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Abstract—The scarcity of accurately labeled data critically
hampers the usage of deep learning models. This issue is
highlighted in areas (e.g., biological sciences) where data anno-
tation results in an expert-demanding, labor-intensive and error-
prone task. While state-of-the-art semi-supervised approaches
have proven effective in circumventing this limitation, their
reliance on pre-trained architectures and large validation sets
to deliver effective solutions still poses a challenge. In this work
we introduce an iterative contrastive-based meta-pseudo-labeling
method for training non-pre-trained custom CNN architectures
for image classification in conditions of limited labeled and
abundant unlabeled data, with no dependency on a validation set.
It generates multiple models across a few iterations, which are in
turn exploited in an ensemble manner to label the unlabeled data
and train a final classifier. Our approach starts by capitalizing
on contrastive learning to enhance the representation ability of
two collaborative networks while eliminating the need of pre-
trained architectures. Then, during each iteration, the networks
are trained within a teacher-student based cross-training setup,
where OPFSemi (teacher) propagates labels from labeled to
unlabeled on the non-linear 2D latent space projections of each
network’s (student) deep features; afterward, the pseudo-labels
with the highest top 10% confidence, per class, are picked to
fine-tune the other network in a cross-training manner, jointly
mitigating confirmation bias and overfitting while improving
the generalization ability of the networks as iterations evolve.
Our method is evaluated on three challenging biological im-
age datasets with only 5% of labeled samples, demonstrating
its effectiveness and robustness when compared to two direct
baselines and six state-of-the-art methods from three different
semi-supervised learning paradigms.

I. INTRODUCTION

In recent years, deep learning techniques have achieved
remarkable success for their versatility in addressing a broad
range of problems across a wide spectrum of areas and fields,
such as computer vision, natural language processing, and
speech recognition [1]. This success can mainly be attributed
to the abundance of data available, and the concurrent advance-
ments in both deep learning algorithms and computing power.
However, the available data is most often unlabeled in real-life
scenarios, posing a significant challenge for fully-supervised
methods that heavily rely on labeled data. In this context,
semi-supervised learning (SSL) methods aim to mitigate the
scarcity of labeled samples by leveraging unlabeled data to
enhance the generalization ability of the predictive model.
Specifically, within the realm of deep neural networks, this
approach is called deep semi-supervised learning (DSSL).

Over the years, a multitude of DSSL methods employing di-
verse strategies have been proposed [2]. Among these, pseudo-
labeling methods stand out for their prominence due to their
straightforward yet effective training mechanism consisting in
inferring pseudo-labels for the unlabeled samples based on the
model’s highest confidence predictions, which are then used
to regularize and improve the model during training.

Recently, Benato et al. [3], [4] introduced a meta-pseudo-
labeling approach known as confidence Deep Feature Anno-
tation (conf-DeepFA) for semi-supervised training of CNNs,
following a teacher-student approach. This method builds on
the Deep Feature Annotation (DeepFA) technique [5] by itera-
tively exploiting label propagation via OPFSemi [6] (teacher)
on the non-linear 2D projection of the deep features of a pre-
trained CNN architecture (student). It thus far has demon-
strated high accuracy on various datasets while requiring
minimal labeled samples (e.g., ∼1% of the dataset), without
relying on a validation set. However, its application using non-
pre-trained custom CNN architectures remains unexplored.
Moreover, a potential challenge of the method is confirmation
bias, where incorrect high-confidence pseudo-labeled samples
may adversely affect model regularization [7].

More recently, Wang et al. [8] introduced an iterative
method based on contrastive learning and self-training pseudo-
labeling to address the classification of remote sensing images
with limited labeled training data. Their method implements
two independent yet synergic CNNs working in a cross-
training procedure for robust generalization capability. It not
only leverages contrastive learning to enhance the represen-
tation ability of the networks during the initial step, but also
integrates self-training pseudo-labeling effectively to harness
unlabeled data, making it particularly suited for scenarios
where labeled data is scarce.

Herein, we present an iterative contrastive-based meta-
pseudo-labeling method that expands on the DeepFA method-
ology for training non-pre-trained custom CNN architectures
under conditions of limited labeled and plentiful unlabeled
data. It implements two collaborative CNNs adopting a
cross-training strategy to enhance the accuracy of pseudo-
label generation and mitigate confirmation bias. This iterative
approach integrates contrastive learning with meta-pseudo-
labeling to effectively utilize unlabeled data, resulting in
improved performance of custom CNN architectures under



resource-constrained conditions.
Unlike the approach by Wang et al. [8], our method

uses OPFSemi as teacher to generate pseudo-labels through
label propagation on the 2D projection of the network’s
deep features. Instead of using an ensemble of the networks
produced across all iterations for prediction on the test set,
our method capitalizes on them to label the unlabeled data,
which is then used to train a final CNN model. On the other
hand, in contrast to conf-DeepFA, we leverage on contrastive
learning to initialize the weights of non-pre-trained custom
CNN architectures using only a reduced set of labeled samples,
eliminating the need for pre-trained architectures. Moreover,
our method implements two synergic CNNs that minimize an
iterative categorical cross-entropy (ICE) loss function within
a cross-training framework, aiming to obtain more reliable
accurate pseudo-labels and mitigating confirmation bias. The
final CNN model produced by our method is evaluated on three
challenging biological image datasets, benchmarked against its
two direct baselines and six other state-of-the-art Deep Semi-
Supervised Learning (DSSL) approaches.

The main contributions of this study are:
1) We introduce a novel iterative contrastive-based meta-

pseudo-labeling approach that builds on DeepFA to train
non-pre-trained custom CNN architectures for image
classification under conditions of limited labeled and
abundant unlabeled data.

2) We implement DeepFA within a cross-training strategy
using two CNNs that collaborate to minimize an ICE
loss function. This integration aims to mitigate confir-
mation bias, produce more accurate pseudo-labels, and
enhance the generalization capability of the final model.

The remainder of this paper is organized as follows. Sec-
tion II presents out proposed methods in detail, including the
iterative contrastive-based meta-pseudo-labeling approach and
the cross-training strategy with two synergic CNNs. Next, Sec-
tion III describes the conducted experiments and discusses the
results. Lastly, Section IV concludes the paper with insights
and future work directions.

II. PROPOSED APPROACH

In a Semi-Supervised Learning (SSL) framework, a training
set Z = {x|x ∈ X} consists of two disjoint subsets: a labeled
set ZL = {(x, y)|x ∈ X, y ∈ Y } and an unlabeled set ZU =
{x|x ∈ X}, where Z = ZL∪ZU , ZL∩ZU = ∅, and |ZL| ≪
|ZU |. Here, x represents a sample, and y denotes its associated
label. We operate under the assumption that samples in both
ZL and ZU originate from the same underlying distribution.

A. Network architecture

Let N1 and N2 be the networks used during the contrastive
learning stage that share the same architecture. After adding
a decision layer to each network, we obtain networks N ∗

1 and
N ∗

2 used for the fine-tuning stage. The architecture of both N1

and N2 comprises a sequence of four convolutional layers with
64, 128, 256, and 512 filters each as encoder and two dense
(fully-connected) layers as decoder. Each convolutional layer

of the encoder consists of a filter bank, ReLU activation, max-
pooling with stride 2 and batch normalization. The encoder
comprises two dense layers, with 512 and 256 neurons each,
followed by ReLU activation. This is illustrated in Figure 2.

B. Overview of the Proposed Approach

The overall procedure of the proposed method can be di-
vided into three successive main stages: network initialization
by contrastive learning, iterative meta-pseudo-labeling and
final model training. The first step consists in independently
initializing – by means of contrastive learning – the weights
of N1 and N2. The training set comprises pairs of images
from ZL, while each network adopts a siamese structure
implementing two weight-sharing sub-networks (see Figure 2).
The second step starts by fine-tuning the networks in a cross-
training fashion as follows: in subsequent iterations (excluding
the first where only ZL is used), a decision layer is added to
N1/2 transferring the weights learned in the first step. Next,
N ∗

1/2 is fine-tuned by minimizing an ICE loss on the set
comprising ZL and the pseudo-labels selected in the previous
iteration from deep feature annotation on N ∗

2/1. Once fine-
tuning is finished, the last dense layer’s latent space of N ∗

1/2

is projected onto 2D for downstream label propagation via
OPFSemi. The pseudo-labeled samples with the highest top
10% confidence, per class, are chosen to fine-tune N ∗

2/1 in the
next iteration.

The aforesaid procedure is repeated for a fixed number of
iterations. Lastly, the third step involves training a final model
NF of the same architecture as N ∗

1 and N ∗
2 . Let T be the

chosen number of iterations, we use the probability vectors
yielded by the 2T models produced across iterations to label
the entire unlabeled set ZU producing ZL

U . Once labeled, we
train NF on the set ZF = ZL ∪ ZL

U and return it as the final
classifier. Figure 1 illustrates the two first steps of the proposed
approach.

C. Network Initialization by Contrastive Learning

We adopt a contrastive learning as pre-training step as a way
of enhancing the representation ability of the networks. In this
respect, contrastive learning acts as a dimensionality reduction
procedure by contrastively mapping a set of high-dimensional
input data points (images) to lower-dimensional representa-
tions, encouraging the representations of semantically similar
pairs to be close, and those of dissimilar pairs to be distant
from each other in the lower-dimensional manifold.

During the learning process, each network adopts a siamese
structure modeled as two weight-sharing sub-networks (see
Figure 2). Let x1, x2 ∈ ZL be a pair of input images. In the
course of training, augmented versions of x1 and x2 are fed
to different branches of the Siamese network. The distance
function D between the lower-dimensional representations of
x1 and x2 generated by a network N is defined as the
Euclidean distance as D(x1, x2) = ∥N (x1)−N (x2)∥.

Let yt be a binary label assigned to the pair x1, x2,
where yt = 0 if they are deemed similar and yt = 1 if
they are deemed dissimilar. In order to balance the large
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Fig. 1. Network initialization by contrastive learning and iterative meta-pseudo-labeling with a cross training strategy.
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Fig. 2. Weight-sharing Siamese structure during contrastive learning.

difference between the number of similar and dissimilar pairs,
a weight factor τ is introduced into the loss function. The
weighted contrastive loss function is L =

∑P
i=1 L(p

i) with
L(pi) = τ(1− yt)

1
2 (D

i)2 + (yt)
1
2{max(0,m−Di)}2, where

pi = (yt, x1, x2)
i is the i-th labeled sample pair and P is the

number of training pairs. The margin m is empirically set to
2. Let n be the number of classes and let k be the number
of samples per class for a given balanced dataset. Then, the
ratio between the number of similar and dissimilar pairs is

n(k2)
(nk

2 )−n(k2)
= k−1

k(n−1) ≈
1

n−1 . In this way, the value of τ is set
to n−1 to balance the contribution of similar pairs in the loss
function as is used in [8].

D. Label Propagation by OPFSemi

The pseudo-labeling procedure relies on label propagation
by OPFSemi [6], a graph-based algorithm based on the
optimum-path forest (OPF) methodology that has already
been utilized for pseudo-labeling in recent works [3]–[5]. Let
Zβ ⊂ R2 be the non-linear projection on 2D of the last dense
layer’s deep features of Z . For each network, Zβ is computed
by forward passing Z through the network and projecting the
latent space of the last dense layer onto 2D by means of t-SNE.
OPFSemi is executed on the graph induced by the projection
set Zβ . The algorithm transforms Zβ into a complete graph
where samples are encoded as nodes. The subset of labeled
samples Zβ

L becomes the set of prototypes and their labels are
propagated to their most closely connected unlabeled samples
in Zβ

U , partitioning the graph into an optimum-path forest

rooted at Zβ
L. Let λ′(u) be the pseudo-label assigned to

u ∈ Zβ
U by OPFSemi, and let λ(s) be the label of s ∈ Zβ

L,
such that s is the root of the optimum-path tree to which u
is connected – i.e., λ′(u) = λ(s). Let c(u) be the cost of
the optimum-path offered from s to u, and let c′ be the cost
of the second least optimum-path offered to u from t ∈ Zβ

L,
where s ̸= t and c′ > c(u). The labeling confidence value
v(u) = c′

c(u)+c′ ∈ [0, 1] is computed and assigned to each
u ∈ Zβ

U .
After label propagation, the set Zγ is constructed compris-

ing ZL and the pseudo-labeled samples with the highest 10%
confidence, per class. In this way, we guarantee the selection
of reliable pseudo-labeled samples from all classes in contrast
to using a global labeling confidence threshold, which may
overlook pseudo-labeled samples from classes where the mean
labeling confidence value is lower than for other classes.

E. Iterative Cross-Training and Final Model Training

During the first iteration, we fine-tune both networks on the
set ZL, while from the second iteration onwards we fine-tune
N ∗

1 on the set Zγ(2) obtained from deep feature annotation
on N ∗

2 in the previous iteration, and vice versa for N ∗
2 .

In regular conditions, the selected pseudo-labeled samples
are used to retrain the original network in the subsequent
iteration. However, this may cause overfitting and confirmation
bias, thereby hindering the network’s generalization ability.
Therefore, the idea of using pseudo-labeled samples generated
by another network comes from the fact that a network im-
proves its generalization capability when trained on new data.
Moreover, pseudo-labeled samples are expected to become
more reliable in later iterations than in earlier ones. For this
reason, during the optimization phase we adopt an iterative
categorical cross-entropy (ICE) loss function that regulates the
contribution of pseudo-labeled samples as iterations proceed.
The ICE loss function is defined as ICE(yp, y, t, T, f) =
f(1− t−1

2T ) CE(yp, y)+(1−f) t−1
2T CE(yp, y), where yp and y

are the network’s outputs and training labels, T is the total
number of iterations, and t ∈ {1, . . . , T} is the iteration
counter. CE stands for the classical cross-entropy loss function,
while f is a binary flag that indicates whether the input image



(a) Helminth larvae (b) Helminth eggs (c) Protozoan cysts

Fig. 3. Examples of images from Helminth larvae, Helminth eggs and
Protozoan cysts. The first row shows examples of parasites, while the second
row shows examples of impurities.

is labeled (f = 1) or pseudo-labeled (f = 0). During the
first iteration, the ICE loss function degenerates into CE. As
iterations evolve, the contribution of pseudo-labeled samples
in the loss function gradually increases, while that of labeled
samples decreases, nonetheless preserving its dominance.

Once the iterative process is complete, we leverage on
the 2T models produced across T iterations (2 per iteration)
to label the unlabeled set ZU . Let p⃗v

(i)
t be the prediction

probability vector of the network i during iteration t. For each
unlabeled sample u ∈ ZU , we sum the average prediction
probability vectors of the two models produced during each
iteration, then the label of u, denoted by λ(u), is determined as
the index of the highest value of the resultant vector as follows

λ(u) = argmax

{
p⃗v

(1)
1 +p⃗v

(2)
1

2 + . . .+
p⃗v

(1)

T
+p⃗v

(2)

T

2

}
. Lastly, we

train from scratch network NF , of the same architecture as N1

and N2, on the set Zf = ZL ∪ZL
U , where ZL

U is the recently
labeled-unlabeled set.

III. EXPERIMENTS AND RESULTS

A. Datasets

We employ three challenging datasets from a parasite bi-
ological image collection [9] to evaluate the performance of
our method. The collection includes the most common human
intestinal parasites found in Brazil, and prevalent in most
countries with tropical, subtropical, and equatorial climates
and responsible for significant public health problems. The
datasets consist of optical microscopy images rescaled to
200 × 200 × 3 pixels. They comprise the following datasets
i) Helminth larvae; ii) Helminth eggs; and iii) Protozoan cysts.
It is noteworthy that the inherent imbalance in the datasets and
the close resemblance between impurities and parasites pose
an added challenge to the classification problem. A detailed
description of the datasets is given in Table I, while some
image examples of parasites and impurities for (i)–(iii) are
shown in Figure 3.

B. Dataset Preparation

We use stratified three-fold cross-validation to split the
dataset ZD into 2

3 for the training set Z and 1
3 for the test

set ZT (ZD = Z ∪ ZT ). The inclusion of a validation set
would induce the need for more labeled data defeating the
purpose of this work, therefore it is discarded. Moreover,

TABLE I
DESCRIPTION OF THE DATASETS.

Dataset Number Category Class ID

Helminth larvae
446 Strongyloides stercoralis 1

3 068 Impurities 2
3 514 Total

Helminth eggs

348 Hymenolepis nana 1
80 Hymenolepis diminuta 2

148 Ancylostomatidae 3
122 Enterobius vermicularis 4
337 Ascaris lumbricoides 5
375 Trichuris trichiura 6
122 Schistosoma mansoni 7
236 Taenia spp. 8

3 344 Impurities 9
5 112 Total

Protozoan cysts

719 Entamoeba coli 1
78 Entamoeba histlytica / E. dispar 2

724 Endolimax nana 3
641 Giardia duodenalis 4

1 501 Iodamoeba bütschlii 5
189 Blastocystis hominis 6

5 716 Impurities 7
9 568 Total

during training, the input images are encoded using the Lab
color space due to its contrast enhancement ability. In order
to emulate the conditions of labeled data scarcity, we partition
the training set for each split into labeled ZL and unlabeled
ZU sets (Z = ZL ∪ ZU ), such that |ZL| = 5% × |ZD| and
|ZU | = 61.66%×|ZD|. The labeled samples are selected from
Z in a random stratified way for each split. Table II specifies
the number of samples in both ZL and ZU for each dataset.

TABLE II
NUMBER OF SAMPLES IN THE ZL AND ZU SUBSETS OF EACH DATASET.

H. larvae H. eggs P. cysts

|ZL| 177 274 488
|ZU | 2167 3138 5893

C. Experimental Setup

All the experiments in this section were implemented in
Python 3.9.12 using PyTorch 2.0.1. For t-SNE, we used the
implementation available in sci-kit learn 1.4.2, keeping its de-
fault parameters. It is worth noting that OPFSemi is parameter-
free. For the contrastive learning stage, we use Adam optimizer
with batch size 32, learning rate 10−4 and number of epochs
100. For the iterative cross-training optimization stage, we use
stochastic gradient descent (SGD) as optimizer with batch size
32, momentum 0.9, weight decay 10−3, Nesterov momentum,
and number of epochs 120. The SGD optimizer adopts a
polynomial learning rate decay with power 1.0. The number
of iterations for the iterative process was empirically obtained
and set to T = 7.

For the sake of comparison fairness, in all experiments
all methods adopted the same architecture as described in
Section II-A. Also, the same three-fold cross-validation splits
detailed in Section III-B were used to evaluate the methods.
The metrics used to assess the performance of the methods
are accuracy and Cohen’s κ. The latter is used to obtain a
more reliable measure than accuracy since we are address-
ing unbalanced datasets. Cohen’s κ, hereafter denoted by κ,



measures the degree of agreement between the classifier’s
prediction and the ground-truth, where κ ∈ [−1, 1]. A value
of κ = 1 indicates total agreement, while κ ≤ 0 indicates a
lower chance of agreement. The mean and standard deviation
across splits of each metric are reported for each method.

D. Comparison with baselines

The baselines for our comparative analysis are the methods
by Wang et al. [8] and conf-DeepFA [4]. This experiment
seeks the validate our method against these baselines, from
which some components are borrowed. It is worth pointing out
that, as with our method, the baselines do not require a valida-
tion set. Since conf-DeepfA relies on a pre-trained encoder, we
use contrastive learning to initialize the encoder’s weights. For
conf-DeepfA, we set the global labeling confidence threshold
as τ = 0.8. Table III shows the mean and standard deviation
of accuracy and κ across splits for all three methods. It can
be seen that our approach outperforms its counterparts in both
metrics for all datasets.

TABLE III
TEST RESULTS OF ACCURACY AND κ FOR BASELINES.

Method Metric Datasets
Helminth larvae Helminth eggs Protozoan cysts

Wang et al. [8]
accuracy 0.970 ± 0.022 0.906 ± 0.004 0.886 ± 0.013

κ 0.878 ± 0.078 0.822 ± 0.006 0.806 ± 0.021

conf-DeepFA [4]
accuracy 0.966 ± 0.016 0.884 ± 0.010 0.799 ± 0.060

κ 0.867 ± 0.064 0.785 ± 0.024 0.663 ± 0.086

Proposed
accuracy 0.976 ± 0.015 0.946 ± 0.005 0.922 ± 0.009

κ 0.889 ± 0.064 0.901 ± 0.009 0.870 ± 0.014

1) Influence of contrastive learning: The results reveal
contrastive learning as an effective initializer for network
weights from a reduced set of labeled samples, thereby serving
as a good alternative to circumvent the prerequisite of pre-
trained models in DeepFA-based methods. Also, it proves to
be effective in enabling the use of conf-DeepFA with non-pre-
trained custom CNN architectures. In contrast to both conf-
DeepFA and the method by Wang et al., our method initializes
the network weights up to the last dense layer, rather than only
the encoder part, which enhances the representations learned
by the network for subsequent projection and label propagation
as demonstrated by the results.

2) Influence of layer selection for 2D projection: Our
method projects the latent space of the last dense layer, instead
of the last convolutional layer, during the iterative cross-
training stage, which has a significant impact on the results.
Figure 4 shows the projections of the latent space of the last
dense and the last convolutional layers for the Protozoan cysts
dataset, where the first provides a better separation among
classes, which in turn favors label propagation by OPFSemi.
The rationale behind this choice is based on the work by
Rauber et al. [10], who demonstrated that the deeper the
layer in an effectively trained network, the more separated
the classes are likely to be in the latent space 2D projection.

3) Influence of iterative cross-training: The integration of
DeepFA into the cross-training procedure using two collabora-
tive networks, together with the adoption of the ICE loss, helps

(a) Last dense layer (b) Last convolutional layer

Fig. 4. Projections of the latent space of the last dense (left) and the last
convolutional layer (right) for the Protozoan cysts dataset.

to mitigate the issues of confirmation bias and overfitting,
enhancing the generalization ability of the networks as iter-
ations proceed, which in turn is reflected in the generalization
ability of the final model. This is further validated by the
direct comparison between the method by Wang et al. and
conf-DeepFA, where the latter outperforms the former in all
datasets.

4) Influence of OPFSemi as teacher: On the other hand,
the incorporation of OPFSemi as teacher to generate pseudo-
labels via label propagation significantly improves the results
by Wang et al., which performs pseudo-labeling in a self-
training manner. This result demonstrates the effectiveness of
OPFSemi as teacher by providing more reliable pseudo-labels
in suitable projection conditions.

E. Comparison with other state-of-the-art methods

In this experiment, we compare our approach with other
state-of-the-art (SOTA) DSSL methods. Six SOTA DSSL
methods from three categories according to their solution strat-
egy were selected: Pseudo-labeling: Pseudo-label [11]; Con-
sistency Regularization: Π-model [12], Mean Teacher [13],
VAT [14] and UDA [15]; and Hybrid: FixMatch [16]. We
used the Pytorch implementation available in the Unified
SSL Benchmark (USB) library [17]. We employed the initial
labeled set ZL as validation set, since all six DSSL methods
rely on it to select the best-performing model. Table IV shows
the mean and standard deviation of accuracy and κ for all
methods. It can be seen that our method outperforms all its
counterparts in both metrics for all three datasets.

Our method shows a clear superiority over Pseudo-label,
suggesting that a meta-pseudo-labeling approach introduces
enhancements over the standard self-training pseudo-labeling
strategy, which validates the usage of OPFSemi as teacher.
Consistency regularization approaches exhibit competitive
results on all three datasets, hinting that including data
augmentation-based strategies and consistency constraints in
the loss function may further enhance the performance of our
method. Moreover, Fixmatch, a hybrid method that capital-
izes on both self-training-based pseudo-labeling and consis-
tency regularization, shows competitive results on all datasets.
Therefore, the incorporation of an auxiliar model as teacher
(e.g., OPFSemi) may improve the method’s overall perfor-
mance. A comparison between our method and Mean Teacher,
another teacher-student-based approach, reveals the dominance



TABLE IV
TEST RESULTS OF ACCURACY AND κ FOR STATE-OF-THE-ART DSSL

METHODS.

Method Metric Datasets
Helminth larvae Helminth eggs Protozoan cysts

Pseudo-label [11]
accuracy 0.960 ± 0.010 0.916 ± 0.008 0.903 ± 0.011

κ 0.811 ± 0.057 0.850 ± 0.008 0.836 ± 0.023

Π-Model [12]
accuracy 0.962 ± 0.020 0.922 ± 0.003 0.912 ± 0.009

κ 0.836 ± 0.081 0.855 ± 0.004 0.853 ± 0.016

Mean Teacher [13]
accuracy 0.969 ± 0.009 0.928 ± 0.017 0.906 ± 0.003

κ 0.860 ± 0.037 0.870 ± 0.033 0.843 ± 0.005

VAT [14]
accuracy 0.965 ± 0.006 0.933 ± 0.013 0.912 ± 0.010

κ 0.844 ± 0.031 0.880 ± 0.021 0.854 ± 0.018

UDA [15]
accuracy 0.966 ± 0.009 0.933 ± 0.002 0.914 ± 0.004

κ 0.851 ± 0.033 0.880 ± 0.003 0.857 ± 0.007

FixMatch [16]
accuracy 0.968 ± 0.015 0.925 ± 0.011 0.914 ± 0.006

κ 0.857 ± 0.060 0.862 ± 0.020 0.856 ± 0.011

Proposed
accuracy 0.976 ± 0.015 0.946 ± 0.005 0.922 ± 0.009

κ 0.889 ± 0.064 0.901 ± 0.009 0.870 ± 0.014

of cross-training-based pseudo-labeling in a teacher-student
setup. Our method shows highly competitive performance as
compared to all consistency regularization-based counterparts,
further validating the effectiveness of our strategy.

Another point worth noting is that the unbalanced nature of
the dataset and the high similarity between some classes, in
greater degree between impurities and parasites, can explain
the variability found in the results from different methods. In
this regard, our method shows its robustness and adaptability to
new data providing more consistent results across all datasets.

IV. CONCLUSION

In this work, we introduced an iterative contrastive-based
meta-pseudo-labeling method to train non-pre-trained custom
CNN architectures for image classification in conditions of
scarcity of labeled and abundance of unlabeled data. It does
so by incorporating deep feature annotation (DeepFA) into an
iterative cross-training procedure that implements two collab-
orative networks, which in turn minimizes an iterative cate-
gorical cross-entropy (ICE) loss that adjusts the contribution
of pseudo-labels across iterations. This mitigates confirmation
bias and overfitting by providing reliable pseudo-labels while
improving the networks’ generalization ability as iterations
evolve. Also, the method capitalizes on contrastive learning
to enhance the networks’ representation ability and to cir-
cumvent the need for pre-trained architectures. We evaluated
our method on three challenging biological image datasets
emulating a labeled data scarcity scenario by labeling only
5% of the samples of each dataset. We compared our method
to two direct baselines and to six other state-of-the-art DSSL
from three different categories of approaches. For each dataset,
our method improves its baselines and outperforms its state-
of-the-art counterparts, demonstrating its effectiveness and
robustness. As future work, we plan to further improve the
results presented herein by incorporating data augmentation-
based techniques and consistency constraints in the loss func-
tion with the intend of enhancing the accuracy of pseudo-labels
and reducing the amount of labeled data.
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