
INTERACT-NET: An Interactive Interface for
Multimedia Machine Learning

Alberto Kopiler
IMPA

Tiago Novello
IMPA

Guilherme Schardong
University of Coimbra

Luiz Schirmer
Unisinos

Daniel Perazzo
IMPA

Luiz Velho
IMPA

Abstract—INTERACT-NET is a study of interactive human-
computer interfaces for use in pipelines of multimedia using ma-
chine learning (ML), image processing, and computer graphics.

Index Terms—interaction, interface, multimedia, machine
learning

I. INTRODUCTION

This work is not intended to be a survey about interactivity,
as it would be necessary to read and analyze hundreds of
articles. Therefore, we do not presume to exhaust the subject,
our objective being more mundane: to resolve the “pains” of
the projects currently underway at IMPA’s Visgraf (Vision and
Graphics Laboratory). In this lab, there are already projects
that work intensely in analyzing and synthesizing both 2D
and 3D images and, in their representation, both explicitly and
implicitly. More recently, even before the boom in generative
artificial intelligence, courses in 3D computer graphics and
image processing were already offered, of which artificial
intelligence is an integral part. In these courses the algorithmic
part was highlighted, mainly its strong mathematical founda-
tion, showing new ways of carrying out generative function-
alities, faster and more efficiently. This fusion of computer
graphics, image processing, and artificial intelligence has led
to the democratization of the use of computer graphics, as
can be seen by the increasing adoption of image generation
tools using generative artificial intelligence, such as DALL-
E, Stable Diffusion, Imagen and Midjourney only to name
the most famous to date. If we approach from a multimodal
point of view, that is, not restricting the study to just 2D and
3D images, we can add 1D signals such as sound, 3D/4D
such as video, and images with depth and alpha channels. We
can even input text, given the tendency to create pipelines in
which, for example, you enter text describing an image and
obtain an image as output and vice versa, or you enter one
image or more and get a video as output (such as SORA
tools, Runway Gen-2). This phenomenon is called the text-to-
anything transformation or, more generally, the everything-to-
anything transformation). Behind this phenomenon are large
language models (LLMs), which apply attention techniques to
text (transformers and embeddings), which can be extended to
images (vision transformers), as well as deep ML models such
as auto-encoders, GANS (generative adversarial networks)
and diffusion. Segmentation models such as SAM (META’s
Segment Anything Model) are also useful, as well as obtaining

image features (key point detection, such as Surf - Speeded
Up Robust Features, Sift - scale-invariant feature transform,
ORB - Oriented FAST and Rotated BRIEF, Harrys Corner,
edge detection, face landmarks like DLIB – 68 unique features
or MediaPipe – 468 or 478 3D features), depending on the
application.

Another fundamental area of computer graphics is inter-
active computer graphics [1]. Graphic input and output de-
vices have evolved, as have operating systems (Windows and
Linux with a graphical interface, as well as specific ones
for mobile devices, such as IOS and Android). Following
this innovation trend, voice-activated personal assistants that
synthesize speech have become more efficient with ML. In
other words, pipelines that receive voice input, recognize it,
and transform it into text, which in turn activate tasks related
to generating images, and video, or executing some of them as
if they were an agent. The ability of a large language model
to understand what the text (prompt) presupposes in each
context allows the creation of “menuless” interfaces, that is,
without explicit options. This fact makes it possible to generate
dynamic interfaces, and the code generation capacity of these
models makes it possible to get new functionalities and even
improve existing ones, making these interfaces very powerful,
as they can be self-generative.

Additionally, we need to consider the platform on which
our applications will run. Mobile devices have converged on
merging the keyboard with the screen using touchscreens. Ad-
ditionally, the use of voice recording instead of the keyboard is
growing. The number of mobile devices is in the billions, while
the use of graphics stations is in the millions. For example,
some questions can be asked: On which platform do we want
our application to run? Mobile or Desktop? (A possible answer
could be both, correct?) Do you want an application installed
on your cell phone or an interface that runs on any browser?
Current mobile devices are versatile: they have a camera (with
very high resolution), many have more than one lens (some
three), many have sensors (accelerometers, gyroscope, and
barometer) and LiDAR (Light Detection and Ranging), and
last generation graphics processing units. Then it’s expected
that local ML execution capabilities will emerge, as computer
graphics have been a reality for some time. Therefore, inter-
activity such as shaking the cell phone, clapping your hands
to activate a function, or recognizing a gesture from the image
or video must be considered.

If we broaden the scope, a major catalyst for interactivity



in computer graphics is the area of games. The idea of using
a wireless controller (Wii) revolutionized the gaming industry,
as well as the multi-user game industry. Other related areas
are Virtual Reality and Augmented Reality.

So, this work assumes that we are dealing with multi-
modal information, that is multimedia, using ML, computer
graphics, and image processing interactively, using interactive
computer graphics resources. The progressive visualization of
learning stages, as well as the graphical visualization of the
layer outputs (in the case of artificial neural networks), as
well as the possibility of interactively editing parameters or
the image itself (or features of that image), are the objectives
of this study, but in an applied way to support the projects.

The methodology adopted begins by specifying require-
ments and, based on case studies associated with the projects
currently underway at Visgraf and “their pain points”, then
analyzes the tools available to meet this demand incrementally.
You should avoid “reinventing the wheel”, but rather seek “on
the shelf” frameworks and solutions, preferably open source.

II. MOTIVATION

The motivation for this work is to provide interactive
human-machine interfaces that allow integration with multi-
media projects. That is, designing interaction for multimedia
analysis and synthesis pipeline (e.g. 2D and 3D images) using
ML, image processing, and computer graphics.

III. REQUISITES

The desirable requirements are the following: interactivity,
web orientation (preferably “serverless”), suitability for 2D but
also 3D, mobility, quickness, and ease of use. Further details
of each of the requirements are given below.

A. Interactivity

One of the key requirements is interactivity. The user should
interact at the beginning or during the learning process to
achieve a better result by adjusting, for instance, one or more
face landmarks, choosing a desired target point, or limiting an
area of interest. The type or types of interactions will depend
on the specificity of the application.

B. Web Orientation

The build application should run on the web browser.
Preferably it should do most of the processing on the client
so that the user will have a better experience. In this way,
we can also call this requirement “serverless”. Of course,
deep learning will need most of the time a server to process
the heavy load, but the interactive part should desirably be
processed on the client side.

C. 2D/3D

We will begin with experiments in two dimensions, but we
must also consider three dimensions as there are already 3D
projects at Visgraf.

D. Mobility

If your application goes mobile it will have more views and
users than if it were stuck on a desktop.

E. Quickness

If your application takes too long to respond, it may not get
the user’s attention or addiction. Of course, deep learning will
need time to process, but you should build your application
interface so the user is always aware and in control. The faster
interaction the better.

F. User Friendship

When building the user interface, you should remember that
simplicity and easy navigability are key concepts.

IV. TOOLS

To verify compliance with requirements and use cases, some
tools were found for evaluation. They can be divided into web
interfaces, JavaScript language, and libraries.

A. Web Interfaces

Here we list some general web frameworks available to
interact with images in an ML pipeline.

1) Gradio: [2] is the fastest way to demo and share your
ML model with a friendly web interface so anyone can use it,
anywhere! The interface is Gradio’s main high-level class and
allows you to create a web-based GUI demo around an ML
model (or any Python function) in a few lines of code. You
must specify three parameters: (1) the function to create a GUI
for (2) the desired input components and (3) the desired output
components. Additional parameters can be used to control
the appearance and behavior of the demo. You can use the
HuggingFace Community to deploy, manage, and share your
app.

2) Streamlit: [3] lets you transform Python scripts into
interactive web apps in minutes, instead of weeks. Build
dashboards, generate reports, or create chat apps. Once you’ve
created an app, you can use the Streamlit Community Cloud
platform to deploy, manage, and share your app.

3) Flutter: [4] is an open-source framework by Google for
building beautiful, natively compiled, multi-platform applica-
tions from a single codebase. Flutter transforms the develop-
ment process. Build, test, and deploy beautiful mobile, web,
desktop, and embedded experiences from a single codebase.

4) Dash: [5] is an open-source framework for building data
visualization interfaces. Released in 2017 as a Python library,
it’s grown to include implementations for R, Julia, and F#.
Dash helps data scientists build analytical web applications
without requiring advanced web development knowledge.

5) Django: [6] is a high-level Python web framework that
encourages rapid development and clean, pragmatic design.
Built by experienced developers, it takes care of the hassle
of web development, so you can focus on writing your app
without reinventing the wheel. It’s free and open source.

6) Mesop: [7] is a Python-based UI framework that allows
quickly building web apps, like demos and internal apps.



We can also mention Pyramid [8], Flask [9], and Taipy [10]
as good web interface resources.

B. JavaScript

JavaScript is one of the most popular programming lan-
guages in the world. It powers millions of websites today
and has attracted droves of developers and designers to build
features for the web. If you’re new to programming, JavaScript
is easily one of the best programming languages to get under
your belt [11]. Here we list some JavaScript libraries that can
be used to build interactively two categories of user interfaces:
2D and 3D graphics and ML. These libraries can be used
individually or merged with more JavaScript libraries or even
with one of the mentioned web interfaces.

1) JavaScript for 2D and 3D Graphics:
a) React: [12] is a JavaScript library for building user

interfaces that allow the construction of web and native user
interfaces out of individual pieces called components. React
has been designed from the start for gradual adoption, and
you can use as little or as much React as you need. Whether
you want to get a taste of React, add interactivity to a
simple HTML page, or start a complex React-powered app.
React makes it painless to create interactive UIs. Design
simple views for each state in your application and React will
efficiently update and render just the right components when
your data changes.

b) Next.js: [13] is a React framework for building
full-stack web applications. You use React Components to
build user interfaces, and Next.js for additional features and
optimizations. Used by some of the world’s largest companies,
Next.js enables you to create high-quality web applications
with the power of React components. Under the hood, Next.js
also abstracts and automatically configures tooling needed for
React, like bundling, compiling, and more. This allows you to
focus on building your application instead of spending time
with configuration. Whether you’re an individual developer or
a larger team, Next.js can help the construction of interactive,
dynamic, and fast React applications.

c) Three.js: [14] is a 3D JavaScript library that tries to
make it easy to get 3D content on a web page. Three.js is often
confused with WebGL since often, but not always, three.js uses
WebGL to draw 3D. WebGL is a low-level system that only
draws points, lines, and triangles. To do anything useful with
WebGL generally requires quite a bit of code and that is where
three.js comes into play. It handles stuff like scenes, lights,
shadows, materials, textures, 3d math, all things you would
have to write yourself if you were to use WebGL directly.

d) D3.js: [15] is a free, open-source JavaScript library
for visualizing data. Its low-level approach built on web
standards offers unparalleled flexibility in authoring dynamic,
data-driven graphics.

e) P5.js: [16] is a JavaScript library for creative cod-
ing, making it accessible and inclusive for artists, designers,
educators, beginners, and anyone else. It is a free and open-
source library, that is, it can be accessible to everyone.
Using the metaphor of a sketch, p5.js features a full set of

drawing functionalities. However, you’re not limited to your
drawing canvas. You’ll consider your whole browser page as
your sketch, including HTML5 objects for text, input, video,
webcam, and sound.

f) Luma AI’s Three.js and R3F Gaussian Splatting Li-
brary: [17] is a JavaScript library developed by Luma.ai to
interface to Three.js and render Gaussian Splatting.

Luma WebGL Library [18], React Three Fiber [19], Baby-
lon.js [20], PlayCanvas [21], Vue [22], Svelte [23], AngularJS
[24], and Node.js [11] are also JavaScript libraries that span
from standard web user interfaces to 2D/3D ones.

2) JavaScript for ML and Computer Vision:
a) TensorFlow.js: [25] is a library for ML in JavaScript.

Develop JavaScript models and use ML directly in the browser
or Node.js. TensorFlow.js is a general-purpose, WebGL-
accelerated numeric platform for JavaScript. It brings highly
performing ML building blocks to your fingertips, allowing
you to train neural networks in a browser or run pre-trained
models in inference mode.

b) Transformers.js: [26] is the state-of-the-art ML for the
web. Run Transformers directly in your browser, with no need
for a server! Transformers.js is designed to be functionally
equivalent to Hugging Face’s transformers Python library,
meaning you can run the same pre-trained models using a very
similar API. These models support common tasks in different
modalities, such as:

• Natural Language Processing: text classification, named
entity recognition, question answering, language model-
ing, summarising, translation, multiple choice, and text
generation.

• Computer Vision: image classification, object detection,
and segmentation.

• Audio: automatic speech recognition and audio classifi-
cation.

• Multimodal: zero-shot image classification.

c) Face-api.js: [27] is a JavaScript API library for face
detection and face recognition in the browser implemented on
top of the tensorflow.js core API.

Keras.js [28], ml5.js [29], OpenCV.js [30], Synaptic.js [31],
ConvNet.js [32], Neuro.js [33], Brain.js [34], Tracking.js [35],
and clmtrackr [36] (Figure 1) are additional JavaScript libraries
for ML and computer vision.

Fig. 1. Face image landmarks with clmtrackr [36].



C. Libraries

1) DLIB: [37] contains a wide range of ML algorithms.
All are designed to be highly modular, quick to execute, and
simple to use via a clean and modern C++ API. It is used
in many applications including robotics, embedded devices,
mobile phones, and large high-performance computing en-
vironments. Many examples use API wrappers for Python:
Face detector, alignment, landmark detection, and recognition,
among others.

2) MediaPipe: A wide range of potential ML applications
today rely on several fundamental baseline ML tasks. For
example, both gestural navigation and sign language detectors
rely on the ability of a program to identify and track human
hands. Once building something like a hand-tracking model
is time-consuming and resource-intensive, a developmental
bottleneck exists in creating all applications that rely on hand-
tracking. To address this problem, MediaPipe [38] provided
cornerstone ML models for common tasks like hand tracking,
therefore removing the same developmental bottleneck occur-
ring for a host of ML applications. These models, along with
their excessively easy-to-use APIs, streamline the development
process and reduce project lifetime for many applications
that rely on Computer Vision. Another useful task provided
by MediaPipe is face landmark detection and visualization
(Figure 2).

It is worth mentioning in this section the WebGPU [39]
initiative that enables web developers to use the underlying
system’s GPU (Graphics Processing Unit) to carry out high-
performance computations and draw complex images that can
be rendered in the browser. There is also the WebXR [40]
initiative for virtual, and augmented reality in web browsers.

V. RELATED WORK

In this section, we will show related work with interactive
techniques to mark images (e.g., clicks, scribble, or area of
interest selection, for 2D and 3D) either to guide generative
ML or to correct stages of this learning. Drag Diffusion
[42], Free Drag [43], Drag Your Gan [44], EDIT Gan [45],
and UserControllablelLT [46] show simple interactions like
marking two points (two clicks), an origin and a target
so that to generate a new image composed by the drag
interaction and adding anchors to mark positions not to be
modified or mark an area to limit the image transformation

Fig. 2. Face image with MediaPipe Face Mesh drawn on top [38].

Fig. 3. Segment Anything Model (SAM) [41].

only inside it. The task of RITM [47] (Reviving Iterative
Training with Mask Guidance for Interactive Segmentation),
SAM [41] (Segment Anything Model in Figure 3), and SERF
[48] (Fine-Grained Interactive 3D Segmentation and Editing
with Radiance Fields) is to segment images using click-based
interactive segmentation. You can select part of the image by
clicking one or more times or deselecting only a small part
also by clicking. It is worthwhile mentioning the Observable
Notebooks [49] with several examples of visualization and
interactions for ML, image processing, and computer graphics:
Interactively Assessing Disentanglement in GANs, ML in The
Browser, Drawings to Human, Visualization in Deep Learning,
Background Position Scrubber and Peering Inside the Black
Box.

VI. USE CASES

This section lists use cases related to face morphing, one
of Visgraf’s projects selected to add interaction. The first one
is the Neural Implicit Morphing of Face Images [50] (Figure
4), Visgraf’s paper which uses DLIB for landmarks, and ML
in the learning optimization phase. It has an interactive editor
that adjusts the auto-detected landmarks in the warp process.
Another use case is face and landmark detection using face-
api.js [51] (Figure 5). Next, we have a Three.js use case to
draw decals interactively [52] (Figure 6). Finally, we list more
use cases related to INTERACT-NET: Real-Time AI Face
Landmark Detection in 20 Minutes with Tensorflow.JS [53];

Fig. 4. Face Morphing [50].

Fig. 5. Face Recognition using face-api.js [51].



Fig. 6. Interactive decals using Three.js [52].

Real-time 3D face mesh point cloud with Three.JS, Tensor-
flow.js and Typescript [54]; 56 Three JS Examples - Collection
of three.js [55]; MediaPipe video tutorial - Extracting Face
Mesh Facial Landmark Detection using OpenCV [56]; Facial
Landmark Detection Simplified with OpenCV and MediaPipe
[57]; The Top 7 Use Cases for Facial Landmark Detection
[58]; Virtual Reality for anatomical landmark annotation in
geometric morphometrics [59]; Landmark Editor Program
[60]; Simulated interactive Neural Implicit Morphing of Face
Images using Gradio and hosted by HuggingFace [61]; and
68 landmarks are efficient for 3D face alignment: what about
more? [62].

VII. EXPERIMENTS

A. Face Morphing

In this experiment [64], the faces of two generative artificial
intelligence personalities, Yann LeCun and Geoffrey Hinton,
were used as input. The video generated by the Face Morphing
project algorithm [50] was used as output, showing the trans-
formation. The idea of the slide bar is to inform the number
of steps to show (simulate) the progression of each morphing
step. It was developed in Python, using the Gradio interface
[2], and hosted on Hugging Face. The simulated morphing
routine can be easily switched to the real one.

B. Face Landmarks Detection and Visualization

In this experiment two landmark detection models were
used: DLIB [37] and MediaPipe [38]. The tests were carried
out by taking as input the video camera of the computer or cell
phone or using a pre-recorded video. In Figure 7 we present
the results of a video frame capture of LeCun and Hinton faces
morphing. Python, DLIB, MediaPipe, and OpenCV libraries
were used among others.

C. Face Landmarks Correspondence and Editing

The idea of this experiment is to combine the previous
ones, placing landmark type options (DLIB or MediaPipe),
whether you want the landmark to appear or be invisible.
In addition, correspondence lines will be drawn between the
landmarks of the source and target faces. These points can
be edited (dragged), interactively with the help of the mouse,
in their location coordinates on only one image, or both the
source and target images. Optionally, points can be added or
subtracted. The points’ visualization (and the lines connecting
the corresponding points) can be filtered by section (mouth,

Fig. 7. Interface screen for viewing face Landmarks: DLIB on the left, and
MediaPipe on the right. source: authors.

lips, nose, eyes, eyebrows, and jaw), by a single point, or
by a range of points. It will be done so that it is easy to
start working with 2D and then migrate to 3D. The first
version will be made using Python and later evolve into Gradio
and JavaScript (Three.js for example). Another feature will
be to draw the Delaunay triangles over the faces and allow
the interface to stretch the lines like a rubber band. This is
useful to interactively align the landmarks to the faces, as the
algorithms often outcomes good automatic landmarks, but not
perfect ones, as needed in the case of face morphing.

VIII. CONCLUSIONS

We showed here our objective of studying interactivity
applied to Visgraf’s projects [63]. We established requisites
and presented some tools, related work, use cases, and
experiments. Besides Face Morphing we intend to apply
INTERACT-NET in generative AI, 2D, and 3D reconstruction
using Gaussian Splatting, and also in VR, and XR projects.

REFERENCES

[1] J. D. Foley and A. Van Dam, Fundamentals of interactive computer
graphics. Addison-Wesley Longman Publishing Co., Inc., 1982.

[2] A. Abid, A. Abdalla, A. Abid, D. Khan, A. Alfozan, and J. Zou, “Gradio:
Hassle-free sharing and testing of ml models in the wild,” arXiv preprint
arXiv:1906.02569, 2019.

[3] M. Khorasani, M. Abdou, and J. Hernández Fernández, “Streamlit use
cases,” in Web Application Development with Streamlit: Develop and
Deploy Secure and Scalable Web Applications to the Cloud Using a
Pure Python Framework. Springer, 2022, pp. 309–361.

[4] E. Windmill, Flutter in action. Simon and Schuster, 2020.
[5] E. Dabbas, Interactive Dashboards and Data Apps with Plotly and Dash:

Harness the power of a fully fledged frontend web framework in Python–
no JavaScript required. Packt Publishing Ltd, 2021.

[6] J. Forcier, P. Bissex, and W. J. Chun, Python web development with
Django. Addison-Wesley Professional, 2008.

[7] “Mesop: Quickly build web uis in python.” https://google.github.io/
mesop, (accessed Jul. 03, 2024).

[8] “Pyramid: The start small, finish big, stay finished framework.” https:
//trypyramid.com, (accessed Jul. 03, 2024).

[9] “Flask: A simple framework for building complex web applications.”
https://pypi.org/project/Flask, (accessed Jul. 03, 2024).

[10] “Taipy: Go beyond existing libraries. build python data & ai web
applications.” https://taipy.io, (accessed Jul. 03, 2024).

[11] “What’s node.js ?” https://kinsta.com/knowledgebase/what-is-node-js,
(accessed Jul. 03, 2024).

[12] “React: The library for web and native user interfaces.” https://react.dev,
(accessed Jul. 03, 2024).

[13] “Next.js: The react framework for the web.” https://nextjs.org, (accessed
Jul. 03, 2024).

[14] “Three.js,” https://threejs.org, (accessed Jul. 03, 2024).
[15] “D3js: The javascript library for bespoke data visualization.” https://

d3js.org, (accessed Jul. 03, 2024).



[16] “p5*js,” https://p5js.org, (accessed Jul. 03, 2024).
[17] “Luma ai’s three.js and r3f gaussian splatting library.”

https://discourse.threejs.org/t/luma-ais-three-js-and-r3f-gaussian-
splatting-library/58960, (accessed Jul. 03, 2024).

[18] “Luma webgl library.” https://lumalabs.ai/luma-web-library, (accessed
Jul. 03, 2024).

[19] “React three fiber.” https://docs.pmnd.rs/react-three-fiber/getting-
started/introduction, (accessed Jul. 03, 2024).

[20] “babylon.js,” https://www.babylonjs.com, (accessed Jul. 03, 2024).
[21] “playcanvas: Web graphics creation platform.” https://playcanvas.com,

(accessed Jul. 03, 2024).
[22] “Vue: The progressive javascript framework.” https://vuejs.org, (ac-

cessed Jul. 03, 2024).
[23] “Svelte: cybernetically enhanced web apps.” https://svelte.dev, (accessed

Jul. 03, 2024).
[24] “What is angularjs?” https://docs.angularjs.org/guide/introduction, (ac-

cessed Jul. 03, 2024).
[25] “Tensorflow.js — machine learning for javascript developers,” https://

www.tensorflow.org/js, (accessed Jul. 03, 2024).
[26] “Transformers.js: State-of-the-art machine learning for the web.” https:

//huggingface.co/docs/transformers.js/index, (accessed Jul. 03, 2024).
[27] V. Muhler, “Face and landmark detection using face-api.js,” https://

justadudewhohacks.github.io/face-api.js/face and landmark detection,
(accessed Jul. 03, 2024).

[28] “Kera.js,” https://transcranial.github.io/keras-js, (accessed Jul. 03, 2024).
[29] “ml5.js: Friendly machine learning for the web,” https://ml5js.org,

(accessed Jul. 03, 2024).
[30] “Opencv.js: Opencv for the javascript programmer.” https:

//docs.opencv.org/4.x/df/d0a/tutorial js intro.html, (accessed Jul.
03, 2024).

[31] “Synaptic.js: The javascript architecture-free neural network library for
node.js and the browser.” https://caza.la/synaptic, (accessed Jul. 03,
2024).

[32] “Convnetjs: Deep learning in your browser.” https://cs.stanford.edu/
people/karpathy/convnetjs, (accessed Jul. 03, 2024).

[33] “Neuro.js: machine learning framework for building ai assistants and
chat-bots.” https://neuro.js.org, (accessed Jul. 03, 2024).

[34] “Brain.js: Gpu accelerated neural networks in javascript for browsers
and node.js.” https://brain.js.org, (accessed Jul. 03, 2024).

[35] “tracking.js: A modern approach for computer vision on the web.” https:
//trackingjs.com, (accessed Jul. 03, 2024).

[36] “clmtrackr.” https://www.npmjs.com/package/clmtrackr, (accessed Jul.
03, 2024).

[37] D. E. King, “Dlib-ml: A machine learning toolkit,” The Journal of
Machine Learning Research, vol. 10, pp. 1755–1758, 2009.

[38] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. G. Yong, J. Lee et al., “Mediapipe:
A framework for building perception pipelines,” arXiv preprint
arXiv:1906.08172, 2019.

[39] “Webgpu.” https://www.w3.org/TR/webgpu, (accessed Jul. 03, 2024).
[40] “Webxr.” https://www.w3.org/TR/webxr, (accessed Jul. 03, 2024).
[41] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,

T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2023, pp. 4015–4026.

[42] Y. Shi, C. Xue, J. H. Liew, J. Pan, H. Yan, W. Zhang, V. Y. F.
Tan, and S. Bai, “Dragdiffusion: Harnessing diffusion models for
interactive point-based image editing,” 2024. [Online]. Available:
https://arxiv.org/abs/2306.14435

[43] P. Ling, L. Chen, P. Zhang, H. Chen, Y. Jin, and J. Zheng, “Freedrag:
Feature dragging for reliable point-based image editing,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2024, pp. 6860–6870.

[44] X. Pan, A. Tewari, T. Leimkühler, L. Liu, A. Meka, and C. Theobalt,
“Drag your gan: Interactive point-based manipulation on the generative
image manifold,” in ACM SIGGRAPH 2023 Conference Proceedings,
2023, pp. 1–11.

[45] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler, “Ed-
itgan: High-precision semantic image editing,” in Advances in Neural
Information Processing Systems (NeurIPS), 2021.

[46] Y. Endo, “User-controllable latent transformer for stylegan image layout
editing,” 2022. [Online]. Available: https://arxiv.org/abs/2208.12408

[47] K. Sofiiuk, I. A. Petrov, and A. Konushin, “Reviving iterative training
with mask guidance for interactive segmentation,” in 2022 IEEE Inter-
national Conference on Image Processing (ICIP). IEEE, 2022, pp.
3141–3145.

[48] K. Zhou, L. Hong, E. Xie, Y. Yang, Z. Li, and W. Zhang, “Serf: Fine-
grained interactive 3d segmentation and editing with radiance fields,”
arXiv preprint arXiv:2312.15856, 2023.

[49] “Artificial intelligence / observable — observable (observablehq.com),”
https://observablehq.com/collection/@observablehq/a-i-artificial-
intelligence, (accessed Jul. 03, 2024).

[50] G. Schardong, T. Novello, H. Paz, I. Medvedev, V. da Silva, L. Velho,
and N. Gonçalves, “Neural implicit morphing of face images,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 7321–7330.

[51] V. Muhler, “face-api.js-javascript api for face recognition in the browser
with tensorflow.js,” Medium, 2018.

[52] “Three.js decal splatter.” https://threejs.org/examples/\#webgl decals,
(accessed Jul. 03, 2024).

[53] “Real time ai face landmark detection in 20 minutes with tensorflow.js
and react.” https://www.youtube.com/watch?v=7lXYGDVHUNw, (ac-
cessed Jul. 03, 2024).

[54] “Real-time face mesh point cloud with three.js, tensorflow.js
and typescript.” https://techtee.medium.com/real-time-face-mesh-
point-cloud-with-three-js-tensorflow-js-and-typescript-1f37ae844e1f,
(accessed Jul. 03, 2024).

[55] “56 three js examples - collection of three.js (javascript 3d library)
code examples.” https://freefrontend.com/three-js-examples, (accessed
Jul. 03, 2024).

[56] “Mediapipe vı́deo tutorial - extracting facemesh.” https:
//www.youtube.com/watch?v=9O6VkIL3rZE, (accessed Jul. 03,
2024).

[57] S. A. G. Shakhadri, “Facial landmark detection simplified with
opencv.” https://www.analyticsvidhya.com/blog/2021/07/facial-
landmark-detection-simplified-with-opencv/, (accessed Jul. 03, 2024).

[58] H. Yilmaz, “The top 7 use cases for facial landmark detection.”
https://www.plugger.ai/blog/the-top-7-use-cases-for-facial-landmark-
detection, (accessed Jul. 03, 2024).

[59] D. Messer, M. Atchapero, M. B. Jensen, M. S. Svendsen, A. Galatius,
M. T. Olsen, J. R. Frisvad, V. A. Dahl, K. Conradsen, A. B. Dahl et al.,
“Using virtual reality for anatomical landmark annotation in geometric
morphometrics,” PeerJ, vol. 10, p. e12869, 2022.

[60] “Facial landmark editing program.” https://github.com/yun-ss97/Facial-
Landmark-Editing-Program?tab=readme-ov-file, (accessed Jul. 03,
2024).

[61] A. A. Kopiler, “Face morphing experiment.” https://akopiler-face-
morphing.hf.space, (accessed Jul. 03, 2024).

[62] M. Jabberi, A. Wali, B. B. Chaudhuri, and A. M. Alimi, “68 landmarks
are efficient for 3d face alignment: what about more? 3d face alignment
method applied to face recognition,” Multimedia Tools and Applications,
vol. 82, no. 27, pp. 41 435–41 469, 2023.

[63] “Visgraf projects.” https://visgraflab.impa.br/neural/2023/12/11/links,
(accessed Jul. 03, 2024).


