1. Identificação | |
Tipo de Referência | Artigo em Evento (Conference Proceedings) |
Site | sibgrapi.sid.inpe.br |
Identificador | 8JMKD3MGPEW34M/47K7NDL |
Repositório | sid.inpe.br/sibgrapi/2022/09.12.07.42 |
Última Atualização | 2022:09.12.15.37.18 (UTC) chafic.ac.abou-akar@bmw.de |
Repositório de Metadados | sid.inpe.br/sibgrapi/2022/09.12.07.42.32 |
Última Atualização dos Metadados | 2023:05.23.04.20.42 (UTC) administrator |
DOI | 10.1109/SIBGRAPI55357.2022.9991784 |
Chave de Citação | AbouAkarTeJeKhKaGu:2022:SyObRe |
Título | Synthetic Object Recognition Dataset for Industries  |
Formato | On-line |
Ano | 2022 |
Data de Acesso | 06 jul. 2025 |
Número de Arquivos | 1 |
Tamanho | 7717 KiB |
|
2. Contextualização | |
Autor | 1 Abou Akar, Chafic 2 Tekli, Jimmy 3 Jess, Daniel 4 Khoury, Mario 5 Kamradt, Marc 6 Guthe, Michael |
Afiliação | 1 BMW Group, Univ. Bourgogne France-Comté 2 BMW Group 3 BMW Group 4 BMW Group 5 BMW Group 6 University of Bayreuth |
Endereço de e-Mail | chafic.ac.abou-akar@bmw.de |
Nome do Evento | Conference on Graphics, Patterns and Images, 35 (SIBGRAPI) |
Localização do Evento | Natal, RN |
Data | 24-27 Oct. 2022 |
Título do Livro | Proceedings |
Tipo Terciário | Full Paper |
Histórico (UTC) | 2022-09-12 15:37:18 :: chafic.ac.abou-akar@bmw.de -> administrator :: 2022 2023-05-23 04:20:42 :: administrator -> :: 2022 |
|
3. Conteúdo e estrutura | |
É a matriz ou uma cópia? | é a matriz |
Estágio do Conteúdo | concluido |
Transferível | 1 |
Palavras-Chave | Computer Vision Industry 4.0 Logistic Object Recognition Smart Factory Synthetic Dataset |
Resumo | Smart robots in factories highly depend on Computer Vision (CV) tasks, e.g. object detection and recognition, to perceive their surroundings and react accordingly. These CV tasks can be performed after training deep learning (DL) models on large annotated datasets. In an industrial setting, acquiring and annotating such datasets is challenging because it is time-consuming, prone to human error, and limited by several privacy and security regulations. In this study, we propose a synthetic industrial dataset for object detection purposes created using NVIDIA Omniverse. The dataset consists of 8 industrial assets in 32 scenarios and 200,000 photo-realistic rendered images that are annotated with accurate bounding boxes. For evaluation purposes, multiple object detectors were trained with synthetic data to infer on real images captured inside a factory. Accuracy values higher than 50% and up to 100% were reported for most of the considered assets. |
Arranjo | urlib.net > SDLA > Fonds > SIBGRAPI 2022 > Synthetic Object Recognition... |
Conteúdo da Pasta doc | acessar |
Conteúdo da Pasta source | não têm arquivos |
Conteúdo da Pasta agreement | |
|
4. Condições de acesso e uso | |
URL dos dados | http://urlib.net/ibi/8JMKD3MGPEW34M/47K7NDL |
URL dos dados zipados | http://urlib.net/zip/8JMKD3MGPEW34M/47K7NDL |
Idioma | en |
Arquivo Alvo | ABOU~AKAR_22_pre-print.pdf |
Grupo de Usuários | chafic.ac.abou-akar@bmw.de |
Visibilidade | shown |
|
5. Fontes relacionadas | |
Repositório Espelho | sid.inpe.br/banon/2001/03.30.15.38.24 |
Unidades Imediatamente Superiores | 8JMKD3MGPEW34M/495MHJ8 |
Lista de Itens Citando | sid.inpe.br/sibgrapi/2023/05.19.12.10 53 sid.inpe.br/sibgrapi/2022/06.10.21.49 13 sid.inpe.br/banon/2001/03.30.15.38.24 7 |
Acervo Hospedeiro | sid.inpe.br/banon/2001/03.30.15.38 |
|
6. Notas | |
Campos Vazios | archivingpolicy archivist area callnumber contenttype copyholder copyright creatorhistory descriptionlevel dissemination documentstage edition editor electronicmailaddress group holdercode isbn issn label lineage mark nextedition notes numberofvolumes orcid organization pages parameterlist parentrepositories previousedition previouslowerunit progress project publisher publisheraddress readergroup readpermission resumeid rightsholder schedulinginformation secondarydate secondarykey secondarymark secondarytype serieseditor session shorttitle sponsor subject tertiarymark type url versiontype volume |
|