces.

3 The assumption of independence

Multiple comparison adjustments on significance levels
usually rely on the assumption of independence among the
individual tests. The Bonferroni correction, for instance,
assumes that n independent null hypothesis Hi

0, i = 1 . . . n
are tested and the corresponding probability of false rejec-
tion evaluated. The joint probability of Type I error for
H1

0 ∧ H2
0 ∧ . . . ∧ Hn

0 is therefore the product of the indi-
vidual probabilities. The significance level α that should be
applied to each hypothesis, so as to keep the experiment-
wise level of significance π, is α = π/n. However, if
some degree of dependence exists among the variables be-
ing tested, the significance threshold applied to each indi-
vidual hypothesis will be smaller than it should be. In the
context of dependence, we are actually not testing n inde-
pendent hypotheses, but m independent groups of depen-
dent hypotheses. Of course, dependence comes in different
degrees, what makes the problem non-trivial.

Many problems in medical image analysis are defined
over a variable space that embeds intricate nets of depen-
dence. Image registration algorithms, for example, induce
a high level of smoothness in the results. The tissues and
organs being imaged generally present smooth shapes or in-
tensity variation. Interpolation may be used in many cases,
adding another level of smoothness. In summary, determin-
ing a realistic estimation for the number of independent hy-
potheses considered in those problems becomes a very im-
portant issue.

The development of Spectral Graph Theory brought a
new perspective to the evaluation of dependence among the
variables [6]. The set of variables can be seen as the vertices
of a complete undirected graph and the correlation matrix
as the adjacency matrix that weights their connections. It is
known that the eigenvalues of the correlation matrix give
valuable information about the dependence levels among
the variables of a problem, although the quantification of
this phenomenon is not yet completely understood [5, 24].
Eigendecomposition is used in Principal Component Anal-
ysis (PCA) as a tool to reduce the dimensionality of a prob-
lem. In PCA, the set of original variables is rotated in order
to find the orthogonal axes along which the data is maxi-



mally spread out. Data reduction is achieved by changing
the basis of the variable space, so that the new orthogonal
axes represent most of the variance embedded in the dataset,
and by ignoring the axes in which the data present small
variance. Each new variable (principal component) associ-
ated with an eigenvector is a linear combination of the orig-
inal variables and the corresponding eigenvalue represents
its variance. Without loss of generality, we will consider
that variables are standardized, i.e., their mean and variance
are zero and one, respectively. The covariance and correla-
tion matrices are, therefore, the same.

The two extreme cases of the spectral decomposition
of a correlation matrix occur when the n variables are ei-
ther completely correlated to each other or completely un-
correlated. In the first case, there will be a single non-
null component accounting for the variance of all variables
(eigenvalue equals to n). In the second case, there will
be no change in the basis, since the variables are already
the n principal components, with all eigenvalues equal to
one. For the intermediary cases, there is no simple solution.
Therefore, a measure of dependency, representing the num-
ber of groups of correlated variables, should be estimated.

Cheverud [5], studying the linkage of traits across
genomes, considered the variance of the eigenvalues, Vλ,
as a measure of dependence. In the case of completely cor-
related variables, Vλ would be at its maximum, n; in the
case of uncorrelated variables, Vλ would be at its minimum,
zero. He proposed that an estimate for the intermediary
cases could be given by the proportional reduction of the
number of independent groups of variables, as the ratio of
Vλ to its maximum, n. Rescaled to vary from one to n, the
effective number of independent variables, m, was defined
as

m = 1 + (n − 1)(1 − Vλ

n
). (4)

The new value, m, replaced n, in (2), for computing the
individual significance level threshold.

Although the method proposed by Cheverud was effec-
tive for computing the value of m in the extreme cases, it
overestimated the value in situations of partial correlation.
Li and Ji [14] showed that, when the n tests could be par-
titioned into c, 1 ≤ c ≤ n, groups of n/c completely cor-
related tests, the spectral decomposition of the correlated
matrix would yield a set of n/c identical eigenvalues c and
n − n/c null eigenvalues. In this scenario, the applica-
tion of Cheverud’s method defined in (4) would result on
m = n + 1 − c, when in fact it should be n/c. They pro-
posed a new method in which the eigenvalues were decom-
posed into their integral and fractional parts. Each integral
part would represent a cluster of correlated variables and be
counted as a single variable to the computation of m. The
fractional parts were considered as partially correlated tests

and added to m. Formally,

m =
n∑

j=1

[I(λj ≥ 1) + (λj − �λj�)], (5)

where I is the indicator function that returns 1 when the
argument is true or 0 otherwise. The model is precise in
the cases of spectral decompositions that result in integer
eigenvalues, but still overestimates m in other cases, as we
shall see in the next section.

A crucial issue on the evaluation of estimates for m in the
case of partial correlations is to determine a ground truth for
comparison. In fact, no procedure has been proved optimum
for this purpose, although permutation tests are considered
the best estimators for m. A permutation test [9, 15, 25]
aims at determining the actual individual significance level
that should be applied to each hypothesis so as to yield the
desired experiment-wise FPR π. The samples being com-
pared have their subjects permuted in order to generate all
possible false configurations. The hypothesis tests are ap-
plied to the configurations, for each variable at the individ-
ual significance level α, and the number of joint hypotheses
considered significant is determined. Under the assumption
of independent variables, the procedure should result on a
value close to π. If it is greater than π, there is evidence
that α was overestimated and that the assumption of inde-
pendence is false. Therefore, the value of m can be esti-
mated based on the value obtained from the iterative pro-
cess. When the number of permutations is intractable, the
iteration may be repeated a reasonable number of times. At
each iteration, a random configuration is generated. In this
case, the method is known as resampling and its algorithm
can be summarized as follows:

1. Determine the individual significance level threshold,
α for testing each of the n hypothesis: Under the as-
sumption of independence (that we want to refute), α
can be computed from (2) as α = 1 − (1 − π)1/n,
where π is the desired experiment-wise FPR threshold
(e.g. 0.05).

2. Generate a configuration: for each pair of subjects in
the sample, s1 and s2, belonging to class 1 and 2, re-
spectively, generate a random number in the interval
[0,1]. If this number is greater than 0.5, assign s1 to
class 2 and s2 to class 1, otherwise keep them in their
original classes.

3. Test the null hypothesis for each variable of the con-
figuration and obtain a significance level for its rejec-
tion. If at least one of the variable presents a signifi-
cance level less than or equal to α, the configuration is
counted as a false positive.

4. Repeat steps 2 and 3, R times, in order to compute the
number of false positives, F .



5. Compute the FPR for the experiment:πr = F/R.

6. Compute the individual significance level threshold,
αr, that would have to be used in the resampling ex-
periment in order to result in a experiment-wise FDR
πr: αr = 1 − (1 − πr)1/n.

7. Compute the effective number of independent hy-
potheses: If αr > α, n is overestimated. Based on (2),
the effective number of independent variables, m, that
will result in a experiment-wise FPR π can be com-
puted as:

m =
ln (1 − π)
ln (1 − αr)

. (6)

The effectiveness of the resampling method is based on
the fact that, while the subjects are permuted from one class
to the other, the relationship among the variables in the
dataset remains unchanged. The drawback of the method
is its computational complexity that limits its application
in the case of high-dimensional variable spaces. The num-
ber of iterations required to achieve a more precise esti-
mate of m is proportional to n and inversely proportional
to π. Since, at each iteration, n hypothesis tests should be
performed, the computational complexity of the method is
O(n2).

In the next section, we propose a more precise model
for multiple comparison correction based on Spectral Graph
Theory that better approximates the estimation of the effec-
tive number of independent hypotheses, at a much lower
computational cost.

4 A new multiple comparison correction
model

Although the method proposed by Li and Ji circum-
vented the limitations of Cheverud’s method in the case
of intermediary number of correlated variable groups, it
still overestimates the number of independent variables, m,
when the correlation is partial. If we analyze equation (5),
we notice that m will always be an integer number, since all
the fractional parts of the eigenvalues are summed. In fact,
the integer number that exceeds 1 in each eigenvalue is sub-
tracted from n to yield the effective number of independent
variables, m. Partial (fractional) correlation, in this case, is
actually not accounted for.

Another limitation of equation (5) is that it overestimates
m when the rank of the correlation matrix is less than n. It
is known that that the rank of a matrix is less than or equal
to its minimum dimension [23]. Furthermore, when 2 ma-
trices are multiplied, the rank of the resulting matrix cannot
exceed the rank of each factor. The correlation matrix, R,
is given as R = ZT Z/N , where Z is the N × n data ma-
trix whose rows contain the N subjects. Therefore, as far as

the number of subjects is less than or equal to the number
of variables, the rank of R will be at most N , meaning that
there will be at least n−N linearly dependent variables. Ac-
tually, the eigendecomposition of R in this scenario yields
at most N−1 non-null eigenvalues. Consequently, the num-
ber of independent variables, m, has an upper bound equal
to N − 1.

4.1 Description of the model

The model we propose for computing the number of
independent variables is derived from the interpretation
of eigendecomposition, that aims at obtaining a lower-
dimensional variable space for the problem, in which the
new variables (principal components) are uncorrelated. The
eigenvalues associated to each component represent the
variance of the new variable. When rotation is applied to
R, in order to find its axes of maximum variance, high-
correlated groups of original variables result in new com-
ponents with large variances. Each new component is an
uncorrelated variable in the new basis. Original variables
that cannot be grouped result in components that present
smaller variances. Their contribution to data description is
at most equal to one original variable and should be counted
as proportional to the variance they explain, given by their
eigenvalues. Based on this rationale, the number of inde-
pendent variables, m, is given as

m =
n∑

j=1

[I(λj ≥ 1) + I(λj < 1)λj ], (7)

where I is the indicator function that returns 1 when the
argument is true or 0 otherwise.

4.2 Comparison with related work

The proposed model described in (7) satisfies all the ex-
treme cases explored by Cheverud [5] and Li and Ji [14]. In
the case of completely independent variables, all eigenval-
ues will be equal to 1 and m = n. For completely correlated
variables, all eigenvalues will be 0, except one that equals
to n. In this case, m = 1. For intermediary number of
completely correlated variables, the method behaves as the
model of Li and Ji and better than Cheverud’s. If, for in-
stance, the n variables can be partitioned into c, 1 ≤ c ≤ n,
mutually independent groups of n/c completely correlated
variables, there will be n/c identical eigenvalues c, c > 1,
and m will be equal to n/c, as expected.

The advantages of the new method are evident when the
number of subjects, N , is less than or equal to the num-
ber of variables, n, as generally happens in medical imag-
ing applications. In this case, the maximum number of
non-zero eigenvalues computed for the correlation matrix



R is N − 1, which is the rank of R. The value for m
computed by the proposed method has an upper bound of
N − 1, whereas the methods proposed by Cheverud and Li
and Ji may exceed this limit when partial correlation is ob-
served. For example, consider a study composed of n vari-
ables that can be partitioned into N −1 independent groups
of c = (n− 1)/(N − 1), c > 1, completely correlated vari-
ables and a single variable that is only partially correlated to
the groups. Let n > N+c, so that the rank of R is N−1. In
this case, there will be N −1 eigenvalues greater than 1 and
n−N+1 null eigenvalues. Furthermore, at least 2 eigenval-
ues will have fractional parts greater than 0, since there is a
variable that is only partially correlated to the others. The
N − 1 non-zero eigenvalues can be denoted as λj = c+ dj ,
such that 0 ≤ dj < 1 and

∑N−1
j=1 dj = 1. In this case,

the model of Li and Ji will result on m = N , exceeding
the rank of R. For the method proposed by Cheverud in
equation (4), Vλ will be computed as

Vλ = 1
n−1 [

∑N−1
j=1 (c + dj − 1)2 +

∑n
j=N (0 − 1)2]

= 1
n−1 [(N − 1)(c − 1)2 + 2(c − 1) + x + n − N + 1]

= 1
n−1 [cn + c − n + x],

(8)
where x =

∑N−1
j=1 d2

j , 0 < x < 1. From (4) and (8), m is
given as

m = n − 1
n

(cn + c − n + x).

In order for the method to yield a value of m that is less than
or equal to the rank of R, the following inequality must be
true:

m = n − c +
c

n
− 1 +

x

n
≤ N − 1. (9)

Since both c/n and x/n are positive but smaller than 1, the
inequality in (9) is equivalent to n < N + c which contra-
dicts the condition of n being greater than N + c. There-
fore, we conclude that neither the model of Cheverud nor
the method of Li and Ji guarantee an upper bound equal to
the rank of R when computing the effective number of in-
dependent variables for multiple comparison correction.

4.3 Complexity analysis

The critical step on the computation of the effective num-
ber of independent variables, following the approach of
spectral graph theory, is the eigendecomposition of the cor-
relation matrix R. This procedure is O(n3) with respect to
computational cost, where n is the number of variables. In
the case of high-dimensional variable spaces, the computa-
tion of R itself is already intractable. It is known, however,
that the eigenvalues of R = ZT Z/N and ZZT /N are the
same [7], so that the eigenvalues can be obtained in time
proportional to O(N3), where N , the number of subjects,
is usually small. The critical step becomes the computation
of ZZT /N , which is O(N2n).

5 A case study on the morphology of the cor-
pus callosum

In this section, we illustrate the effectiveness of the pro-
posed method in a study of gender-related shape differences
on the morphology of the human corpus callosum.

5.1 Materials

The MRI images used in the experiments, gently shared
by the Mental Health Clinical Research Center of the Uni-
versity of Pennsylvania, are 56 normal controls recruited
for a larger study on schizophrenia. The subjects are right-
handed with average age and standard deviation of 29.9
(±13.4) years for the male group (N=28) and 27.5 (±11.1)
years for the female group (N=28). The images were
acquired on a GE 1.5 Tesla instrument, using a spoiled
GRASS pulse sequence optimized for high resolution, near
isotropic volumes (flip angle = 35o, TR = 35 ms, TE = 6
ms, field of view = 24 cm, 0.9375 × 0.9375 mm2 in-plane
resolution, 1.0 mm slice thickness, no gap). The images
were obtained in the axial plane and the midsagittal slice
extracted and reformatted into 256 × 256 8-bit images. De-
tails about the sample recruitment and acquisition proce-
dures are described in Shtasel et al. [20] and Gur et al. [10]

Although the data used in the experiments are real MRI
images, the subjects were deliberately selected based on the
shape of the callosal splenium, so that the female group
would present more “bulbous” splenium (posterior-most
part of the corpus callosum). The purpose of working with
a biased sample was to ensure that hypothesis testing would
show significant differences in this particular region of in-
terest.

5.2 Experimental procedure

The images were first partitioned into white matter, gray
matter and cerebro-spinal fluid components using the adap-
tive K-means clustering algorithm of Pappas [16]. The cor-
pus callosum structure was extracted by manual delineation
and the segmented callosa rigidly registered to the template
by computing the center of area and orientation of the struc-
tures. Translation and rotation were performed to bring
them into global registration. The boundaries of the cal-
losa were automatically determined using the Rosenfeld al-
gorithm for 8-connected contours [18]. Local registration
was performed based on a parametric curve matching algo-
rithm [1] in which the boundary of the template is registered
to each subject’s boundary, maximizing their geometric cor-
respondence. The resulting displacement field was then ex-
trapolated to the whole structure [1].

When the template image is warped to match a subject
image, some regions may get enlarged and some may be re-



(a) (b)

Figure 1. Average callosal shape for the male
(a) and female (b) groups.

duced. It is possible to determine the amount of scaling ap-
plied to an infinitesimal area around each point of the tem-
plate, by computing the Jacobian determinant of the map-
ping function [8]. The pointwise Jacobian determinants are
the variables that will be tested for size differences. Since
the result of image registration is a smooth displacement
field, it is expected that the Jacobian determinants of neigh-
boring points be correlated.

In addition, volumetric variation was computed for
equal-spaced segments taken perpendicularly to the callo-
sum medial axis. The medial axis is a curve that splits
the corpus callosum into dorsal and ventral regions, such
that, at any point along the axis, the two perpendicular line
segments emanating from the point connecting the axis to
dorsal and ventral points of the boundary have the same
length. Medial axis extraction was performed using a vari-
ation of the thinning algorithm described in Rosenfeld and
Kak [18], with subsequent pruning of spurious branches.
The curve representing the medial axis was extended to ter-
minate at the tips of the rostrum and splenium, and a sample
of 67 equally spaced interpolated points were taken, so as
to yield an isotropic rotation-invariant representation for the
template axis. Volumetric variation was computed after the
registration of the curves representing the medial axes of the
template and the subjects. For each segment of the template,
with volume vT , registered to a segment of the subject, with
volume vS , the amount of scaling was defined as vS/vT .
The analysis of callosal volumetric differences between the
samples was performed based on multiple analyses of vari-
ance (ANOVA).

5.3 Experimental results

The average shapes of the male and female callosa are
shown in Fig. 1 and were generated based on the displace-
ment fields resulting from image registration. A grid was
superimposed to the images so as to facilitate the observa-
tion of the significant differences in the size of the splenium
(larger in females) and in the isthmus (larger in males). The
genu (anterior-most part of the callosum) also appears to
be larger in the males. The template image used in image
registration was composed of 2830 pixels. The results of
individual F-tests applied to each of the 2830 Jacobian de-

terminants, showing the regions in which there is enough
evidence to reject the null hypothesis of equal means, are
displayed in Fig. 2(a). The figure shows the significance (p-
value) of each test without multiple comparison correction.
The tests are 2-tailed, with α=0.05 (0.025 in each tail).

The effective number of independent variables, m, was
computed based on the spectral decomposition of the cor-
relation matrix R. As expected, since the number of vari-
ables, 2830, was much larger than the number of subjects,
56, the eigendecomposition of R yielded only 55 non-zero
eigenvalues ranging from 517.44 to 2.44. The resulting val-
ues for m computed by the methods of Cheverud , Li and
Ji, and the model proposed in this paper were 2580.64, 81
and 55, respectively. While our method achieved the upper
limit for m (the rank of R), the other methods exceeded
this limit. The resampling procedure could not be used to
estimate the true value of m, in this case, since such large
number of variables would require the evaluation of an in-
tractable number of permutations.

The adjusted p-values were computed from (3), using
the computed values of m in place of n. Fig. 2(b-e) show
the results based on Bonferroni, Cheverud, Li and Ji, and
the method proposed in this paper. The adjusted signifi-
cance threshold, α, were respectively 0.000018, 0.000019,
0.000617 and 0.000909. It can be seen that the Bonfer-
roni correction and the method of Cheverud were unable
to detect any region in which the average male callosum
was significantly larger than the female. Only the splenium
was considered significantly larger in the females, at the
experiment-wise false positive rate π = 0.05. The model
of Li and Ji was able to additionally detect a difference in
the isthmus, in which the males had larger Jacobian deter-
minants. However, only the method we proposed was suffi-
ciently powerful to detect some difference in the genu.

The computation of the eigenvalues of R took 0.35 sec-
ond. All methods were implemented in IDL language (Re-
search Systems) and run in a 1.1 GHz Intel Celeron proces-
sor computer with 256 MB of RAM, under Windows XP
operating system.

The second experiment was based on the volumetric
variation taken at each of the 67 segments of the template.
In this case, it was possible to estimate a reference ground
truth for the number of independent variables, based on re-
sampling. The results of individual F-tests applied to the
volume of each segment, showing the regions in which there
is enough evidence to reject the null hypothesis of equal
means, are displayed in Fig. 3(a). The figure shows the sig-
nificance (p-value) of each test without multiple comparison
correction, at the significance level α=0.05.

The eigendecomposition of R yielded 55 non-zero
eigenvalues: 11 greater than 1, ranging from 23.82 to 1.18,
and 44 smaller than 1. The resulting values for m computed
by the methods of Cheverud, Li and Ji and the proposed
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Figure 2. Results of Jacobian analysis. Re-
gions in which H0 is rejected based on unad-
justed tests (a) Bonferroni (b), Cheverud (c),
Li (d) and the proposed method (e).

model were 56.78, 24 and 17.86, respectively. The compu-
tation of the eigenvalues took only 0.01 second. The true
value of m was estimated as 8.28 by the resampling proce-
dure using 200,000 permutations. The iterative algorithm
took 6227.27 seconds to compute.

The adjusted p-values computed based on Bonferroni,
Cheverud, Li and Ji, the method proposed in this paper and
from resampling are shown in Fig. 3(b-f). The adjusted sig-
nificance threshold, α, were 0.000746, 0.000880, 0.002083,
0.002799 and 0.006175, respectively. In this experiment,
all methods failed to detect differences in the genu. Since
a segment encompassed a larger region of the structure, the
computation of volumetric variation actually considered an
average of significant and non-significant values. There-
fore, the differences at the anterior half of the corpus cal-
losum were much less significant than at the splenium and
isthmus. The model of Li and Ji and our method provided
the results that best approximated the values computed by
resampling. The value for the effective number of inde-
pendent tests computed by our model was 2.16 times larger
than the one obtained by resampling, whereas the model of
Li and Ji resulted in a value approximately 3 times larger.

6 Conclusion

In this paper we proposed a novel method for computing
the effective number of independent variables used to ad-
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Figure 3. Results of volumetric analysis. Re-
gions in which H0 is rejected based on unad-
justed tests (a) Bonferroni (b), Cheverud (c),
Li and Ji (d), the proposed method (e) and by
resampling (f).

just significance values in multiple comparison testing. The
approach is based on the spectral decomposition of the cor-
relation matrix and is both statistically powerful and com-
putationally efficient. The method has two major advan-
tages over other available methods: it is less conservative
under partial correlation and has an upper bound equal to
the rank of the correlation matrix. The effectiveness of the
method was illustrated in a case study on the morphology
of the human corpus callosum. A set of significantly differ-
ent shapes drawn from male and female samples was used
to evaluate the statistical power of the model compared to
related works. The set of null hypotheses tested for signif-
icance was composed of 2830 Jacobian determinants, de-
scribing regional volumetric variability. Typical problems
in medical imaging analysis are usually represented in such
high-dimensional spaces, making it impossible to estimate
the true number of independent tests by permutation or re-
sampling procedures. Therefore, volumetric variation was
additionally investigated based on the volume of segments
taken perpendicular to the medial axis of the structure, re-
ducing the number of tests to 67. In this scenario, it was
possible to compare the results of the method with the esti-
mated ground truth computed from resampling. The num-



ber of independent variables, in both experiments, was sig-
nificantly lower than the ones computed by other methods
based on spectral decomposition. In the analysis of Jaco-
bian determinants, the method was the only one to satisfy
the upper bound of the problem, defined by the rank of the
correlation matrix.

The difference between the results obtained with the
method and the ones obtained from resampling suggests
that further improvement is possible. The way in which
dependence is represented by the eigenvalues of the
correlation matrix is still unclear. Principal component
analysis aims to obtain new variables that maximally
represent the variance of the sample. In this process, the
covariance between original variables is taken into account,
but the relationship between the original values and the
variance of the new components are not simple. Therefore,
any improvement in the computation of the number of
independent variables is justified, as far as it contributes to
increase statistical power, while keeping the probability of
false positives low.
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