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Abstract—Producing visually engaging and semantically mean-
ingful hyperlapses presents unique challenges, particularly when
integrating an audio track to enhance the watching experience.
This paper introduces a novel multimodal algorithm to create
hyperlapses that optimize semantic content retention, visual
stability, and the alignment of playback speed to the liveliness
of an accompanying song. We use object detection to estimate
the semantic importance of each frame and analyze the song’s
perceptual loudness to determine its liveliness. Then, we align
the most important segments of the video—where the hyperlapse
slows down—with the quieter parts of the song, signaling a shift
in attention from the music to the video. Our experiments show
that our approach outperforms existing methods in semantic
retention and loudness–speed correlation, while maintaining com-
parable performance in camera stability and temporal continuity.

I. INTRODUCTION

Over the past two decades, recording daily activities has
been made accessible with the advent of smartphones, wear-
able devices, and personal action cameras, such as GoPro™.
Sharing photos and videos through social media services has
also become commonplace, leading to an ever-growing accu-
mulation of visual data competing for our attention. Hands-free
recordings of daily activities often contain repetitive or irrele-
vant content because the wearer is focused on the activity itself
rather than managing the camera, which can make the video
unpleasant to watch. Egocentric video summarization aims to
infer the intent of the wearer, reduce irrelevant content, and
produce a summary that is pleasant to watch [1]. In particular,
dynamic fast-forward methods assign semantic importance
scores to the video according to domain-specific criteria, such
as route guidance [2] or presence of people [3], which are
used to lower the playback speed during important segments
or raise it in unimportant segments, producing a representative
summary video that has no gaps between scenes.

Videos recorded with head-mounted, body-mounted, or
handheld cameras are often shaky due to body movements.
In the task of dynamic fast-forward, when accelerated, the
motion in these videos is exaggerated, making the resulting
video unpleasant to watch at best, or even to cause nausea
at worst [4]. Research on creating accelerated egocentric
videos with stable camera motion, referred to as hyperlapses,
includes methods for selecting video frames that minimize
shakiness [5] and applying video stabilization with fine-tuning
for such videos [4]. An extension called semantic hyperlapse
[3] combined the semantic criteria from video summarization

with the original hyperlapse concept to create egocentric video
summaries that minimize unpleasant camera motion.

Although sound plays a major role in the video watching
experience, most hyperlapse methods leave it up to the user
to insert an audio track themselves. Matching an accelerated
video with a background music track presents an ill-posed
problem, as the criteria for what constitutes a good match are
subjective. Matos et al. [6] propose speeding up the video to
match the emotions induced by the video with those induced
by the song. However, this approach relies on a subjective
measure rather than an objective semantic element of the video
to determine acceleration, making it difficult to understand
why the video speeds up or slows down.

In this work, we introduce a multimodal hyperlapse algo-
rithm that selects the most important frames of a video while
matching the playback speed to the momentary loudness of
an input song, maintaining a correlation between audio and
video, i.e., the video slows down when the song is quiet
and speeds up when it is loud. For example, in a recording
of a morning walk, interactions between the recorder and
other people are considered important; therefore, the playback
speed in these segments is lowered and aligned with quiet
parts of the chosen song. On the other hand, non-interactive
moments will be played faster and aligned with loud portions
of the song. Compared to previous works, our method achieves
significantly better results on both semantic sampling and
loudness–playback speed correlation when compared to state-
of-the-art hyperlapse methods.

Our code is available at https://github.com/MaVILab-UFV/
SemanticMusicalHyperlapse SIBGRAPI 2024.

II. RELATED WORK

Video summarization techniques, which aim to shorten the
length of videos, can be broadly categorized into three classes
based on the type of summary produced: storyboards, which
select a set of representative static frames; video skimming,
which retains a discontinuous set of the most relevant seg-
ments; and fast-forwarding, where the video is accelerated at
a constant or variable playback speed [1]. Among these, only
fast-forwarding produces continuous summaries. Discontinu-
ities in videos can cause viewers to lose context or miss the
path taken by the recorder [7]; therefore, our focus is on fast-
forward methods.

a) Hyperlapse: Methods to address the exaggerated cam-
era motion in fast-forward egocentric videos, known as hyper-
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Fig. 1. Overview of our method, divided into feature extraction, optimal frame selection, and video composition. Our method extracts semantic and
homography features from a video and the loudness curve from a song, using these as inputs in an optimization problem to select an optimal subsequence of
frames that: (i) is representative of the semantic content of the video; (ii) aligns quiet moments in the song with lower speed-ups, and vice-versa; (iii) minimizes
camera shakiness; and (iv) has no gaps between scenes. The selected frames are then composed into a stabilized video, to which the song is added.

lapses, were pioneered by Kopf et al. [8], who reconstructed
scenes in 3D and rendered accelerated videos through smooth
virtual camera trajectories. While remarkable, the approach
has high computational cost and requires sufficient camera
motion to perform the reconstruction.

Karpenko [9] created a hyperlapse using gyroscope meta-
data to estimate the camera orientations for stabilizing the
video. Although it requires metadata, this method is notable for
being the first hyperlapse method meant for real-time usage.

Poleg et al. [10] formulated the hyperlapse as a graph
problem, modeling video frames as nodes and frame-to-frame
transitions as weighted edges. The frame sampling is solved
as a shortest path problem, and the frames along the path are
included in the output hyperlapse.

Joshi et al. [5] developed a frame sampling method inspired
by dynamic time warping. Their algorithm scores frame-to-
frame transitions in order to achieve smooth visual transitions
while avoiding large deviations from the desired speed-up
and abrupt changes in speed-ups, building a sparse dynamic
programming matrix to find the optimal frame selection.

b) Semantic fast-forwarding: While the aforementioned
methods produce visually stable accelerated videos, they often
overlook important content by fast-forwarding through it,
causing key information to go practically unnoticed.

A fast-forwarding algorithm based on semantic rules was
proposed by Cheng et al. [11], designed around the metaphor
of a car driver that slows down near areas of interest and using
feedback from the viewer to learn what is important to them.

Okamoto and Yanai [2] proposed a semantic fast-forwarding
method tailored for route guidance in egocentric videos, where
temporal discontinuities can confuse the viewer about their
current location. In their approach, frame scores depend on the
recorder’s actions—turning, stopping, or moving forward—
and the presence of crosswalks and turns.

c) Semantic hyperlapse: Ramos et al. [3] expanded upon
the work of Poleg et al. [10], proposing the first semantic
hyperlapse. Their method assigns a semantic score to each
frame based on the prominence of faces, then fast-forwards
the video with low speed for important segments and high
speed otherwise. As an extension, Silva et al. [4] introduced
a stabilization algorithm tailored for semantic hyperlapses and
a dataset of videos with varying semantic scores. Further
contributions by Silva et al. [12] proposed a weighted sparse
sampling approach to selecting a set of frames that minimizes
the reconstruction error of the original video given the required
speed-up in each video segment, and subsequently aimed to
solve the problem of abrupt jumps between segments [7].

Most hyperlapses focus on visual features, without input
from sound streams. To the best of our knowledge, only two
works have presented audio-driven semantic hyperlapses.

Furlan et al. [13] proposed the first audio-driven semantic
hyperlapse: the audio stream of the video is used to compute
the video frames semantic scores, assigning higher speed-ups
to unpleasant segments, such as those featuring noisy crowds
or streets. However, the resulting hyperlapse has no sound.

Matos et al. [6] proposed a hyperlapse in which the emo-
tions of the video and the song are aligned in time. The
video and the song are processed frame-by-frame by a neural
network to estimate emotion curves based on valence and
arousal. The method uses a dynamic programming algorithm
to fast-forward the video while aligning the emotion curves.
Matos et al. [14] extended their work with a method to select
the best matching song from a library.

We heavily draw inspiration from the optimization methods
proposed by Joshi et al. [5] and Matos et al. [6], and model the
video fast-forward problem as the construction and traversal of
a dynamic programming matrix. Unlike the two methods, we
account for the semantic features of the video during the frame



selection. Our method differs from Joshi et al. [5] in being
able to perfectly achieve the requested video length, which is
needed to include a song in the output hyperlapse. Regarding
Matos et al. [6], our method differs in how we match the
video to a song: instead of aligning video and music based
on emotion as they do, we align hyperlapse playback speed to
song loudness, which are objectively measurable metrics.

III. METHODOLOGY

In this section, we describe our method to create semantic
hyperlapses with musical alignment. As shown in Figure 1,
the process can be divided into three major steps:

a) Feature extraction: As proposed by Ramos et al. [3],
we use an object detection algorithm to identify a set Ki of
objects of interest for each frame i of the video, and then
calculate each Vi in the semantic profile as:

Vi =
∑
k∈Ki

P (k) ·Gσ(k) ·A(k), (1)

where k represents a detected object, P (k) denotes the confi-
dence of the detector about k, Gσ(k) measures the centrality
of the object in the frame, and A(k) is the area of its bounding
box. Intuitively, objects with high detection confidence, near
the center of the frame and with large bounding boxes (i.e.,
those closer in proximity) are more likely to draw the attention
of the viewer and therefore are assigned higher scores.

We also calculate the pairwise distance matrix to measure
shakiness as the motion of the central pixel of the frames:

T (i, j) =
||H(i, j) ·M−M||2

||M||2
, (2)

where H(i, j) is the homography matrix from frame i to j,
M is the coordinate vector of the central pixel, and || . . . ||2
denotes the Euclidean norm. If the homography estimation
fails or the reprojection error exceeds 0.2 · ||M||2, we set
T (i, j) = 1. This is equivalent to the frame matching cost
defined by Joshi et al. [5] and the shaking ratio metric defined
by Ramos et al. [15]. Because our algorithm is guaranteed
to never exceed the specified maximum speed-up, only the
homographies between frames within ∆ indices of each other
are calculated, greatly reducing the computational cost and
memory usage of T .

The loudness profile is the momentary loudness of an input
song, described in EBU Tech 3341 [16], which is designed
around how the human ear perceives sounds. This measure-
ment is computed using a 400 ms window centered at each
timestep with the same frequency as the frames per second
(FPS) of the paired video and saved as A = ⟨A1, A2, . . . , An⟩.

b) Optimal frame selection: We model the optimal frame
selection as a dynamic programming algorithm, where a re-
currence relation D(a, v) represents the minimum cumulative
cost of choosing frames and speed-up rates from the start of
the sequence up to the audio timestep a and video frame v:

D(a, v) = min
s∈[1,∆]

C(a, v, s) +D(a− 1, v − s), (3)

where s is a candidate speed-up, ∆ is the maximum momen-
tary speed-up, and D(1, 1) = 0. The traceback matrix S(a, v)
stores which choices were made in each D(a, v), and is used to
determine what is the set of frames with the lowest cumulative
cost that forms a path through the whole video:

S(a, v) = argmin
s∈[1,∆]

C(a, v, s) +D(a− 1, v − s). (4)

The best path can be retrieved through a backward traversal
of S, storing the values of v while recursively moving from
⟨a, v⟩ to ⟨a− 1, v − S(a, v)⟩ until ⟨a, v⟩ = ⟨1, 1⟩. To ensure
that the length of the resulting video matches the song exactly,
preventing either of them from being cut short, we traverse
from a = amax and v = vmax, i.e., the end of the song and
video, respectively.

The cost of choosing the video frame v and speed-up s at
the timestep a is determined by the weighted combination of
the speed-up cost, video semantic cost, audio alignment cost
and frame matching cost, respectively:

C(a, v, s) = λsCs(s)+λvCv(v)+λaCa(a, s)+λmCm(v, s).
(5)

In the following paragraphs, we describe the specifics of
each term of the cost function. Similarly to Joshi et al. [5]
and Matos et al. [6], we found that truncating the costs with
τ = 200 produces good results, ensuring similar magnitudes
for the functions and simplifying the selection of the λ
hyperparameters across videos and songs.

The speed-up cost (Cs) is a regularization to control how
often and how much the playback speed changes, and is
defined as:

Cs(s) = min
{
(s− 1)2, τ

}
, (6)

which heavily penalizes high speed-up rates.
The video semantic cost (Cv) aims to select as many im-

portant frames as possible while omitting or speeding through
unimportant frames. To achieve this, we define:

Cv(v) = −τ · R[Vv], (7)

such that it decreases based on the relative importance of the
semantic score Vv , starting at Cv = 0 for the least important
frames and down to Cv = −τ for the most important frame.

The semantic profile is susceptible to outliers; for example,
the appearance of a crowd for a few frames can cause the
value of Vv to spike, disproportionately lowering the scores
of other important frames with fewer people. To avoid this,
we compute R[Vv] using rank-based normalization [17]: each
value in V is replaced by its position (rank) in an ordered
array, and then divided by the array length to make the result
bounded in [0, 1]. Ties are handled with competition ranking.
Because the transformation depends only on the ordering, it is
robust to outliers and requires no knowledge of the distribution
of the values of V .

The audio alignment cost (Ca) controls the correlation
between the playback speed of the hyperlapse and the loudness
of the song, slowing down during quiet segments or speeding



up during loud segments. For this, we first calculate the
expected speed-up E(a) at each song timestep a as:

E(a) = 1 + (∆− 1) · R[Aa]. (8)

Similarly to Equation 7, we use rank normalization to obtain
values in the [0, 1] range without making assumptions about
outliers or the distribution of A. Then, we perform linear
interpolation over the normalized loudness values to convert
them into proportional speed values. Then, we define a cost
function to achieve the desired speed-up behavior:

Ca(a, s) = min
{
(s− E(a))

2
, τ
}

. (9)

The alignment between loudness and semantic importance
is a product of the joint minimization of Ca and Cv: the video
must slow down to highlight important frames, but doing so
during loud audio segments would raise Ca. Consequently, the
optimal strategy is to line up important segments of the video
with periods of quiet audio, and vice-versa.

The frame matching cost (Cm) reduces camera shakiness
by penalizing motion with:

Cm(v, s) = τ · T (v − s, v), (10)

where T is the pairwise distance matrix from Equation 2.
c) Video composition: The output from the previous step

is a sequence of frame indices that should be included in the
hyperlapse. However, to be useful for humans, this sequence
must be composed into a video.

In the final step, we compose the hyperlapse using the
stabilization algorithm proposed by Silva et al. [4] for ego-
centric fast-forward videos. The camera movements between
frames sampled by our algorithm are smoothed using weighted
homographies, while the discarded frames are used to cover
blank spaces produced by the homographies. Images corrupted
by the smoothing step are replaced with discarded frames that
have a high semantic score. Then, the chosen song is added
as the audio stream of the hyperlapse to complete the output
of our method.

IV. EXPERIMENTS

In this section, we describe the datasets, evaluation criteria
and hyperparameters used in our experimental evaluation.
Then, we present the results and discussion in the comparisons
made to existing hyperlapse methods and in the ablation study.

a) Datasets: We evaluate our method on videos from the
Annotated Semantic Dataset [4], which consists of 11 videos
of daily activities, each 4 to 10 minutes long, annotated for the
presence of people. The “0p” videos have few or no people,
while the “75p” videos feature many. The videos also vary in
camera movements, being recorded while walking, biking, or
driving. We used the songs from the Database for Emotional
Analysis of Music [18], which contains 1,744 excerpts, each
about 45 seconds long. Instead of using the provided emotion
annotations, we used the Essentia library to extract perceptual
loudness curves. We conducted experiments using all possible
combinations of videos and songs.

b) Experimental evaluation: Our quantitative analysis of
the output fast-forward video is based on four aspects: (i) se-
mantic score measures how much information was retained
out of the maximum possible within the same amount of
frames [12]; (ii) correlation score measures how good is the
match between the output speed-up curve and the momentary
song loudness using the Spearman correlation coefficient [19];
(iii) instability score measures the visual smoothness as the
average standard deviation of pixels within a sliding window
of seven neighbor frames [20]; and (iv) discontinuity score
is the root-mean-square error (RMSE) between the speed-up
from each frame and the overall target speed-up, to measure
how abrupt and large changes between the frames are [7].

We compare the performance of our method to three
other representative methods, based on their primary goals:
(i) EgoSampling (ES) [10] for hyperlapses; (ii) expanded
Sparse Adaptive Sampling (SAS2) [7] for semantic-driven
hyperlapses; and (iii) Musical Hyperlapse (MH) [6] for music-
driven hyperlapses. Because Microsoft Hyperlapse [5] does
not report the frame indices or momentary speed-ups needed
to calculate the metrics, we omitted it from the evaluation.

c) Hyperparameters: Our method requires five parame-
ters to be determined: the maximum speed-up ∆ and the four
λ weights, which control the following: semantic importance
(λv), camera movement (λm), audio-speed correlation (λa),
and speed-up penalization (λs).

We found that using ⟨λv, λm, λa, λs⟩ = ⟨2, 2, 1, 1⟩ provides
a good balance between our criteria while giving higher
priority to video semantics and stability. In practice, our
method is robust to changes in these parameters, and this
choice ultimately depends on user preferences.

Increasing ∆ reduces the time spent on unimportant frames
but worsens the temporal continuity of the video. Larger jumps
make it harder to obtain a smooth camera transition due to
either a greater distance moved between frames or a complete
lack of matching keypoints. We found that ∆ = 20 presents a
good balance between these factors.

A. Results and discussion

In this section, we present and discuss the results summa-
rized in Table I.

Regarding the semantic score, we attribute the higher
performance of our method over SAS2 to a difference in
optimization criteria. Unlike SAS2, which explicitly assigns
speeds to whole segments based on their importance, our
method attempts to maximize the total semantic content of the
fast-forward video with frame-level granularity. Consequently,
our method performs better at selecting semantic frames in
videos with low semantic content (e.g., 0p) or in non-relevant
segments with some important frames.

A downside of our approach is that speed-up decisions are
made implicitly based on semantics, assuming neighboring
frames have similar semantic scores and that it is optimal
to slow down for them. However, this assumption may not
hold if the semantic score fluctuates due to camera motion,



TABLE I
AVERAGE PERFORMANCE OF METHODS ACROSS VIDEO AND SONG PAIRINGS.

Video Semantic (%, ↑) Correlation (↑) Instability (↓) Discontinuity (↓)
ES SAS2 MH Ours ES SAS2 MH Ours ES SAS2 MH Ours ES SAS2 MH Ours

Biking 0p 9.1 15.3 14.9 91.1 0.017 -0.001 0.007 0.775 26.1 21.7 24.1 22.5 11.2 5.6 0.4 4.2
Biking 25p 7.8 28.6 11.9 33.4 0.002 -0.009 0.009 0.507 50.7 45.0 50.2 47.5 7.7 15.1 0.5 7.2
Biking 50p 18.7 27.1 19.3 50.0 0.009 0.002 0.006 0.762 33.8 29.2 32.7 30.4 6.3 10.1 0.5 7.5
Biking 50p 2 17.3 31.9 22.3 79.9 -0.013 -0.002 0.008 0.446 25.2 24.0 24.8 21.9 11.7 6.8 0.9 7.0
Driving 0p 7.0 34.4 12.5 93.9 -0.015 -0.013 -0.002 0.801 44.7 37.6 42.8 39.3 11.7 6.8 0.6 4.5
Driving 25p 9.0 28.6 16.4 92.7 -0.020 -0.002 0.006 0.394 37.6 31.4 36.5 31.6 8.5 5.9 0.5 5.2
Driving 50p 9.2 18.9 12.4 73.0 0.002 -0.001 0.010 0.452 41.3 33.9 38.7 32.6 13.3 7.3 0.4 7.8
Walking 0p 10.1 13.0 17.9 95.5 -0.009 0.009 -0.005 0.747 27.5 28.2 28.6 26.6 11.9 4.2 0.9 4.1
Walking 25p 3.3 32.7 19.6 57.2 -0.005 0.014 0.007 0.387 31.4 30.1 32.7 28.9 13.3 7.2 0.7 7.3
Walking 50p 5.5 29.3 23.5 60.5 0.003 -0.015 0.017 0.569 35.1 33.3 34.5 31.6 22.4 12.7 0.5 7.2
Walking 75p 12.6 47.5 39.1 58.5 -0.038 0.005 0.010 0.708 40.3 33.5 38.0 35.2 29.2 10.0 0.3 7.1

Overall 10.0 27.9 18.1 71.4 -0.006 -0.001 0.007 0.595 35.8 31.6 34.9 31.6 13.4 8.3 0.6 6.3

in which case our algorithm will select the most important
frames without necessarily slowing down.

Our method is the only one to achieve a positive correla-
tion between the song loudness and video playback speed.
In particular, the poor performance of MH in this metric
is expected, since their method aims to match the induced
emotions between video and music, a goal unrelated to this
correlation metric. Similarly, we expect our method to perform
poorly on their emotion matching metric.

Our method fails to achieve positive correlation when the
loud segments of the song fully coincide with the important
segments of the video. For example, in Figure 2, the beginning
of the video is highly important, necessitating a lower playback
speed. This makes the song in (iii) a poor fit, as its loud
segments also occur at the start. In such cases, increasing
the correlation would require significant drops in the semantic
score, which is undesirable.

The primary objectives of semantic and musical methods
also affect instability performance. By lowering the playback
speed, these methods select similar frames in sequence, which
improves stability.

The discontinuity score measures the RMSE to a constant
speed-up, and is a competing goal to the correlation score,
which, for most songs, would require the speed-up to change.
Despite this, our method performs within an acceptable range,
being slightly better than SAS2, indicating that we obey
the required speed-up without creating large gaps between
scenes. In our tests, we found that MH was able to maximize
their emotion alignment with little variation in the speed-up,
resulting in low discontinuity. ES allows for skips of up to 100
frames, which produces gaps in the video and is reflected by
the metric. Among the four methods, only ours and MH match
the required speed-up exactly, which is crucial to prevent the
video ending before the song and vice-versa.

a) Ablation study: In Figure 3, we show how each
component of the cost function affects our method. Removing
the video semantic cost (Cv) leads to a sharp decline in
the semantic metric and makes the frame selection primarily
driven by the song. This change shows that large swings in
speed are required to select as many high-semantic frames as
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Fig. 2. We present the results of pairing the video in (i), which requires a
reduced playback speed in the first half, with two different songs: the song
in (ii) produces a speed-up curve that aligns with both the video’s semantic
content and the song’s loudness; in (iii), only the video’s semantic content
is matched, as the loud segments of the song coincide with the important
segments of the video.

possible, which is reflected in the discontinuity metric.
Removing the audio alignment cost (Ca) causes the total

loss of correlation between speed-up and loudness, although
the resulting increase in the semantic score is smaller due to
the originally smaller importance of this term. This is expected
and reflects the results in Table I.

The impact of removing the frame matching cost (Cm) is
relatively minor across the metrics. In particular and unexpect-
edly, no changes occurred in the instability metric. Despite
this, we chose to maintain this term in the optimization cost
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Fig. 3. Results of the ablation study, aggregated over the whole dataset.

to assist in the used homography-based video stabilizer [4].
The speed-up cost (Cs) achieves our goals of reducing the

occurrence of large skips, as reflected by the discontinuity
score, and has no impact in the other factors, which we
attribute to lower weight (λs) assigned to speed-up cost.
Conversely, increasing λs would gradually lead the optimizer
to behave like a uniform sampler, lowering the discontinuity
to the detriment of the other scores.

V. CONCLUSION

We presented a novel method to create hyperlapses that
are representative of the semantic content in the video while
maximizing the correlation between song loudness and video
playback speed. Our extension of the semantic hyperlapse
aims to add music to the video summaries while maintaining
a correlation between audio and video: the segments when
the playback speed is reduced to show important frames must
coincide the quiet parts of the song, drawing the attention to
the video; conversely, segments with higher speed-ups must
match the louder parts of the song.

Our proposed algorithm achieves superior performance in
producing a hyperlapse that is representative of the original
video while introducing the novel loudness–speed correlation,
and has comparable performance in the stability and temporal
continuity to previous methods.

For future work, we aim to develop a method for selecting
songs that produce a good match from a music library and
to explore hyperparameter optimization to find better default
values for the weights of our cost function.
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