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Abstract—The evolution of scene understanding in computer
vision has seen remarkable advancements, driven significantly
by the development and utilization of scene graphs due to their
powerful structural and semantic representation. This structured
approach allows for better contextual understanding, facilitating
tasks such as image captioning, image generation, image retrieval,
human-object interaction, and visual question answering. This
tutorial paper aims to comprehensively investigate the current
scene graph research by discussing their generation methods,
applications, standard datasets, and future development insights.

I. INTRODUCTION

Many of the most discussed applications of computer vision
rely on imagery containing a single object or concept. Classifi-
cation models are always evaluated on ImageNet, and the im-
age generation literature obsesses over people and animals. In
this tutorial, we argue for a renewed interest in tasks under the
pantheon of Scene Understanding and show promising paths
that use the Scene Graph (SG) structure. It is known that, even
for a “simple” task such as classification, when a single object
is moved, added, or removed from a scene, the label changes
[1]. It is paramount, then, to incorporate the information of
these relationships within our learning frameworks.

Beyond recognition, SGs were adopted for the tasks of
image captioning [2], image generation [3], image retrieval [4],
human-object interaction [5] and visual question answering
[6]; SGs were first formalized by Johnson et al. [4] as a
graph that describes a scene by its individual objects and
the relationships (predicate) between those objects (e.g., from
simple relationships such as “to the left of” to more specific
ones such as “holding” or “touching”). Thus, each SG can
also be formulated as a set of visual relationship triplets (i.e.,
<subject, predicate, object>).

A SG captures detailed semantics by explicitly modeling
objects, their attributes, and how objects are related to each
other [7, 8]. The success of SGs as representations was
such that the novel task of Scene Graph Generation (SGG)
was created — as manual annotation of this fine-grained
information is infeasible for large datasets. Formally, Jung
et al. [9] describe the SGG problem as:

Definition 1. Given an image I , the goal of SGG is to generate
a visually grounded graph G = (O,R) that represents objects

O and their semantic relationships R for object classes C and
predicate classes P . An object oi ∈ O is described by a pair
of a bounding box bi ∈ [0, 1]4 and its class label ci ∈ C :
oi = (bi, ci). A relationship rk ∈ R is represented by a triplet
of a subject oi ∈ O, an object oj ∈ O, and a predicate label
pij ∈ P : rk = (oi, oj , pij), which represents relationship pij
between subject oi and object oj .

In this tutorial, we will present the diverse methodologies
of SGG, exploring different paradigms and discussing their
trade-offs. We will also present the commonly used datasets
and evaluation metrics tailored to different research questions
and objectives. Furthermore, we will explore the practical
applications of SGGs across various domains, illustrating how
they can be effectively employed to address real-world tasks.
Finally, we will speculate on future trends, highlighting the
methods that promise to shape the future of the research field.

II. SCENE GRAPH GENERATION (SGG)
From the literature, it is possible to perceive two main

approach types to SGG: (i) two-stage methods that detect
objects and follow with pairwise relationship recognition and
(ii) one-stage methods that perform both tasks simultaneously.
Figure 1 illustrates the differences between these approaches.
We review each within the following sections.

1) Two-stage SGG: The first stage involves finding regions
that potentially have objects and classifying these findings. To
that end, many studies [9, 11, 12, 13] employ the classical
Faster RCNN detector [14] due to its high accuracy and its
robustness in handling a wide variety of objects in different
scales and aspect ratios.

The second stage comprises attribute and relationship in-
ference. The former refers to object attributes such as color
(e.g., yellow), state (e.g., standing), material (e.g., wooden),
and others [7]; the latter comprises object pairs [15] and
thus provides the predicate information between the objects.
When all visual triplets are collected (i.e., <subject, predicate,
object>), a SG is constructed.

Based on cognitive psychology research that human beings
appear to learn gradually and hierarchically, Jin et al. [12] pro-
posed a contextual augmentation method by employing slight
perturbations in the position and size of objects. They pro-
duced diverse context descriptions and predicted the likelihood
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Fig. 1. Example of a two-stage and one-stage scene graph generation pipelines. Figure adapted from Li et al. [7], Yang et al. [10].

and possible predicates between two contextually described
objects. Goel et al. [11] framework exploits relation labels
based on their informativeness. They categorize the relations
into explicit and implicit, based on whether the relation defines
the relative spatial configuration between objects. They first
train on implicit labels, and a second training stage includes
a procedure that imputes missing implicit labels, followed by
training on both the annotated and imputed labels.

More recently, Vision Transformers [16] took the place of
CNNs as the best-performing models for vision. Given that,
SGG works also employed it in their pairwise relationship
recognition stage. Jung et al. [9] proposed the Selective Quad
Attention Network that learns to select relevant object pairs
and disambiguate them via diverse contextual interactions.
An edge selection module removes irrelevant object pairs.
By modeling the graph generation process as sequential de-
coding of adjacency lists, Kundu and Aakur [13] effectively
models the interaction between detected entities using a sim-
ple, directed graph. Their two Transformer-based components
sample the underlying interaction graph between the detected
entities before reasoning over the sampled semantic structure.

One of the main disadvantages related to two-stage methods
is that such approaches need to predict O(n2) relation triplets,
where n is the number of detected objects, which is computa-
tionally expensive [7, 17, 18]. On the other hand, one-stage
methods only need to predict a sparse relation candidate set,
which is computationally efficient.

2) One-stage SGG: Contrasting with aforementioned stud-
ies, one-stage paradigm directly detect object and infer rela-
tionships using anchor-free object detection models. They are
known to be simple, fast, and easy to train [7].

To harvest the benefits of end-to-end detection methods,
studies have extended the Detection Transformer (DETR) [19]
to the SGG problem. Yang et al. [10] extended DETR’s Hun-
garian matcher algorithm to be triplet compatible. The method
extracts image features from a CNN backbone. Then, it feeds

them along with queries and position encoding into a Trans-
former encoder-decoder. The queries learn a representation
of SG triplets, and predictions are computed by three Feed-
Forward Networks (FFNs). Cong et al. [20] approach employs
an encoder-decoder that directly predicts triplets without infer-
ring predicates between all object pairs. By concatenating the
corresponding subject and object representation plus a spatial
feature vector (reshaped heatmaps), the predicate probability
is predicted by a multi-layer perceptron. Li et al. [18] also
adopted the DETR decoder to produce entity nodes from a
set of learnable entity queries. Three parallel Transformer
decoders were used to predict the generator. Afterward, a
differentiable graph assembling module infers the directed
edges of a bipartite graph to form the relation triplets.

Liu et al. [17] presented a bottom-up representation of
objects and relationships by modeling objects as points and re-
lationships as vectors. Their approach is based on four-headed
CNN streams, three of them for object prediction and another
for relation prediction. On the contrary, Teng and Wang [21]
introduced a top-down method that first uses a set of learnable
triplet queries to generate entity and predicate candidate sets.
After, the multi-head self-attention mechanism refines the
relation detection results progressively.

Although the literature [7, 17, 18] points out that one-stage
methods are computationally efficient when compared to two-
stage approaches, one main disadvantage of on-stage paradigm
is that such methods usually employ complex networks (e.g.,
attention-based) to learn the queries of entities and predicates.
In contrast, two-stage methods have advantages in terms of
explainability and interpretability since they usually employ
simple classifiers to predict predicates [7].

III. DATASETS AND EVALUATION METRICS

In this section, we list and describe the datasets and metrics
used to evaluate the SGG performance.



A. Datasets

Visual Phrase [22] is a dataset containing visual relation-
ships as phrases that encapsulate the relationship of scene
composites. It contains 17 types of relationships between 8
objects, with a total of 2,769 images.

Scene Graph [4] contains 5,000 hand-made scene graphs
that are image-based and focused on image retrieval. It con-
tains more than 93,000 object instances, 110,000 attribute
instances, and 112,000 relationship instances. This dataset
prioritizes detailed annotations of images, with each sample
containing an average of 21.9 relationships.

Visual Relationship Detection (VRD) [23] is a dataset con-
structed for benchmarking visual relationship prediction, with
5,000 images with 100 object categories and 70 predicates.
In total, it features over 6,500 unique relationship types. This
dataset specialty is the presence of rare predicates.

Visual Genome (VG) [24] is a large-scale dataset with
108,077 images, each containing several components: objects,
attributes, relationships, region descriptions, question-answer
pairs, and scene graphs. There is also a pre-processed ver-
sion of the VG dataset to improve the quality of object
annotations (VG150 [25]), and to reduce duplicated relation-
ships (VrR-VG [26]).

Open Images [27] is a dataset of 9 million images
with rich annotations. It has 600 object classes, more than
374.000 visual relationship triplets, and over 15.4 million
bounding boxes, making it one of the larger datasets for visual
understanding tasks.

SpatialSense [28] was created via adversarial crowdsourc-
ing to include negative examples and challenging reasoning
questions. It features 17,498 relations across 11,569 images,
involving 3,679 unique object classes, with 2,139 appearing
only once, presenting a long-tail distribution of concepts.

SpatialVOC2K [29] includes 2,026 images with 9,804
unique object pairs and was designed for image-to-text gener-
ation, focusing on annotating spatial relations between object
pairs. The dataset includes images of two or three object-
bounding boxes and images with four or five bounding boxes
labeled as “difficult” due to their small size.

Panoptic Scene Graph (PSG) [10] contains more than
49,000 samples from 133 classes. The panoptic approach
addresses several limitations of bounding box-based labeling,
such as imprecise object localization, redundant information,
and the inability to capture the entire scene comprehensively.

B. Evaluation Metrics

Evaluation of SGG methods is broken down into three tasks
rising in complexity: (i) predicate detection (uses GT object
locations and labels) (ii) SG classification (uses GT object
location), and (iii) SG detection (only the image is provided).

Recall@K (R@K) is the most common metric; it measures
the fraction of times the correct relationship appears among
the top K predictions. However, R@K can be influenced by
reporting bias due to the class imbalance [30]. To address this
issue Chen et al. [31] introduced mean Recall@K (mR@K).
Unlike R@K, which may be constrained to one relationship

per object pair, mR@K retrieves predicates separately and av-
erages R@K scores across all, providing a balanced evaluation
— especially for datasets with long-tail distributions.

IV. APPLICATIONS

Having discussed the starting task of obtaining Scene
Graphs, we focus on how they are employed in scene under-
standing tasks. We wish to highlight a thread in the history
of SG applications. SGs are useful for image captioning,
image retrieval, image generation, human-object interaction,
and visual question-answering tasks. Most of these uses of SGs
were challenged by larger, general methods such as CLIP [32],
Stable Diffusion [33], and (Multimodal) LLMs [34]. In this
section, we present the history of SGs within these fields
but also contrast what has changed since these disruptive
publications took the spotlight.

A. Image Captioning

Image captioning is a task in which, given an image, a
text that describes its visual content is generated. It demands
an understanding of visual objects, attributes, relationships,
syntax, and semantics. The challenge of this task comes from
the gap between the text and image modalities. To that end,
SGs — which can be derived from both modalities — offer a
structured representation of scenes and can be easily mapped
into textual descriptions, bridging the gap while providing for
accuracy and contextual appropriateness.

Jia et al. [35] surveyed works that include SGs in the
pipeline of image captioning. They presented [36] as one of
the first works to explicitly combine SGs with attention mech-
anisms. Li and Jiang [36] use a Region Proposal Network [37]
to compute object proposals for a given image, which are used
to generate visual feature representation and semantic relation-
ship features and then forward them to an LSTM decoder
with a hierarchical attention module generating the image
caption. Yang et al. [38] incorporated language inductive bias
into the encoder-decoder image captioning framework. In their
method, an autoencoder is trained to reconstruct a sentence
from an SG so that a Graph Neural Network (GNN) learns
to map the SG into a dictionary in the bottleneck. Then, the
learned dictionary is passed as a language before the decoder,
guiding the caption generation. Similarly, Yang et al. [39]
proposed a Transformer-based [40] GNN for embedding SGs.
The output of the GNN is a series of object/attribute/relation
embeddings fed into the decoder to generate the captions.
Nguyen et al. [41] presented an approach that relies only on
the SG labels without visual features. Their method leverages
the spatial location of SG nodes and enhances them with
human-object interaction labels. Then, analogous to previously
mentioned works, they encode the SG using a GNN and
feed a decoder. Yet, Semantic Propositional Image Caption
Evaluation [42], a metric designed to evaluate image captions,
also relies on SGs. Given a candidate caption and a set of
reference captions, it converts them into SGs, and computes an
F-score based on the overlap of these SGs. Thus, the semantic
meaning the captions share is measured.



B. Image Retrieval

Text-based image retrieval is the task where a user provides
a query text as input, and a system returns a ranked list
of images, thereby attributing higher ranks to semantically
relevant images. It is a well-known task for its wide use in web
search engines. Searching collections of images is a natural
target of SG usage; after all, the task tackled by Johnson et al.
[4] on the study that formalized SGs for the first time.

In the seminal study of Johnson et al. [4], the authors are
also tasked with SGG. To that end, they follow the two-
stage approach. Conditional Random Fields (CRF) are used to
ground query SGs to an image and the obtained probabilities
are used to rank images. The follow-up study [43] introduced
SG prediction from text queries, relieving users from creating
SG queries. Both methods require the grounding probabilities
to be computed for every image, amounting to infeasible
computational requirements; this problem is considered by
Qi et al. [44], where a learnable hashed embedding is em-
ployed to represent SGs.

A couple of years later, the study of Conser et al. [45]
presented a critique of the method and data presented by
Johnson et al. [4], they showed that the model does not make
good use of relationships and that samples within the bench-
mark were biased toward valuing object co-presence only. In
the work of Ramnath et al. [46], the CLEVR dataset was
adapted to experiment with SGs, and the authors introduced
a “Catalog Graph”, where the entire searchable database is
represented with a single graph. Studies that followed [47, 48]
relied on embedding learning through the use of GNNs.

The image retrieval literature changed with the introduction
of CLIP [32]. The use of SGs in the field has diminished,
but a few recent studies are now integrating SGs within new
models. Such is the case for methods from Cong et al. [49] and
Liu et al. [50]; in the former, Graph and Image Transformers
are used to encode each modality into a common feature
space, and, in the latter, embeddings computed through GNNs
are compared on object, relationship and scene levels. These
promising results show that SGs are still relevant to models
that seek compactness and specialization.

C. Image Generation

Image generation is a well-known task in the computer
vision pantheon. Some of the definitions of this task allow
for images to be generated simply to match a desired image
distribution — often the one that yields the training set; this
interpretation defined early studies with Generative Adversar-
ial Networks (GANs) [51]. It is desirable, however, to allow
users to have finer control over these synthetic creations, and
naturally, GANs soon adapted, starting with the so-called
Conditional GAN [52]. The literature flourished from this
point onwards and not a long time passed until Johnson et al.
[3] introduced a Scene-Graph-to-Image generator. SGs are
natural candidates to guide image generation as they are a
prime space for structurally defining a desired scene design.
In this seminal study [3], the authors employed a GCN to
process objects and relationships into vector representations

that could, in turn, be used to drive bounding box and mask
generators. Combining these object masks and boxes creates a
“semantic layout” that is then input to a Cascaded Refinement
Network to produce an image; the entire process is driven by
adversarial training. This setup of generating a semantic layout
first and translating this layout to an image was a staple of
most SG-to-Image models until very recently.

The studies that followed each improved upon aspects of
the typical setup. Ashual and Wolf [53] and Li et al. [54]
introduced ways to encode the specific appearance of objects
to add to the semantic layout representation and give users
more control over the individual objects. Mittal et al. [55]
showed that, by training the generative model to add objects
to a scene iteratively, one could have a final system that
allowed users to iterate on the synthetic image without losing
current results. Tripathi et al. [56] introduced heuristics to
determine object depth placement — a common issue when
composing the semantic layout; their follow-up study [57]
showed benefits from changing bounding boxes for eight
extreme points prediction for each object. Herzig et al. [58]
showed that introducing a canonical definition for SGs (and
therefore making the image-SG pair one-to-one) improves
generation robustness and generalization.

All aforementioned methods relied on adversarial training
and the GAN framework; it is no surprise then that the image
quality improvements brought on by diffusion-based methods
[59] had a strong impact in the literature of SGs for image
synthesis. The first study to incorporate diffusion into the mix
came from Yang et al. [60]. Their model employed masked
image reconstruction to learn SG representations to use as
conditional inputs to a Stable Diffusion model. This is the first
notable method not to make use of intermediary scene layouts;
others followed. Liu and Liu [61] made use of T5 sentence
embeddings to initialize node representations and designed
a SG Transformer (SGFormer) to encode SGs. Finally, Wu
et al. [62] showed that SGs often do not contain enough
details to compose a complete image; they solved this problem
through a SG hallucination mechanism that “completes” the
graph through discrete diffusion and allows their method to be
competitive on image quality even against the likes of DALL-E
[63]. While impacted by the change in the image generation
literature, the advantages of synthesizing with SGs (control,
explainability) have kept the field afloat and rising.

D. Human-Object Interaction

Human-object interaction (HOI) is a task that has a similar
definition to that of SGG, with both having as a goal the
inference of triplets representing spatial or semantic rela-
tionships between a subject and an object. The particulari-
ties of HOI, enough to make it a separate task altogether,
are twofold. Firstly, the subject is always a human, a non-
monolithic entity with diverse interactions for each set of its
constituent parts. Thus, it is common to resort to a decomposed
view of the human body, with features such as pose [64]
or body part bounding boxes [65] as part of the inference
pipeline. Secondly, HOI involves high-level predicates with



predicate labels like verbs that represent human actions (riding,
wearing, and feeding). The polysemy of such verbs, spatial and
semantically, has been a topic of interest in the literature [66].

A recent survey on HOI [67] highlights the importance of
graph modeling in two-stage methods, with Qi et al. [68] cited
as one of the earliest methods to infer human-object relations
as a structured graph. By representing humans and objects as
nodes and producing a fully connected graph, Qi et al. [68]
proposed a message passing algorithm to iteratively update
stronger connections, producing an optimized graph structure
and the respective edge labels in an end-to-end fashion. A
more recent work [69] relies on a similar message-passing
system. However, messages are conditioned on the spatial
relationship of a given pair of nodes, i.e., communicating
their relative locations. With the success of Transformer-based
architectures, a trend of one-stage methods surfaced in recent
HOI proposals, as outlined by Antoun and Asmar [67].

He et al. [70] leveraged the intrinsic relationship between
SGG and HOI by proposing a hierarchical Transformer-based
method to perform both tasks. The proposition is to encode
visual and semantic features from the input image, then split
the architecture into two decoding branches: SG inference and
HOI prediction. These decoders are hierarchically connected,
with the output of the SG decoder feeding into the HOI
decoder via query transformations. The authors found that joint
inference of both tasks significantly improves performance
compared to models that handle each task individually.

E. Visual Question Answering

Within the visual question answering (VQA) task, the
system is given an image and a related question in natural lan-
guage; the expected output is the correct answer. Accomplish-
ing this requires reasoning over visual elements and, at times,
the inclusion of general knowledge (e.g., humans wear clothes
or ride horses). The first notable study to investigate the
usefulness of SGs for this task was done by Zhang et al. [6].
Other methods had incorporated SGs before they were used
to support question answering through node selection [71].
Zhang et al. [6]’s study was the first to use SGs within the
learning protocol by way of a GNN; they also demonstrated
that SGs alone contain enough information to answer common
questions, corroborating a previous finding [72].

Studies that followed adhered to a common framework: SGs
are used with GNNs to aid in the VQA question classification
tasks, object nodes are often represented by GloVe [73] word
vectors [74, 75] and questions are encoded through recurrent
networks [76] or Transformers [77]. As with other SG applica-
tions, the emergence of multimodal large language models had
a significant impact, the current scenario being that models
such as Gemini [34] and PaLI [78] are the SoTA. While
progress has slowed in using SGs, there is a demonstrated
utility in not relying on large models for all tasks. The
method of Wang et al. [79] has shown the effectiveness of
using SGs with both a visual and semantic (LM-based) object
node representation combined with a knowledge graph and a
node representing the question in a single graph. With these

developments, we expect future literature on VQA methods to
be split between LLMs and compact SG-based methods.

V. CONCLUSIONS AND DIRECTIONS

In this tutorial, we have delved into SGs’ significant impact
on various computer vision tasks. SGs provide a detailed
and organized representation of objects and their relationships
within an image, significantly improving tasks like image
captioning, image generation, image retrieval, human-object
interaction, and visual question answering. By enabling a
more comprehensive understanding of visual data, SGs allow
for more advanced reasoning and interaction capabilities in
machine learning models.

While SGs offer significant advantages in computer vi-
sion, developing new methods for their generation comes
with its own set of challenges. Two-stage methods, which
offer better explainability due to simpler classifiers, struggle
with high computational costs because they predict O(n2)
relation triplets. On the other hand, one-stage methods are
more efficient in predicting a sparse set of relations, but
they use complex networks like Transformers, making them
harder to interpret. Balancing computational efficiency with
interpretability remains crucial in exploring and developing
new techniques for SGG.

Another main challenge is handling rare visual relationships
between objects. Due to less common interactions, some
relationships are poorly represented, making it hard for models
to learn them well. This can lead to vague descriptions of these
rare interactions. It is crucial to distinguish between significant
relationships and common but less meaningful ones to improve
graph reasoning, which is essential for unbiased SGG.
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