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Department of Statistics, Applied Mathematics and Computing

State University of São Paulo (UNESP), Rio Claro, Brazil
vinicius.kawai@unesp.br, gustavo.leticio@unesp.br, lucas.valem@unesp.br, daniel.pedronette@unesp.br

Abstract—Despite the impressive advances in image under-
standing approaches, defining similarity among images remains
a challenging task, crucial for many applications such as
classification and retrieval. Mainly supported by Convolution
Neural Networks (CNNs) and Transformer-based models, image
representation techniques are the main reason for the advances.
On the other hand, comparisons are mostly computed based on
traditional pairwise measures, such as the Euclidean distance,
while contextual similarity approaches can lead to effective
results in defining similarity between points in high-dimensional
spaces. This paper introduces a novel approach to contextual
similarity by combining two techniques: neighbor embedding
projection methods and rank-based manifold learning. High-
dimensional features are projected in a 2D space used for
efficiently ranking computation. Subsequently, manifold learning
methods are exploited for a re-ranking step. An experimental
evaluation conducted on different datasets and visual features
indicates that the proposed approach leads to significant gains
in comparison to the original feature representations and the
neighbor embedding method in isolation.

I. INTRODUCTION

Manifold learning is a pivotal research area in computer sci-
ence and data analysis, focusing on uncovering the underlying
geometric structure of high-dimensional data. This technique
is fundamental in reducing dimensionality while preserving
essential data characteristics, enabling more efficient and accu-
rate data processing and analysis. Manifold learning methods
have found extensive applications in fields such as image
processing and computer vision where high-dimensional data
is prevalent [1]–[3].

The main idea of manifold learning is the assumption
that high-dimensional data points lie on or near a lower-
dimensional manifold. Different methods can achieve sig-
nificant dimensionality reduction representations by identify-
ing and mapping this manifold, thus facilitating tasks like
visualization, clustering, and retrieval. Traditional methods,
such as Principal Component Analysis (PCA) [4] and Multi-
Dimensional Scaling (MDS) [5], provide linear approaches
to dimensionality reduction. However, real-world data often
exhibit non-linear structures that require more sophisticated
techniques.

In this scenario, unlike linear dimensionality reduction
methods, manifold learning techniques can provide a good
approach for non-linear problems by preserving the local struc-
ture of the input data in the low-dimensional space. Several
manifold learning methods have been proposed to address
these challenges, each with unique strengths and applications.

One of the most well-known non-linear manifold learning
methods is Locally Linear Embedding (LLE) [6]. LLE works
by preserving local relationships among data points, assuming

that each data point and its neighbors lie on or near a
locally linear patch of the manifold. Another notable method
is Isomap (Isometric Mapping) [7], which extends Multi-
Dimensional Scaling (MDS) [5] by incorporating geodesic
distances instead of Euclidean distances. By approximating
the manifold’s intrinsic geometry through these geodesic dis-
tances, Isomap can effectively handle non-linear structures
in high-dimensional data, providing a more accurate low-
dimensional representation.

Recently, Uniform Manifold Approximation and Projection
(UMAP) [8] has gained attention for its scalability and ef-
ficiency. UMAP constructs a high-dimensional graph repre-
sentation of the data and then optimizes a low-dimensional
graph to be as structurally similar as possible. This approach
balances the preservation of local and global data structure,
making UMAP a versatile tool for dimensionality reduction
and visualization.

Due to UMAP’s remarkable ability to preserve both local
and global structures while enhancing the quality of the rep-
resentations in a lower-dimensional space, this dimensionality
reduction method has been widely applied across various fields
of knowledge. Some examples include biological applications,
such as single-cell RNA sequencing [9], understanding micro-
bial diversity [10], and genomic studies [11], [12]. Similarly,
other dimensionality reduction methods have also been utilized
effectively in these areas. Beyond biology, UMAP and other
techniques have been employed as preprocessing steps in
computational methods. For instance, they have significantly
improved clustering algorithms [13], [14] and Content Based
Image Retrieval tasks [15], [16].

Given these advancements, recent literature has introduced
novel approaches to image retrieval that leverage dimension-
ality reduction techniques [15], specifically t-SNE [17] and
UMAP [8]. These strategies utilize the spatial relationships
defined by neighbor embedding methods to compute more
effective distance/similarity measures between images. Exper-
iments demonstrate significant gains in retrieval effectiveness
compared to original feature representations and competitive
results against state-of-the-art methods. This highlights the po-
tential of visualization techniques in improving image retrieval
by better exploiting the manifold structure of image datasets.

From another perspective, manifold analysis also has been
exploited by several different approaches in order to improve
the effectiveness of image retrieval tasks. Rank-based mani-
fold learning techniques focus on encoding the more global
structure of ranked lists to generate a new, improved ranking
result. These methods leverage similarity information encoded



within a set of ranked lists to better capture the underlying
structure of the data. For a ranked list of images, evaluating
the top positions in the ranking, i.e., the most similar images,
is equivalent to assessing a subset of the entire ranking. This
approach aligns with the concept of manifolds, as it focuses
on the local neighborhood structure within the ranked list.

By analyzing and refining these top-ranked subsets, rank-
based manifold learning methods can effectively improve
the overall ranking quality, enhancing tasks such as image
retrieval. In this way, recent studies have modeled visual-
ization tasks as retrieval tasks [18], [19], thereby employing
similarity learning strategies to enhance the effectiveness of
visualizations. By utilizing graph-based approaches [20]–[22],
diffusion processes [23], affinity learning [24], representa-
tion learning [25], clustering-based re-ranking [26], contex-
tual measures [27] and scalable manifold ranking [28], post-
processing methods based on manifold analysis have demon-
strated significant improvements in the final retrieval results.

This work proposes a novel approach that combines recent
rank-based manifold learning methods with neighbor embed-
ding projection techniques, specifically UMAP, to achieve
improved image retrieval results. The embeddings provided
by UMAP offer a better representation of features in the
reduced-dimensional space, enabling an efficient construction
of rankings that encode similarity information. Subsequently,
rank-based manifold learning methods perform re-ranking
tasks, further enhancing the final effectiveness of image re-
trieval. By integrating these techniques, our approach seeks
to leverage the strengths of both methodologies, resulting in a
more effective retrieval system. Experiments considering CNN
and Transformer-based features indicated that the proposed
approach can improve the effectiveness of image retrieval tasks
compared with both the original feature and the UMAP results
in isolation.

The remainder of the paper is organized as follows: Sec-
tion II presents a detailed description of the proposed ap-
proach. Section III discusses the experimental evaluation and
Section IV presents the conclusions.

II. PROPOSED APPROACH: COMBINED MANIFOLD
ANALYSIS BY NEIGHBOR EMBEDDING AND RANKING

A. Overview

The proposed approach integrates rank-based manifold
learning methods with a recent dimensionality reduction tech-
nique to enhance content-based image retrieval tasks. The
strategy involves several key steps, as illustrated in Figure 1
and detailed below:
• Feature Extraction [A-C]: High-dimensional features are
extracted from images using deep learning models such as
CNNs [29] and Transformers [30], [31]. This step provides a
robust feature representation of the images.
• Dimensionality Reduction [D-E]: Uniform Manifold Ap-
proximation and Projection (UMAP) is applied to the high-
dimensional features to project them into a lower-dimensional
space. UMAP preserves the local and global structures of the
data, resulting in a compact and meaningful representation of
the image features.
• Initial Ranking [F]: In the reduced-dimensional space,
initial similarity rankings are generated based on the Euclidean
distance between image features via a tree-based indexing

method (Balltree). This step establishes a baseline ranking of
images according to their similarity.
• Rank-based Manifold Analysis and Re-ranking [G]: The
rank-based manifold methods are applied to the initial rankings
to improve the quality and accuracy of the retrieval results. By
analyzing and refining the initial ranking, these methods ensure
that the most relevant images are prioritized in the re-ranking
step.
• Final Retrieval Result [H]: The refined rankings are used
to retrieve the most similar images to a given query, achieving
enhanced retrieval performance by leveraging the strengths
of both dimensionality reduction and rank-based manifold
learning techniques.

B. Formal Definitions
• Image Retrieval Task

The image retrieval task aims to identify and return images
from a collection C that are most similar to a given query
image xq . Typically, retrieval tasks are based on features
extracted from the images, which represent their content in a
high-dimensional space. In this way, a feature descriptor can
be formally defined as a function f : C → Rd that computes a
d-dimensional vector for an input image, such that xi = f(xi)
and xi = [xi1, xi2, . . . , xid]. Here, xij ∈ R denotes the j-th
feature for the image xi.

In this manner, the collection represented as C =
{x1, x2, . . . , xn}, consists of images where each image x is
defined by a d-dimensional feature vector x. Based on these
features, X ⊂ Rd denotes a set of n points in a d-dimensional
Euclidean space Rd, such that xi ∈ X .

The similarity between two images is defined based on the
distance between their respective feature vectors. The distance
function can be defined as ρ : Rd × Rd → R+, typically
given by the Euclidean distance. Thus, the distance between
two images xi and xj can be calculated as ρ(xi,xj), where
x ∈ Rd is the feature representation of image x.

The nearest neighbor search problem aims to find the
element N (xq) in the set X with the smallest distance ρ to
the query xq. This definition can be extended to consider a set
of k nearest neighbors N (xq, k), which includes the k closest
elements to the query. In this way, the ranked list τq can be
defined as a permutation of (x1, x2, . . . , xn) from N (xq, k),
where τq(xi) is interpreted as the position (or rank) of image
xi in the ranked list τq . If xi is ranked before xj in the ranked
list of xq , i.e., τq(xi) < τq(xj), then ρ(xq,xi) ≤ ρ(xq,xj).
• Rank-based Manifold Learning Methods

Rank-based manifold learning methods aim to utilize sim-
ilarity information encoded in a set of ranked lists T =
[τ1, τ2, . . . , τn] to better capture the underlying data structure.
The goal is to compute a new, more effective set of ranked
lists Tm in an unsupervised manner, thereby enhancing the
effectiveness of the retrieval results. Formally, these methods
can be described as a function fm:

Tm = fm(T) (1)

By generating a new set of ranked lists, usually these methods
are referred to as re-ranking methods.
• Neighbor Embedding Projection

Pairwise comparisons between images, such as those us-
ing Euclidean distance on original high-dimensional features,



Fig. 1. Proposed Approach: Combined Manifold by Ranking and Projection for Content Based Image Retrieval Tasks

often fail to capture the global similarity information inher-
ent in the dataset’s manifold structure. Additionally, high-
dimensional spaces pose significant challenges related to
efficiency, such as increased processing time and storage
requirements, as well as effectiveness, including the quality
of results.

In this work, we employ a projection technique based on
the neighbor embedding framework to leverage the spatial
relationships defined in low-dimensional spaces. A projection
technique or algorithm can be formally defined as a function
P : Rd → Rq , where q ≪ d, typically with q = 2. This
projection function transforms a set X in the high-dimensional
space to a new set X ′ in the low-dimensional space, such that
X ′ = P (X ).

C. Manifold Analysis by Neighbor Embedding Projection

Uniform Manifold Approximation and Projection
(UMAP) [8] is a powerful dimensionality reduction
technique that effectively balances the preservation of
both local and global structures within data. By constructing
a high-dimensional k-nearest neighbor (k-NN) graph and
optimizing it to create a lower-dimensional representation,
UMAP ensures that the intrinsic geometry of the data is
maintained. In this manner, this method transforms complex
high-dimensional data into a more manageable form while
retaining essential characteristics needed for accurate analysis.

UMAP’s process involves the creation of a fuzzy simplicial
set to represent the data, followed by an optimization step that
minimizes the cross-entropy between the high-dimensional
and low-dimensional fuzzy sets. The fuzzy simplicial set
introduces a degree of uncertainty to the connections between
data points, allowing for a more flexible representation of
data relationships. This results in compact and meaningful
embeddings that capture the underlying structure of the data,

making UMAP a useful tool for various applications in data
analysis, pre-processing and visualization.

However, one of the primary limitations of UMAP is its
sensitivity to hyperparameter settings, such as the number of
neighbors (n neighbors) and the minimum distance (min dist).
If these hyperparameters are not carefully tuned, UMAP
may produce embeddings that do not accurately capture the
intrinsic geometry of the data, leading to suboptimal retrieval
performance. Additionally, UMAP can struggle with datasets
that exhibit significant variability in local density, which can
result in distortions in the low-dimensional representation and
affect the quality of the rankings generated.

D. Rank-based Manifold Analysis

Considering recent advances in rank-based manifold learn-
ing approaches, pyUDLF (Python framework for unsupervised
distance learning methods) [32] was proposed in order to
provide easy access to different unsupervised distance learning
approaches. In this way, we evaluate the proposed combination
between UMAP and three different ranking methods: LHRR,
CPRR, and RFE, described as follows:
• Log-based Hypergraph of Ranking References
(LHRR) [22]: An approach that uses hypergraphs structures
for data representation to explore similarity relationships
between elements;
• Cartesian Product of Ranking References (CPRR) [33]:
Uses the Cartesian product of rankings and neighborhood sets
to calculate a new similarity measure, considering the pairs of
relationships weighted by the ranking information;
• Rank Flow Embedding (RFE) [34]: This method combines
Cartesian Product strategies and hypergraph structures to build
connected components capable of generating new embeddings
as well as performing re-ranking tasks.



III. EXPERIMENTAL EVALUATION

A. Datasets and Features
The experimental evaluation utilized several well-known

public datasets, which are outlined below:
• Flowers [35]: This dataset consists of 1,360 images across
17 different flower species, with each species represented
by 80 images. The dataset is provided by the University of
Oxford.
• Corel5k [36]: Featuring a diverse range of scenes, this
dataset includes images of fireworks, vehicles, microscopy
images, tiles, trees, and more. It comprises 50 categories, each
containing 100 images.
• Dogs [37]: This dataset contains a total of 20,580 images,
showcasing 120 different breeds of dogs from around the
world. Unlike the Flowers and Corel5k datasets, which are
balanced in terms of the number of images per class, the Dogs
dataset has slight variations in the number of images across
different classes.

For the experimental evaluation, various deep learning-
based features were employed. Results were obtained us-
ing features from three different models: one Convolutional
Neural Network (CNN) model (ResNet152 [29]) and two
Transformer-based models (Swin-TF [30] and Dinov2 [31]).
All features were pre-trained on the ImageNet [38] dataset
using transfer learning techniques.

B. Experimental Protocol
The experimental protocol follows an unsupervised setting,

where all images are taken as queries for Flowers, Corel5k,
and Dogs datasets. The Euclidean distance was used in all
experiments. The Ball Tree [39] is used as the indexing method
for all datasets, using the size of ranked lists as 1K.

The effectiveness measures considered are the Recall, Preci-
sion (at different depths defined according to the dataset) and
the Mean Average Precision (MAP). For each experiment, the
effectiveness measures are reported for the original features,
UMAP, UMAP + RFE, UMAP + CPRR and UMAP + LHRR.

Regarding the UMAP parameters, n components = 2 and
n neighbors = 15 were used. For the RFE, CPRR, and LHRR
methods, the default parameters of the pyUDLF framework
(from which their implementations were used) were employed,
except for the parameter K, which varied according to the
dataset. Specifically, K = 80 was used for the three methods
on the Flowers dataset, K = 100 for the Corel5k dataset, and
K = 120 for the Dogs dataset.

C. Retrieval Results
In this section, we present the effectiveness results of

our proposed approach evaluated on three different datasets.
Tables I, II and III provides Precision, Recall and MAP values
for Flowers, Corel5k and Dogs datasets respectively.

The results indicate that the baseline effectiveness was
significantly improved by the application of UMAP. Further
enhancements were observed when UMAP was combined
with rank-based methods (RFE, CPRR, and LHRR). For
example, on the Flowers dataset, the combination of UMAP
with RFE resulted in notable improvements in MAP, with
values increasing from 92.91% (baseline SwinTF) to 99.53%.
Similarly, for the SwinTF Corel5k dataset, combining UMAP
with LHRR achieved a MAP of 92.69%, up from the baseline

MAP of 73.92%. On the Dogs dataset, the combination of
UMAP with LHRR improved the MAP from 55.18% (baseline
DinoV2) to 69.58%.

Additionally, Figure 2 showcases visual examples of the
ranking results for the same query image using different
methods. These visual comparisons highlight the qualitative
improvements in retrieval quality achieved by our approach,
demonstrating more accurate and relevant image retrieval
results.

The observed differences in effectiveness across datasets
can be attributed to their inherent characteristics. For instance,
the Flowers dataset, with its relatively lower complexity and
more homogeneous classes, benefited greatly from the refined
rankings, achieving near-perfect precision in the top-ranked
results. In contrast, the Dogs dataset presented a more chal-
lenging scenario. With its imbalanced class distribution, higher
complexity, and greater class diversity, less precise manifold
information is available to the projection approach. Neverthe-
less, the proposed approach still managed to outperform the
baseline significantly.

These findings underscore the effectiveness of integrating
UMAP with rank-based manifold learning methods, partic-
ularly in contexts where capturing complex data structures
and improving retrieval accuracy are critical. The consistent
improvements across different datasets validate the robustness
of the proposed method, highlighting its potential for broader
applications in image retrieval.

TABLE I
RETRIEVAL RESULTS FOR OXFORD 17 FLOWERS DATASET.

Method Measure Resnet152 SwinTF DinoV2
P@10 81.47 % 98.73 % 99.96 %
P@20 74.41 % 97.87 % 99.82 %
P@30 68.88 % 97.16 % 99.64 %

None - Baseline P@50 60.28 % 96.21 % 99.30 %
P@80 49.19 % 90.59 % 97.27 %
Recall@40 32.18 % 48.32 % 49.75 %
MAP 51.62 % 92.91 % 98.77 %
P@10 84.38 % 99.49 % 100.00 %
P@20 81.85 % 99.40 % 99.64 %
P@30 80.20 % 99.36 % 99.49 %

UMAP P@50 77.38 % 99.28 % 99.37 %
P@80 69.45 % 98.88 % 98.60 %
Recall@40 39.45 % 49.67 % 49.71 %
MAP 73.39 % 99.25 % 98.84 %
P@10 84.28 % 99.57 % 99.37 %
P@20 82.50 % 99.54 % 99.43 %
P@30 81.28 % 99.49 % 99.46 %

UMAP + CPRR P@50 78.29 % 99.35 % 99.23 %
P@80 70.47 % 99.04 % 98.26 %
Recall@40 39.95 % 49.69 % 49.70 %
MAP 74.42 % 99.43 % 99.00 %
P@10 85.33 % 99.62 % 99.46 %
P@20 83.04 % 99.57 % 99.49 %
P@30 81.87 % 99.42 % 99.47 %

UMAP + LHRR P@50 78.90 % 99.36 % 99.29 %
P@80 71.07 % 99.06 % 98.31 %
Recall@40 40.21 % 49.70 % 49.70 %
MAP 75.83 % 99.42 % 98.87 %
P@10 84.29 % 99.65 % 100.00 %
P@20 82.92 % 99.64 % 99.64 %
P@30 81.73 % 99.55 % 99.49 %

UMAP + RFE P@50 79.00 % 99.51 % 99.37 %
P@80 71.78 % 99.14 % 98.60 %
Recall@40 40.32 % 49.78 % 49.71 %
MAP 76.47 % 99.53 % 98.84%

IV. CONCLUSION

In this work, we have proposed a novel approach that
integrates UMAP, a powerful dimensionality reduction tech-



Fig. 2. Visual Ranking from same query image by different approaches: (i) the original feature, given by CNN Resnet; (ii) rank-based manifold learning by
RFE [34]; (iii) UMAP in isolation and; (iv) proposed combined approach considering UMAP+RFE.

TABLE II
RETRIEVAL RESULTS FOR COREL5K DATASET.

Method Measure Resnet152 SwinTF DinoV2
P@10 89.97 % 96.15 % 95.81 %
P@20 85.75 % 93.68 % 93.66 %
P@30 82.56 % 91.46 % 92.01 %

None - Baseline P@50 76.66 % 87.22 % 88.91 %
P@100 61.29 % 71.27 % 77.84 %
Recall@50 38.33 % 43.61 % 44.46 %
Recall@100 61.29 % 71.27 % 77.84 %
MAP 64.50 % 73.92 % 81.27 %
P@10 92.21 % 97.46 % 96.37 %
P@20 91.27 % 97.08 % 95.56 %
P@30 90.70 % 96.86 % 95.04 %

UMAP P@50 89.59 % 95.86 % 93.57 %
P@100 84.54 % 91.59 % 86.21 %
Recall@50 44.80 % 47.93 % 46.79 %
Recall@100 84.54 % 91.59 % 86.21 %
MAP 86.84 % 92.43 % 88.22 %
P@10 92.30 % 96.94 % 95.79 %
P@20 91.53 % 96.88 % 95.43 %
P@30 91.00 % 96.85 % 95.06 %

UMAP + CPRR P@50 89.91 % 96.13 % 93.72 %
P@100 85.65 % 91.96 % 86.47 %
Recall@50 44.95 % 48.06 % 46.86 %
Recall@100 85.65 % 91.96 % 86.47 %
MAP 87.89 % 92.65 % 88.62 %
P@10 92.42 % 97.30 % 95.97 %
P@20 91.71 % 97.01 % 95.57 %
P@30 91.14 % 96.92 % 95.20 %

UMAP + LHRR P@50 89.98 % 96.08 % 93.74 %
P@100 85.76 % 91.94 % 86.47 %
Recall@50 44.99 % 48.04 % 46.87 %
Recall@100 85.76 % 91.94 % 86.47 %
MAP 87.97 % 92.69 % 88.58 %
P@10 92.46 % 97.60 % 96.40 %
P@20 91.76 % 97.25 % 95.83 %
P@30 91.27 % 97.08 % 95.30 %

UMAP + RFE P@50 90.40 % 96.18 % 93.92 %
P@100 85.80 % 92.18 % 87.54 %
Recall@50 45.20 % 48.09 % 46.96 %
Recall@100 85.80 % 92.18 % 87.54 %
MAP 88.09 % 92.92 % 89.09 %

nique, with rank-based manifold learning methods to enhance
content-based image retrieval tasks. The experimental results
demonstrate significant improvements in retrieval performance
across multiple datasets, with notable gains in precision,
recall, and mean average precision. By combining UMAP’s
low-dimensional features with rank-based manifold learning
methods like RFE, CPRR, and LHRR, the proposed approach
has proven to be effective in providing more accurate and

TABLE III
RETRIEVAL RESULTS FOR DOGS DATASET.

Method Measure Resnet152 SwinTF DinoV2
P@10 86.05 % 79.39 % 80.96 %
P@20 83.53 % 75.63 % 76.98 %
P@30 81.81 % 73.14 % 74.48 %

None - Baseline P@50 79.13 % 69.04 % 70.72 %
P@100 72.74 % 59.83 % 63.57 %
Recall@50 23.23 % 20.29 % 20.74 %
Recall@100 42.51 % 34.92 % 37.09 %
MAP 63.73 % 45.53 % 55.18 %
P@10 86.84 % 79.01 % 79.30 %
P@20 85.93 % 77.55 % 77.35 %
P@30 85.47 % 76.86 % 76.16 %

UMAP P@50 84.92 % 75.99 % 74.54 %
P@100 83.79 % 74.24 % 71.74 %
Recall@50 25.03 % 22.45 % 21.94 %
Recall@100 49.35 % 43.81 % 42.25 %
MAP 80.54 % 69.70 % 66.54 %
P@10 87.04 % 79.07 % 78.67 %
P@20 86.05 % 77.65 % 76.99 %
P@30 85.55 % 76.95 % 75.94 %

UMAP + CPRR P@50 84.76 % 75.85 % 74.19 %
P@100 82.72 % 73.09 % 70.72 %
Recall@50 24.99 % 22.41 % 21.83 %
Recall@100 48.75 % 43.13 % 41.66 %
MAP 79.87 % 68.75 % 65.80 %
P@10 87.24 % 79.25 % 79.34 %
P@20 86.16 % 77.79 % 77.76 %
P@30 85.58 % 77.01 % 76.52 %

UMAP + LHRR P@50 84.77 % 75.86 % 74.58 %
P@100 82.95 % 73.36 % 71.27 %
Recall@50 25.00 % 22.41 % 21.94 %
Recall@100 48.89 % 43.29 % 41.99 %
MAP 80.10 % 68.97 % 69.58 %
P@10 87.09 % 79.07 % 78.27 %
P@20 86.11 % 77.82 % 76.58 %
P@30 85.60 % 77.18 % 75.61 %

UMAP + RFE P@50 84.84 % 76.18 % 74.10 %
P@100 83.22 % 73.82 % 70.91 %
Recall@50 25.01 % 22.50 % 21.78 %
Recall@100 49.05 % 43.58 % 41.72 %
MAP 80.20 % 69.43 % 66.20 %

relevant retrieval outcomes.
These findings highlight the potential of leveraging the

strengths of both dimensionality reduction and rank-based
learning to advance the state of the art in image retrieval.
Future work may explore further refinements and extensions
of this approach to other types of data and more complex
retrieval tasks. Furthermore, the proposed approach could be
evaluated for its effectiveness by utilizing different indexing



and projection methods, as the dimensionality of the features
needed for indexing data is significantly lower than that of the
original feature space. Additionally, while re-ranking methods
introduce a small efficiency cost, they are inherently fast, as
they operate on small subsets within the data, adding minimal
additional processing time.
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