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Abstract—This paper proposes a novel public database for
soybean seed defect classification. The database is publicly
available and features seven defect classes labeled based on
visual characteristics by domain specialists. Each seed sample
includes three images taken from random rotations to ensure
a comprehensive representation. Additionally, seeds from three
different locations, each labeled by different experts, are included
in the database. No public currently available soybean defect
classification dataset provides location information. This allows
for the evaluation of the generalization capabilities of the model
on seeds collected on previously unseen regions. Experiments
were conducted and compared with the GB1352 database to
validate our approach. We employed handcrafted texture descrip-
tors and non-handcrafted features extracted from established
convolutional neural network architectures, using the network’s
last layer activations as the feature set. The results show that
partitioning folds by the regions where seeds were collected sig-
nificantly impact classification performance. Employing the SVM
classifier and the product prediction fusion rule, we achieved an
F1-score of 85.06% with region-based cross-validation folds and
95.89% without region-based fold partitioning. In experiments
involving two classes (intact vs. defective), we achieved an F1-
score of 99.32% with region-based cross-validation folds. We
expect this database to foster the development of more robust
models capable of generalizing to previously unseen regions.

I. INTRODUCTION

Soybeans are an essential crop in the agricultural sector
worldwide. According to data provided by Embrapa [1], Brazil
is the fourth-largest grain producer in the world. Due to
various factors, soybean production has increased globally for
several decades. Several factors, such as global demand, a solid
market, and ongoing technological advances, contribute to this
growth. In recent decades, there has been significant invest-
ment in all stages of grain cultivation. However, assessing the
vigor of the seeds used for planting is crucial, as it is directly
related to the field’s production potential [1].

Seed quality analysis is mostly done via chemical reagents
or visual assessment. Visual classification is commonly em-
ployed by agricultural companies and cooperatives for seed
quality control [2]. This classification, conducted by human
experts, visually evaluates the quality of the seeds. One of
the difficulties in this process is the subjectivity of the human
specialist. Despite frequent courses and training, the human
classifier can make errors due to long hours of repetitive work
and be more or less rigorous at different times. Such variance
in human specialist knowledge leads to difficulty in standardiz-
ing the classification process, compromising the guarantee of
germination potential. Therefore, researchers have employed

machine learning techniques to assist in soybean seed defect
classification [3]–[7].

Several studies in this field use private datasets [8], [9].
This hinders the verification of methods and the comparison of
results. There are some public datasets, such as GB1352 [10].
However, the documentation for these datasets is superficial,
omitting significant details such as the labeling process, the
expertise level of the labelers, the seed collection locations,
and the cultivars. The absence of these details makes it difficult
to assess the generalization capability of classification models.
This work presents a public dataset called SOYPR, labeled
by various specialists with extensive experience in the field.
The dataset contains information such as the cultivar planted
in three different regions of Paraná State, Brazil. This work
also presents a study evaluating classification models trained
and tested with seeds from different regions. Additionally, we
present results from experiments that assess the influence of
the number of images per seed on classification rates.

II. PROPOSED DATABASE

The database was created through a partnership between
our university and a local agricultural cooperative. Seeds
delivered by cooperative members at different times of the
year were selected and labeled by three human experts with
extensive experience and skills in visually classifying seeds.
However, each seed was labeled by a single specialist. The
seeds were delivered in December 2022 and digitalized in
January 2023. Before digitalization, the seeds were kept in a
dry place without exposure to sunlight. The seeds came from
three locations in Paraná State, Brazil. This paper will discuss
further how this allows cultivar and region invariance to be
assessed in classification models. In this work, we will refer
to this dataset as SOYPR.

The experts labeled the seeds according to seven classes: (1)
Intact seed, (2) Humidity damage, (3) Mechanical damage, (4)
Greenish seeds, (5) Dirty seeds, (6) Cercospora Leaf Blight,
and (7) Bug laceration. This work used the seven commonly
adopted classes in the classification process. Other datasets
employ five classes as described in [8], [9].

A distinguishing feature of this database is that the seeds
came from different regions. More precisely, the seeds were
sourced from three regions in Paraná State, Brazil, each with
distinct soil, temperature, cultivars, and other characteristics.
This contributes to a database resembling real-world scenarios,



where different locations produce seeds with varying charac-
teristics. The seeds were also labeled by different experts, thus
adding greater diversity to the classification stage. Seeds were
received from farmers by Seed Processing Units (SPU). Each
unit was responsible for collecting seeds from one of the three
regions. Each SPU delivered to us approximately 100 seeds
per class. They provided more seeds from the intact class
(about 200). Thus, we received approximately 2400 labeled
seeds. However, many of these seeds were discarded during
digitalization as they were unsuitable. The SPUs receive seeds
from nearby farms. However, we did not have access to the
exact location where the seed was produced, only to the SPU
where it was delivered. A single expert was responsible for a
second labeling stage, in which he recommended the removal
of specific samples due to subjectivity. We used a tray to
organize the seeds in a grid pattern. The tray used has a
capacity for 49 seeds. Figure 1 shows a tray filled with seeds.

Fig. 1: Tray containing 49 soybean seed samples.

The tray format simulates a real-world environment where
it is possible to report which seed was predicted with which
damage. In other words, from the seven rows and columns
in the tray, we can show the row/column where each seed
with a specific kind of damage is located. According to the
cooperative, it is necessary to inform the farmer how many
seeds exhibited defects and which ones exhibited them.

One of the issues encountered was that there was no guaran-
tee that the damaged part of the seed would be visible. In some
cases (mainly in the case of bug damage), the deterioration
caused by the bug might be on the part of the seed that was
not captured. Therefore, three images were captured per seed
to increase the odds of capturing the damage. The seeds were
initially placed in the tray and digitalized. Then, the seeds
were randomly rotated and digitalized again. This process was
repeated three times, resulting in three images per seed.

The digitalization process was conducted at the Plant
Herbarium at our university in a controlled environment. The
tray was placed inside a box with controlled white LED

lighting for digitalization. A Canon DC 8.0v Digital Camera
was used to capture the images. The images were saved in
uncompressed TIFF format with dimensions of 3340×2588
pixels in RGB format. After digitalization, the images were
segmented using image processing techniques. Segmentation
and edge detection methods using the Sobel Operator were
employed, along with seed color intensities for segmentation.
We generated a dataset of 6,264 images of individual seeds
labeled into seven classes at the end of this process. Subse-
quently, we improved the segmentation step using semantic
segmentation with U-Net to reduce noise detected in some
classes, such as Cercospora. Figure 2 shows the seeds after
segmentation.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 2: Examples of segmented seeds: (a) Intact, (b) Humidity
damage, (c) Mechanical Damage, (d) Greenish seed, (e) Dirty
seed, (f) Cercospora Leaf Blight, and (g) Bug Damage.

TABLE I: Number of Seeds Collected from Each Region.

Class Region-01 (R1) Region-02 (R2) Region-03 (R3) Sum

Intact 130 129 129 388
Dirty 95 98 93 286
Bug 92 96 94 282
Greenish 88 76 65 229
Cercospora 56 79 59 194
Mechanical 36 39 42 117
Humidity 54 33 27 114

Totals 551 550 509 1610

Table I shows each class’s number of examples per region.
The difference between the number of seeds collected and
those included in the database is due to uncertainties among
human classifiers or seed damage during digitalization. The
database is available for download on Github here.

III. RELATED WORKS

Classifying seeds automatically using machine learning
is not a new approach [11]. Several studies have already
demonstrated contributions in this regard [2], [8]. Some works,
such as [9], [12], use images from the tetrazolium test for
classification.

In [8], the authors present a pipeline for segmenting and
classifying soybean seeds through images. The segmentation
was done with Mask R-CNN, while the classification was
performed by SNet, which is computationally cheap. With only
1.29 million parameters, SNet achieves a classification accu-
racy of 96.2%, outperforming previous models. The dataset

https://github.com/julianofoleiss/SOYPR


consists of 336 images of soybean seeds divided into five
classes. The database is not publicly available. The paper does
not specify where or when the seeds were collected.

In the approach described in [2], the authors use machine
learning to classify soybean seeds and seedlings based on their
appearance and physiological potential. The results demon-
strate a strong correlation between the appearance of the seeds
and their physiological performance. A total of 700 seeds
were used, divided into seven classes based on appearance
(100 samples per class). Using a feature vector with 103
dimensions extracted from the software Ilastik and a 70/30
split for training and testing, the authors achieved a best-case
accuracy of 94%. The dataset is not publicly available.

In [7], the authors used deep learning to classify soybean
seeds with the dataset proposed in [10]. They modified the In-
ceptionV3 architecture by adding five extra layers and applied
transfer learning and adaptive learning rate adjustment tech-
niques to enhance accuracy. The evaluation metrics showed
an accuracy of 98.73% using an 80:10:10 split for training,
validation, and testing.

In [6], a computational approach was described to quantify
defects in soybean seeds through seed classification using deep
learning techniques. The classification network, SSDINet, con-
sists of a convolutional neural network with deep convolu-
tional blocks and squeeze-and-excitation blocks. Experimental
results demonstrate that SSDINet achieved an accuracy of
98.64%. The dataset includes 750 defective samples divided
into seven classes and 250 good seed samples. The dataset is
available upon request.

In [4], the authors used the dataset proposed by [10] for
soybean seed classification. The training, validation, and test
splits were not specified. The ResNet-50 model was trained
over various numbers of epochs, and its accuracy and loss were
evaluated. The results indicate that the ResNet-50 model is
efficient for multi-class soybean seed classification, achieving
an accuracy of 86.84% on the validation set.

In [13], the authors propose a dataset for identifying soybean
cultivars. This database differs from our proposed work, which
aims to classify seeds based on seed quality. The authors
employ a segmentation approach using the Canny method
and other techniques. The generated dataset contains 649
samples, with approximately 50 samples from 13 classes.
Using various classifiers and feature extraction approaches
based on pre-trained ConvNext architectures, they achieved
an average accuracy rate of 86.78%.

According to our collaboration with specialists from the
agricultural cooperative, there may be significant visual dif-
ferences between soybean seeds from various cultivars and
geographical locations. This suggests that a model trained on
samples from specific cultivars or regions might not generalize
well to previously unseen cultivars/location combinations. Cur-
rently, publicly available datasets lack information on location
or cultivar, making such evaluations impossible. To address
this, we curated a dataset meticulously gathering samples from
three distinct regions, each with different cultivars, to evaluate
the generalization capabilities of machine learning models.

IV. EXPERIMENTAL SETTINGS

This section presents the texture descriptors used in the
experiments, the metrics optimized by the classifier models,
and the GB1352 dataset.

A. Texture Descriptors

General-purpose texture descriptors have been successfully
employed in several image classification problems, including
seed classification [9], [14]. In this work, we used some of
the most well-known texture descriptors as a baseline, such as
BSIF [15], LBP [16], LPQ [17], OBIF [18], and GLCM [19].
We also employed a 128-bin histogram of the hue channel of
the image. These features are often referred to as handcrafted
features [20]. Table II (top rows) shows the parameters used
for feature extraction, as well as the dimensionality of the
feature vector.

A modern approach towards texture descriptors relies on
features extracted by neural networks trained on large datasets
dealing with many classes. Researchers have successfully
used these descriptors in several pattern recognition problems,
including seed classification [20]–[22]. They often surpass the
results obtained with handcrafted texture descriptors [20], [21].
These descriptors are often known as non-handcrafted features
[20], as they are learned by optimizing large neural networks.
In this work, we employed the following commonly used
neural networks for feature extraction: ResNet-50 [23], In-
ceptionResNetV2 [24], EfficientNet [25], ViT-Small [26], and
ViT-Base [26]. Table II (bottom rows) shows the parameters
used for feature extraction.

TABLE II: Feature extraction parameters and dimensionality.

Feature Parameters Dimensionality
HSV Hue / 128 bins 128
GLCM Cont, Homog, Corr, and Energy 64
LBP P = 8 and R = 2 59
LPQ winSize = 7 256
OBIF α = 2, 4; ε = 0.001 138
BSIF filter = ICAtextureFilters, 11×11, 8bit 256
ResNet-50 Backbone - Last feature layer 2048
InceptionResNet Backbone - Last feature layer 1536
EfficientNet Backbone - Last feature layer 1280
Vit-Small Backbone - Last feature layer 384
Vit-Base Backbone - Last feature layer 768

B. Metrics

Precision measures the quality of the prediction of the
positive class and is calculated by:

Precision =
TP

TP + FP

TP is the number of true positives, and FP is the number
of false positives. Recall measures the proportion of positive
samples that were identified out of all positive samples in the
test dataset:

Recall =
TP

TP + FN



FN is the number of false negatives. In this work, the models
optimize the F1-score metric, defined as the harmonic mean
between the Precision and Recall metrics:

F1-score =
2 · Precision · Recall
Precision + Recall

Optimizing the F1-score favors solutions where Precision
and Recall are balanced and as high as possible. Consequently,
a high F1-score is only achieved when both Precision and
Recall are high.

C. GB1352 Dataset

We will conduct experiments with the database proposed by
[10] to compare its complexity with the proposed database. In
our experiments, we will refer to this dataset as GB1352. This
database can be used for segmentation and classification tasks.
The results described in [10] only cover the segmentation
task. This database follows the GB1352-2009 standard and
employs five classes for the classification stage. The classes
are Intact, Immature, Skin-damaged, Spotted, and Broken
soybeans. The database contains 5,513 images, ranging from
1002 to 1201 samples per class. Each image has a single seed
and is 227×227 pixels in size. The article has no details about
the different regions or cultivars from which the seeds were
collected. There are also no details about the expertise of the
human classifiers who generated the database. Another detail
is that there is only one image per seed in this dataset, unlike
the proposed database, which has three different images per
seed. Other datasets mentioned in the literature are either non-
public or do not have publicly available images, only extracted
features [8], [9].

V. EXPERIMENTAL RESULTS AND DISCUSSION

In all experiments in this study, 11 descriptors were evalu-
ated: six handcrafted and five non-handcrafted, as detailed in
Section IV-A. An SVM with an RBF kernel was selected as the
classifier due to its robustness in handling high-dimensional
datasets. Optimal SVM hyperparameters for C and γ were de-
termined through an exhaustive search. In specific experiments
with the SOYPR database, we used samples from three fields
to evaluate the impact of the geographical regions where seeds
were collected, as explained in Section II. Here, two fields
were used for training and the third for testing. The reported
results reflect the average Weighted F1-score across 3-fold
cross-validation and the standard deviation. Additionally, we
utilized the dataset described in Section IV-C, where each seed
has a single image, in contrast to our proposed dataset, where
each seed has three samples. All experiments were conducted
using the Scikit-learn.

In the first experiment, we evaluated the performance of
the SOYPR and GB1352 datasets using different descriptors.
The results are presented in Table III. Preliminary experiments
demonstrated the superiority of SVM over MLP in this task,
leading us to use the SVM classifier in all subsequent ex-
periments. A 3-fold cross-validation protocol was used. In
this experiment, we did not consider the region where the
seeds were collected for the SOYPR dataset to partition the

three folds. Thus, seeds from the same region can be in
both the training and test sets. This simulates the situation in
the GB1352 dataset. Our primary objective was to determine
if the results from the SOYPR dataset were comparable to
those from the GB1352 dataset. In the SOYPR dataset, we
also evaluated the impact of having different numbers of
images per seed in training (one and three). We evaluated
configurations with a single image per seed for training and
testing (SOYPR.1-1) and three images per seed for training
against one image per seed for testing (SOYPR.3-1). The
GB1352 dataset, containing only one image per seed, did not
allow a corresponding GB1352.3-1 evaluation.

TABLE III: Average F1-scores for all descriptors, varying the
number of images per seed for training. Random partitioning.

Descriptors SOYPR.1-1 SOYPR.3-1 GB1352
HSV 73.00 ± 0.9 67.56 ± 1.8 67.32 ± 0.7
GLCM 66.52 ± 1.7 54.19 ± 0.6 60.80 ± 1.3
LBP 66.34 ± 0.7 60.38 ± 2.5 57.36 ± 0.2
LPQ 68.57 ± 0.9 67.94 ± 1.0 60.13 ± 1.1
OBIF 70.87 ± 1.7 67.50 ± 1.3 67.81 ± 0.2
BSIF 70.38 ± 0.6 68.40 ± 1.6 61.04 ± 1.1
ResNet50 81.16 ± 1.2 83.72 ± 1.0 89.96 ± 1.4
IncepResnet 79.27 ± 0.2 80.56 ± 1.5 88.01 ± 1.2
EfficientNet 82.05 ± 1.3 85.87 ± 0.3 90.16 ± 1.3
Vit-Small 83.82 ± 1.6 86.44 ± 0.8 90.55 ± 0.6
Vit-Base 83.97 ± 1.5 88.60 ± 0.3 91.06 ± 1.0

Table III shows that the results for both datasets exhibited
similar behavior when random partitioning is used. Non-
handcrafted descriptors outperformed the handcrafted ones
for both datasets. OBIF, BSIF, and the HSV Hue histogram
achieved the best results among handcrafted descriptors. Vit-
Base and Vit-Small performed best among non-handcrafted
descriptors. An increase in the number of samples per seed
in the training set negatively impacted models trained with
handcrafted descriptors. Handcrafted features are more sen-
sitive to intra-class variation that arises when the number of
samples per seed increases, as there is no guarantee that the
damage will be apparent. In contrast, models trained with non-
handcrafted features were not.

A second experiment evaluated the impact of partitioning
the SOYPR dataset regarding the regions where the seeds were
collected. We performed cross-validation across the regions
R1, R2, and R3, ensuring that the test set did not contain
samples from the regions in the training set. We evaluated
using one and three images per seed in the training set as in
the previous experiment. Table IV presents the results.

The results in Table IV show a significant decrease in
performance compared to random partitioning (Table III).
There was a performance drop of 10 to 15 percentage points
for both handcrafted and non-handcrafted descriptors. The
performance drop was expected, considering that, according
to our collaborating specialists, there are noticeable visual
differences among seeds from different cultivars and geo-
graphical locations. These differences make the underlying
classification problem more difficult because certain variations
in the test set are not present in the training set. Meanwhile,
it more accurately represents a real-world situation where we



TABLE IV: Cross-validation with region-aware partitioning.

Descriptors SOYPR.1-1 SOYPR.3-1
HSV 46.82 ± 3.4 47.02 ± 2.0
GLCM 48.12 ± 1.5 54.19 ± 0.6
LBP 41.87 ± 1.8 47.09 ± 2.4
LPQ 51.16 ± 1.6 55.93 ± 1.6
OBIF 50.10 ± 1.1 54.39 ± 0.5
BSIF 52.95 ± 3.5 56.76 ± 4.5
ResNet50 67.60 ± 1.8 70.13 ± 2.5
IncepResnet 68.02 ± 0.5 68.02 ± 0.5
EfficientNet 64.25 ± 4.0 68.12 ± 4.4
Vit-Small 73.03 ± 0.6 73.03 ± 0.6
Vit-Base 73.83 ± 0.8 74.74 ± 0.8

expect the model to generalize to previously unseen cultivars
or regions.

Our proposed dataset contains three images per seed, as
described in Section II. In a third experiment, we evaluated
the effect of combining the predictions for each image to reach
a final decision. We employed static combination methods
proposed by Kittler [27], specifically voting, sum, max, and
product. The sum and product rules produced better results
than voting and max in all experiments. Therefore, we present
the results obtained using these two approaches. Table V
shows the average weighted F1-score from our experiments.
In this context, the SOYPR-A results refer to the SOYPR
dataset with three images per seed with 3-fold cross-validation
partitioning without considering the location where the seeds
were collected, as in the first experiment. As in the second
experiment, the SOYPR-B results refer to the SOYPR dataset
with three images per seed with the folds based on the regions
where the seeds were collected.

TABLE V: F1-scores using fusion rules to combine the three
samples per seed in SOYPR database for both random and
region-aware partitioning.

Descriptors SOYPR-A SOYPR-B
Sum Prod Sum Prod

HSV 74.79 ± 1.0 76.06 ± 0.7 60.16 ± 1.3 62.95 ± 1.1
GLCM 62.46 ± 1.1 65.50 ± 0.1 47.77 ± 1.8 50.41 ± 2.1
LBP 66.94 ± 0.4 68.74 ± 0.1 59.31 ± 3.1 61.43 ± 1.4
LPQ 76.82 ± 0.8 78.14 ± 0.7 66.51 ± 2.7 67.06 ± 1.0
OBIF 77.02 ± 0.4 79.03 ± 0.8 67.91 ± 3.5 69.71 ± 2.5
BSIF 78.36 ± 1.0 80.28 ± 0.5 68.45 ± 5.9 70.27 ± 4.0
ResNet50 93.52 ± 0.2 94.00 ± 0.1 80.73 ± 4.1 81.87 ± 4.6
IncepResnet 90.29 ± 0.2 90.91 ± 0.3 79.20 ± 1.6 80.14 ± 1.5
EfficientNet 93.52 ± 0.2 94.12 ± 0.6 77.47 ± 8.2 78.50 ± 7.9
Vit-Small 95.20 ± 0.7 95.63 ± 0.4 82.70 ± 3.6 83.00 ± 4.8
Vit-Base 95.77 ± 0.5 95.89 ± 0.3 84.78 ± 4.5 85.06 ± 5.0

Table V shows that combining the predictions from images
from the same seed can improve classification accuracy. We
observed an increase of about seven percentage points in
SOYPR-A and 11 percentage points in SOYPR-B. This im-
provement is likely because the combination methods enhance
the ability to detect regions with visible damage on the seeds.
For instance, among the three samples, one may show more
apparent damage than the others. In this context, the product
rule demonstrated superior performance to other methods,
likely due to variations in the presence and absence of damage

in the samples. The sum rule also proved stable, yielding
results close to those of the product rule.

Figure 3 shows the confusion matrix per class for SOYPR-
B, using the Vit-Base backbone and Product Rule. Humidity
damage exhibits the lowest classification accuracy, reflecting
real-world challenges, as these characteristics are often not
easily visible. Experts have noted these difficulties, and while
techniques such as immersing seeds in water can make damage
more apparent, these methods are time-consuming and not
used in this protocol to avoid affecting the performance of
other classes. The Intact and Cercospora classes achieve the
highest performance. Farmers often reject dirty seeds, although
not a defect, which can lower the selling price if their percent-
age is too high. While the classification rates for this class
should technically be higher, we observe significant variation
due to the subjectivity of human classifiers’ perception.
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Fig. 3: Confusion Matrix of the best model using Vit-Base and
Prod Rule - SOYPR-B.

According to our collaborating experts in the field, eval-
uating the type of defect is not always necessary. Instead,
assessing the percentage of defective seeds can be a significant
contribution. This acceptable percentage can vary depending
on production and quality standards. Therefore, we conducted
a fourth experiment to distinguish between intact and damaged
seeds. For the SOYPR dataset, six classes were grouped as
the defective class. For the GB1352 dataset, four classes were
merged as the defective class, maintaining the same number of
intact samples as in previous experiments. Table VI presents
the results for the SOYPR and GB1352 datasets. We evaluated
performance both without and with a fusion rule using the
product rule.

Table VI shows that achieving accuracy rates above 95%
in both datasets is possible. Using combination techniques
with three samples per seed and applying product rules, we
achieved an accuracy rate of 99.3% for SOYPR-B. In all cases,



TABLE VI: F1-scores for Intact vs. Damaged classification.

Descriptors SOYPR-B SOYPR-B GB1352
Without Fusion Prod

HSV 93.53 ± 0.4 97.10 ± 0.2 85.86 ± 2.0
GLCM 88.45 ± 1.7 85.99 ± 5.3 83.24 ± 1.4
LBP 90.32 ± 0.3 93.68 ± 1.1 81.52 ± 2.1
LPQ 93.44 ± 0.2 96.94 ± 1.5 86.69 ± 1.8
OBIF 94.21 ± 0.3 97.03 ± 2.0 89.30 ± 3.1
BSIF 90.39 ± 0.7 92.44 ± 2.6 88.19 ± 3.2
Resnet50 96.03 ± 0.6 97.73 ± 1.7 94.68 ± 1.4
IncepResnet 95.73 ± 0.2 98.83 ± 0.5 94.39 ± 1.0
EfficientNet 97.03 ± 0.0 98.94 ± 0.0 95.22 ± 0.7
Vit-Small 96.74 ± 0.2 97.74 ± 1.3 94.39 ± 1.0
Vit-Base 97.00 ± 0.8 99.32 ± 0.2 95.36 ± 0.6

the Vit-Base feature achieved the best performance.

VI. CONCLUDING REMARKS

In this study, our primary goal was to evaluate our newly
proposed soybean seed defect classification database in a real-
world scenario. The database includes seeds collected from
three geographical locations, as regional differences can affect
seed visual aspects. Our new dataset is publicly available. We
investigated the robustness of handcrafted and non-handcrafted
feature descriptors in this context.

Our experiments led to the following observations: 1) Non-
handcrafted extraction methods outperformed traditional hand-
crafted methods. 2) Dividing folds by the regions where seeds
were collected significantly impacts classification accuracy. 3)
Combining predictions across the three samples of each seed
improves classification performance. 4) F1-scores above 99%
are achievable even in realistic scenarios when classifying
between intact vs. damaged seeds. The results from both
evaluated datasets support these conclusions.

Based on our experiments, achieving performance compa-
rable to that reported in the literature is feasible using simple
prediction fusion rules with three samples per seed. In future
studies, we plan to assess an updated version of this database,
applying a multi-label approach to seed evaluation.
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